Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = biological sulphate reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3186 KiB  
Review
Anaerobic Bioremediation of Acid Mine Drainage Using Sulphate-Reducing Bacteria: Current Status, Challenges, and Future Directions
by Ditiro Mafane, Tholiso Ngulube and Mamasegare Mabel Mphahlele-Makgwane
Sustainability 2025, 17(8), 3567; https://doi.org/10.3390/su17083567 - 15 Apr 2025
Cited by 2 | Viewed by 2049
Abstract
Biological reduction of sulphates has gradually replaced unit chemical processes for the treatment of acid mine drainage (AMD), which exerts a significant environmental impact due to its elevated acidity and high concentrations of heavy metals. Bioremediation is optimally suited for the treatment of [...] Read more.
Biological reduction of sulphates has gradually replaced unit chemical processes for the treatment of acid mine drainage (AMD), which exerts a significant environmental impact due to its elevated acidity and high concentrations of heavy metals. Bioremediation is optimally suited for the treatment of AMD because it is cost-effective and efficient. Anaerobic bioremediation employing sulphate-reducing bacteria (SRB) presents a promising solution by facilitating the reduction of sulphate to sulphide. The formed can precipitate and immobilise heavy metals, assisting them in their removal from contaminated wastewater. This paper examines the current status of SRB-based bioremediation, with an emphasis on recent advances in microbial processes, reactor design, and AMD treatment efficiencies. Reviewed studies showed that SRB-based bioreactors can achieve up to 93.97% of sulphate reduction, with metal recovery rates of 95% for nickel, 98% for iron and copper, and 99% for zinc under optimised conditions. Furthermore, bioreactors that used glycerol and ethanol as a carbon source improved the efficiency of sulphate reduction, achieving a pH neutralisation from 2.8 to 7.5 within 14 days of hydraulic retention time. Despite the promising results achieved so far, several challenges remain. These include the need for optimal environmental conditions, the management of toxic hydrogen sulphide production, and the economic feasibility of large-scale applications. Future directions are proposed to address these challenges, focusing on the genetic engineering of SRB, integration with other treatment technologies, and the development of cost-effective and sustainable bioremediation strategies. Ultimately, this review provides valuable information to improve the efficiency and scalability of SRB-based remediation methods, contributing to more sustainable mining practices and environmental conservation. To ensure relevance and credibility, relevance and regency were used as criteria for the literature search. The literature sourced is directly related to the subject of the review, and the latest research, typically from the last 5 to 10 years, was prioritised. Full article
Show Figures

Figure 1

14 pages, 2574 KiB  
Article
Groundwater Bioremediation through Reductive Dechlorination in a Permeable Bioelectrochemical Reactor
by Geremia Sassetto, Laura Lorini, Agnese Lai, Marco Petrangeli Papini and Marco Zeppilli
Catalysts 2024, 14(3), 208; https://doi.org/10.3390/catal14030208 - 20 Mar 2024
Cited by 3 | Viewed by 1868
Abstract
A new membrane-less bioelectrochemical reactor configuration was developed for contaminated groundwater remediation. The new bioelectrochemical reactor configuration was inspired by the utilisation of a permeable reactive barrier (PBR) configuration with no separation membrane. The corresponding reactive zones were created by using graphite granules [...] Read more.
A new membrane-less bioelectrochemical reactor configuration was developed for contaminated groundwater remediation. The new bioelectrochemical reactor configuration was inspired by the utilisation of a permeable reactive barrier (PBR) configuration with no separation membrane. The corresponding reactive zones were created by using graphite granules and mixed metal oxide (MMO) electrodes to stimulate the reductive and oxidative biological degradation of chlorinated aliphatic hydrocarbons. In the present study, the PBR-like bioelectrochemical reactor has been preliminarily operated with synthetic contaminated groundwater, testing the reductive dechlorination activity on cis-dichloroethylene (cisDCE). Moreover, to assess the effects of competing anions presence for the electron donor (i.e., the cathode), the synthetic wastewater contained sulphate and nitrate anions. In the PBR-like reactor operation, nearly all cisDCE was removed in the initial sampling port, with only VC detected as the observable RD product. During the same biotic test of the PRB reactor, the presence of both the reductive dechlorination and anions reduction was confirmed by the complete nitrate reduction in the cathodic chamber of the PRB reactor. On the contrary, sulphate reduction showed a lower activity; indeed, only 25% of the influent sulphate was removed by the PRB reactor. Full article
Show Figures

Graphical abstract

15 pages, 3439 KiB  
Article
Immobilisation of Molybdenum in a Sulphate-Reducing Bioreactor
by Pavlina Kousi, Dimitra-Artemis Strongyli, Petros E. Tsakiridis, Artin Hatzikioseyian and Emmanouella Remoundaki
Separations 2024, 11(1), 9; https://doi.org/10.3390/separations11010009 - 25 Dec 2023
Cited by 1 | Viewed by 2290
Abstract
This work presents a biological remediation process for molybdenum-bearing wastewater which may lead to the fabrication of biogenic Mo chalcogenide particles with (photo)catalytic properties. The process is based on dissimilatory sulphate reduction, utilising sulphate-reducing bacteria (SRB), and reductive precipitation of molybdate which is [...] Read more.
This work presents a biological remediation process for molybdenum-bearing wastewater which may lead to the fabrication of biogenic Mo chalcogenide particles with (photo)catalytic properties. The process is based on dissimilatory sulphate reduction, utilising sulphate-reducing bacteria (SRB), and reductive precipitation of molybdate which is the predominant species of molybdenum in oxygenated water/wastewater. The SRB culture was established in a biofilm reactor which was fed with synthetic solutions containing sulphate (17.7 mM), molybdate molybdenum (2 mM), divalent iron (1.7 mM) and ethanol as the carbon/electron donor. The performance of the bioreactor was monitored in terms of pH, sulphate and molybdenum (Mo(VI) and total) content. The presence of thiomolybdate species was studied by scanning UV-Vis absorbance of samples from the reactor outflow while the reactor precipitates were studied via electron microscopy coupled with energy dispersive spectrometry, X-ray diffractometry and laser light scattering. A molar molybdate/sulphate ratio of 1:12.5 proved effective for molybdate reduction and recovery by 76% in 96 h, whereas sulphate was reduced by 57%. Molybdenum was immobilised in the sulphidic precipitates of the bioreactor, presumably via two principal mechanisms: (i) microbially mediated reduction and precipitation, and (ii) thiomolybdate formation and sorption/incorporation into iron sulphides. Full article
Show Figures

Figure 1

14 pages, 2295 KiB  
Article
Possible Effects of Changes in Carbonate Concentration and River Flow Rate on Photochemical Reactions in Temperate Aquatic Environments
by Davide Vione, Federica Saglia and Carola Pelazza
Molecules 2023, 28(20), 7072; https://doi.org/10.3390/molecules28207072 - 13 Oct 2023
Cited by 2 | Viewed by 1371
Abstract
In temperate environments, climate change could affect water pH by inducing enhanced dissolution of CaSO4 followed by biological sulphate reduction, with the potential to basify water due to H+ consumption. At the same time, increased atmospheric CO2 could enhance weathering [...] Read more.
In temperate environments, climate change could affect water pH by inducing enhanced dissolution of CaSO4 followed by biological sulphate reduction, with the potential to basify water due to H+ consumption. At the same time, increased atmospheric CO2 could enhance weathering of carbonate rocks (e.g., dolomite) and increase the total concentration of dissolved carbonate species. Both processes enhance phototransformation by the carbonate radical (CO3•−), as shown for the non-steroidal anti-inflammatory drug paracetamol, provided that the dissolved organic carbon of water does not undergo important fluctuations. Climate change could also affect hydrology, and prolonged drought periods might considerably decrease flow rates in rivers. This is a substantial problem because wastewater pollutants become less diluted and, as a result, can exert more harmful effects due to increased concentrations. At the same time, in low-flow conditions, water is also shallower and its flow velocity is decreased. Photochemical reactions become faster because shallow water is efficiently illuminated by sunlight, and they also have more time to occur because water takes longer to cover the same river stretch. As a result, photodegradation of contaminants is enhanced, which offsets lower dilution but only at a sufficient distance from the wastewater outlet; this is because photoreactions need time (which translates into space for a flowing river) to attenuate pollution. Full article
(This article belongs to the Special Issue Current Advances in Photochemistry)
Show Figures

Graphical abstract

15 pages, 1877 KiB  
Article
Water-Soluble Saccharina latissima Polysaccharides and Relation of Their Structural Characteristics with In Vitro Immunostimulatory and Hypocholesterolemic Activities
by Ana S. P. Moreira, Diana Gaspar, Sónia S. Ferreira, Alexandra Correia, Manuel Vilanova, Marie-Mathilde Perrineau, Philip D. Kerrison, Claire M. M. Gachon, Maria Rosário Domingues, Manuel A. Coimbra, Filipe M. Coreta-Gomes and Cláudia Nunes
Mar. Drugs 2023, 21(3), 183; https://doi.org/10.3390/md21030183 - 16 Mar 2023
Cited by 16 | Viewed by 3674
Abstract
Brown macroalgae are an important source of polysaccharides, mainly fucose-containing sulphated polysaccharides (FCSPs), associated with several biological activities. However, the structural diversity and structure–function relationships for their bioactivities are still undisclosed. Thus, the aim of this work was to characterize the chemical structure [...] Read more.
Brown macroalgae are an important source of polysaccharides, mainly fucose-containing sulphated polysaccharides (FCSPs), associated with several biological activities. However, the structural diversity and structure–function relationships for their bioactivities are still undisclosed. Thus, the aim of this work was to characterize the chemical structure of water-soluble Saccharina latissima polysaccharides and evaluate their immunostimulatory and hypocholesterolemic activities, helping to pinpoint a structure–activity relationship. Alginate, laminarans (F1, neutral glucose-rich polysaccharides), and two fractions (F2 and F3) of FCSPs (negatively charged) were studied. Whereas F2 is rich in uronic acids (45 mol%) and fucose (29 mol%), F3 is rich in fucose (59 mol%) and galactose (21 mol%). These two fractions of FCSPs showed immunostimulatory activity on B lymphocytes, which could be associated with the presence of sulphate groups. Only F2 exhibited a significant effect in reductions in in vitro cholesterol’s bioaccessibility attributed to the sequestration of bile salts. Therefore, S. latissima FCSPs were shown to have potential as immunostimulatory and hypocholesterolemic functional ingredients, where their content in uronic acids and sulphation seem to be relevant for the bioactive and healthy properties. Full article
Show Figures

Graphical abstract

18 pages, 2378 KiB  
Article
Effect of Natural Liquid Hydroabsorbents on Ammonia Emission from Liquid Nitrogen Fertilizers and Plant Growth of Maize (Zea Mays L.) under Drought Conditions
by Tomáš Kriška, Petr Škarpa and Jiří Antošovský
Plants 2023, 12(4), 728; https://doi.org/10.3390/plants12040728 - 7 Feb 2023
Cited by 3 | Viewed by 2639
Abstract
The use of mineral nitrogen (N) fertilizers is associated with significant nitrogen loss through the volatilization. Ammonia (NH3) emissions are common from fertilizers with amide (NH2) and ammonium (NH4) nitrogen forms applied to the soil surface without [...] Read more.
The use of mineral nitrogen (N) fertilizers is associated with significant nitrogen loss through the volatilization. Ammonia (NH3) emissions are common from fertilizers with amide (NH2) and ammonium (NH4) nitrogen forms applied to the soil surface without incorporation. The objective of the laboratory and greenhouse pot experiments was to verify the hypothesis that liquid mineral fertilizers and fertilizer solutions containing N-NH2 and N-NH4 applied to the soil surface in combination with natural hydroabsorbents (NHAs) will reduce the volatilization of nitrogen. The effect of NHAs addition to urea ammonium nitrate (UAN) fertilizer and urea, ammonium nitrate (AN) and ammonium sulphate (AS) solutions was evaluated in a laboratory experiment. The effect of the two types of NHAs (acidic and neutral) was compared with the control (UAN) and its mixture with the commercially used urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT). The proportion of volatilized NH3 of the total N from the examined fertilizers applied to the soil surface was determined by the titration method. Subsequently, the effect of fertilization with UAN and its mixture with NHAs and NBPT on the growth of maize under the drought conditions was verified in a greenhouse pot experiment. While the addition of NBPT resulted in a reduction of NH3 emission for the fertilizers containing NH2 (UAN, urea solution), a decrease in volatilization after the addition of both acidic and neutral NHA was observed especially for UAN. A reduction in ammonia emission was also observed for AS after the addition of acidic NHA. The addition of both NHAs and NBPT to UAN increased the utilization of nitrogen from the applied fertilizer, which was reflected by an increase in chlorophyll content and increased CO2 assimilation by maize plants grown under the drought stress. UAN fertilizer combined with acidic NHA and NBPT significantly increased aboveground biomass production and root system capacity of maize. Significant increases in UAN nitrogen recovery were observed for all examined additives (UI and both types of NHAs). In addition to the known effects of hydroabsorbents, especially their influence on soil physical and biological properties and soil water retention, the effect of NHAs application in combination with UAN and AS solutions on the reduction of gaseous N loss, maize plant growth and fertilizer nitrogen recovery was found. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

17 pages, 2153 KiB  
Article
Micronutrients Foliar and Drench Application Mitigate Mango Sudden Decline Disorder and Impact Fruit Yield
by Ummadud din Umar, Niaz Ahmed, Muhammad Zeshan Zafar, Ateequr Rehman, Syed Atif Hasan Naqvi, Muhammad Asif Zulfiqar, Muhammad Tariq Malik, Baber Ali, Muhammad Hamzah Saleem and Romina Alina Marc
Agronomy 2022, 12(10), 2449; https://doi.org/10.3390/agronomy12102449 - 10 Oct 2022
Cited by 31 | Viewed by 5103
Abstract
Mango sudden death (MSD) or quick decline (QD) is the most destructive disease found in mango orchards of Pakistan and is characterized by collapse of the vascular system by Ceratocystis fimbriata and Lasiodiplodia theobromae. Cultural practices, chemicals, and biological control are the [...] Read more.
Mango sudden death (MSD) or quick decline (QD) is the most destructive disease found in mango orchards of Pakistan and is characterized by collapse of the vascular system by Ceratocystis fimbriata and Lasiodiplodia theobromae. Cultural practices, chemicals, and biological control are the most valuable tools for the management of MSD, but the role of micronutrient deficiencies has remained an area that is heavily ignored by the farming community. To study the impact of micronutrients, four mango orchards were selected at different locations where different combinations of micronutrients, i.e., Zinc (Zn), Boran (B), and Copper (Cu) in the form of Zinc sulphate (ZnSO4), Borax/Boric acid (H3BO3), and Copper Sulphate (CuSO4), were applied both foliar and in drench along with the recommended doses of Nitrogen: Phosphorous: Potassium (NPK), and Farmyard manure (FYM), respectively. The quantities of micronutrients were determined from the soil and leaves before and after application of the treatments. The impact of micronutrients was measured in terms of reduction in disease severity and increase in fruit yield. The results revealed that the application of all three micronutrients both in soil drench and in foliar form significantly decreased the disease severity at three locations and increased the yield in all four mango orchards. Application of ZnSO4 (0.8%), +H3BO3 (0.8%), +CuSO4 (0.5%) and as soil drench ZnSO4 (400 g) + Borax (200 g) + CuSO4 200 g plant−1 proved to be the best treatments, with an average of 12.88 and 14.03% reduction in disease severity and with an average yield of 128 and 119 kg, respectively. The application of micronutrients would be a promising solution in an integrated disease management program used to tackle MSD. Full article
Show Figures

Figure 1

25 pages, 7237 KiB  
Article
Biodiversity and Metabolic Potential of Bacteria in Bulk Soil from the Peri-Root Zone of Black Alder (Alnus glutinosa), Silver Birch (Betula pendula) and Scots Pine (Pinus sylvestris)
by Anna Gałązka, Anna Marzec-Grządziel, Milan Varsadiya, Jacek Niedźwiecki, Karolina Gawryjołek, Karolina Furtak, Marcin Przybyś and Jarosław Grządziel
Int. J. Mol. Sci. 2022, 23(5), 2633; https://doi.org/10.3390/ijms23052633 - 27 Feb 2022
Cited by 13 | Viewed by 3311
Abstract
The formation of specific features of forest habitats is determined by the physical, chemical, and biological properties of the soil. The aim of the study was to determine the structural and functional biodiversity of soil microorganisms inhabiting the bulk soil from the peri-root [...] Read more.
The formation of specific features of forest habitats is determined by the physical, chemical, and biological properties of the soil. The aim of the study was to determine the structural and functional biodiversity of soil microorganisms inhabiting the bulk soil from the peri-root zone of three tree species: Alnus glutinosa, Betula pendula, and Pinus sylvestris. Soil samples were collected from a semi-deciduous forest located in an area belonging to the Agricultural Experimental Station IUNG-PIB in Osiny, Poland. The basic chemical and biological parameters of soils were determined, as well as the structural diversity of bacteria (16S ribosomal RNA (rRNA) sequencing) and the metabolic profile of microorganisms (Biolog EcoPlates). The bulk soils collected from peri-root zone of A. glutinosa were characterized by the highest enzymatic activities. Moreover, the highest metabolic activities on EcoPlates were observed in bulk soil collected in the proximity of the root system the A. glutinosa and B. pendula. In turn, the bulk soil collected from peri-root zone of P. sylvestris had much lower biological activity and a lower metabolic potential. The most metabolized compounds were L-phenylalanine, L-asparagine, D-mannitol, and gamma-hydroxy-butyric acid. The highest values of the diversity indicators were in the soils collected in the proximity of the root system of A. glutinosa and B. pendula. The bulk soil collected from P. sylvestris peri-root zone was characterized by the lowest Shannon’s diversity index. In turn, the evenness index (E) was the highest in soils collected from the P. sylvestris, which indicated significantly lower diversity in these soils. The most abundant classes of bacteria in all samples were Actinobacteria, Acidobacteria_Gp1, and Alphaproteobacteria. The classes Bacilli, Thermoleophilia, Betaproteobacteria, and Subdivision3 were dominant in the B. pendula bulk soil. Streptosporangiales was the most significantly enriched order in the B. pendula soil compared with the A. glutinosa and P. sylvestris. There was a significantly higher mean proportion of aerobic nitrite oxidation, nitrate reduction, sulphate respiration, and sulfur compound respiration in the bulk soil of peri-root zone of A. glutinosa. Our research confirms that the evaluation of soil biodiversity and metabolic potential of bacteria can be of great assistance in a quality and health control tool in the soils of forested areas and in the forest production. Identification of bacteria that promote plant growth and have a high biotechnological potential can be assume a substantial improvement in the ecosystem and use of the forest land. Full article
Show Figures

Figure 1

15 pages, 3747 KiB  
Article
Preparation of Cross-linked Chitosan Quaternary Ammonium Salt Hydrogel Films Loading Drug of Gentamicin Sulfate for Antibacterial Wound Dressing
by Jingjing Zhang, Wenqiang Tan, Qing Li, Xiaorui Liu and Zhanyong Guo
Mar. Drugs 2021, 19(9), 479; https://doi.org/10.3390/md19090479 - 25 Aug 2021
Cited by 42 | Viewed by 5811
Abstract
Hydrogels, possessing high biocompatibility and adaptability to biological tissue, show great usability in medical applications. In this research, a series of novel cross-linked chitosan quaternary ammonium salt loading with gentamicin sulfate (CTMCSG) hydrogel films with different cross-linking degrees were successfully obtained by the [...] Read more.
Hydrogels, possessing high biocompatibility and adaptability to biological tissue, show great usability in medical applications. In this research, a series of novel cross-linked chitosan quaternary ammonium salt loading with gentamicin sulfate (CTMCSG) hydrogel films with different cross-linking degrees were successfully obtained by the reaction of chitosan quaternary ammonium salt (TMCS) and epichlorohydrin. Fourier transform infrared spectroscopy (FTIR), thermal analysis, and scanning electron microscope (SEM) were used to characterize the chemical structure and surface morphology of CTMCSG hydrogel films. The physicochemical property, gentamicin sulphate release behavior, cytotoxicity, and antibacterial activity of the CTMCSG against Escherichia coli and Staphylococcus aureus were determined. Experimental results demonstrated that CTMCSG hydrogel films exhibited good water stability, thermal stability, drug release capacity, as well as antibacterial property. The inhibition zone of CTMCSG hydrogel films against Escherichia coli and Staphylococcus aureus could be up to about 30 mm. Specifically, the increases in maximum decomposition temperature, mechanical property, water content, swelling degree, and a reduction in water vapor permeability of the hydrogel films were observed as the amount of the cross-linking agent increased. The results indicated that the CTMCSG-4 hydrogel film with an interesting physicochemical property, admirable antibacterial activity, and slight cytotoxicity showed the potential value as excellent antibacterial wound dressing. Full article
Show Figures

Figure 1

18 pages, 6885 KiB  
Article
A Fixed Bed Pervious Concrete Anaerobic Bioreactor for Biological Sulphate Remediation of Acid Mine Drainage Using Simple Organic Matter
by Sandisiwe Khanyisa Thisani, Daramy Vandi Von Kallon and Patrick Byrne
Sustainability 2021, 13(12), 6529; https://doi.org/10.3390/su13126529 - 8 Jun 2021
Cited by 13 | Viewed by 3146
Abstract
The development of low-operational-cost and low-operational-complexity active sulphate (SO4) reducing bioremediation for Acid Mine Drainage (AMD) is an ongoing pursuit towards sustainable mining. This study introduces a fixed bed pervious concrete anaerobic bioreactor as a second stage AMD remediation process. The [...] Read more.
The development of low-operational-cost and low-operational-complexity active sulphate (SO4) reducing bioremediation for Acid Mine Drainage (AMD) is an ongoing pursuit towards sustainable mining. This study introduces a fixed bed pervious concrete anaerobic bioreactor as a second stage AMD remediation process. The study investigated the pH self-regulation capabilities, SO4 remediation capabilities and the rate limiting parameters of the bioreactor using glucose as an organic matter source. The AMD was pre-treated using a permeable reactive barrier. A 21-day trial comprised of an increase in the SO4 loading rate while reducing the organic loading rate was undertaken to identify performance limiting conditions. A daily average SO4 concentration reduction rate of 55.2% was achieved over the initial 13 days of the experiments. The study found that a COD to SO4 ratio and VFA to alkalinity ratio below 5:1 and 0.5:1 respectively were performance limiting. The bioreactor was capable of self-regulating pH within the neutral range of 6.5 and 7.5. The study findings indicate that the bioreactor design can reduce operational costs and operational complexity of active AMD bioremediation. Full article
(This article belongs to the Special Issue Chemical Pollution, Prevention, and Environmental Sustainability)
Show Figures

Figure 1

27 pages, 521 KiB  
Review
Biomarkers of Deoxynivalenol Toxicity in Chickens with Special Emphasis on Metabolic and Welfare Parameters
by Insaf Riahi, Anna Maria Pérez-Vendrell, Antonio J. Ramos, Joaquim Brufau, Enric Esteve-Garcia, Julie Schulthess and Virginie Marquis
Toxins 2021, 13(3), 217; https://doi.org/10.3390/toxins13030217 - 17 Mar 2021
Cited by 10 | Viewed by 3658
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium species, is the most widespread mycotoxin in poultry feed worldwide. Long term-exposure from low to moderate DON concentrations can produce alteration in growth performance and impairment of the health status of birds. To evaluate the [...] Read more.
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium species, is the most widespread mycotoxin in poultry feed worldwide. Long term-exposure from low to moderate DON concentrations can produce alteration in growth performance and impairment of the health status of birds. To evaluate the efficacy of mycotoxin-detoxifying agent alleviating the toxic effects of DON, the most relevant biomarkers of toxicity of DON in chickens should be firstly determined. The specific biomarker of exposure of DON in chickens is DON-3 sulphate found in different biological matrices (plasma and excreta). Regarding the nonspecific biomarkers called also biomarkers of effect, the most relevant ones are the impairment of the productive parameters, the intestinal morphology (reduction of villus height) and the enlargement of the gizzard. Moreover, the biomarkers of effect related to physiology (decrease of blood proteins, triglycerides, hemoglobin, erythrocytes, and lymphocytes and the increase of alanine transaminase (ALT)), immunity (response to common vaccines and release of some proinflammatory cytokines) and welfare status of the birds (such as the increase of Thiobarbituric acid reactive substances (TBARS) and the stress index), has been reported. This review highlights the available information regarding both types of biomarkers of DON toxicity in chickens. Full article
(This article belongs to the Special Issue Effects of Mycotoxins on Health and Performance in Animals)
11 pages, 1240 KiB  
Article
Plant-Microbe Synergism in Floating Treatment Wetlands for the Enhanced Removal of Sodium Dodecyl Sulphate from Water
by Momina Yasin, Muhammad Tauseef, Zaniab Zafar, Moazur Rahman, Ejazul Islam, Samina Iqbal and Muhammad Afzal
Sustainability 2021, 13(5), 2883; https://doi.org/10.3390/su13052883 - 7 Mar 2021
Cited by 19 | Viewed by 3511
Abstract
Excessive use of detergents in wide industrial processes results in unwanted surfactant pollution. Among them, sodium dodecyl sulphate (SDS) has well-known history to be used in pharmaceutical and industrial applications. However, if discharged without treatment, it can cause toxic effects on living organisms [...] Read more.
Excessive use of detergents in wide industrial processes results in unwanted surfactant pollution. Among them, sodium dodecyl sulphate (SDS) has well-known history to be used in pharmaceutical and industrial applications. However, if discharged without treatment, it can cause toxic effects on living organisms especially to the aquatic life. Floating treatment wetlands (FTWs) could be a cost-effective and eco-friendly options for the treatment of wastewater containing SDS. In this study, FTWs mesocosms were established in the presence of hydrocarbons-degrading bacteria. Two plant species (Brachiaria mutica and Leptochloa fusca) were vegetated and a consortium of bacteria (Acinetobacter sp. strain BRSI56, Acinetobacter junii strain TYRH47, and Acinetobacter sp. strain CYRH21) was applied to enhance degradation in a short-time. Results illustrated that FTWs vegetated with both plants successfully removed SDS from water, however, bacterial augmentation further enhanced the removal efficiency. Maximum reduction in SDS concentration (97.5%), chemical oxygen demand (92.0%), biological oxygen demand (94.2%), and turbidity (99.4%) was observed in the water having FTWs vegetated with B. mutica and inoculated with the bacteria. The inoculated bacteria showed more survival in the roots and shoots of B. mutica as compared to L. fusca. This study concludes that FTWs have the potential for the removal of SDS from contaminated water and their remediation efficiency can be enhanced by bacterial augmentation. Full article
(This article belongs to the Special Issue Constructed and Floating Wetlands for Sustainable Water Reclamation)
Show Figures

Figure 1

17 pages, 5860 KiB  
Article
Optimising Brewery-Wastewater-Supported Acid Mine Drainage Treatment vis-à-vis Response Surface Methodology and Artificial Neural Network
by Enoch A. Akinpelu, Seteno K. O. Ntwampe, Abiola E. Taiwo and Felix Nchu
Processes 2020, 8(11), 1485; https://doi.org/10.3390/pr8111485 - 18 Nov 2020
Cited by 3 | Viewed by 2977
Abstract
This study investigated the use of brewing wastewater (BW) as the primary carbon source in the Postgate medium for the optimisation of sulphate reduction in acid mine drainage (AMD). The results showed that the sulphate-reducing bacteria (SRB) consortium was able to utilise BW [...] Read more.
This study investigated the use of brewing wastewater (BW) as the primary carbon source in the Postgate medium for the optimisation of sulphate reduction in acid mine drainage (AMD). The results showed that the sulphate-reducing bacteria (SRB) consortium was able to utilise BW for sulphate reduction. The response surface methodology (RSM)/Box–Behnken design optimum conditions found for sulphate reduction were a pH of 6.99, COD/SO42− of 2.87, and BW concentration of 200.24 mg/L with predicted sulphate reduction of 91.58%. Furthermore, by using an artificial neural network (ANN), a multilayer full feedforward (MFFF) connection with an incremental backpropagation network and hyperbolic tangent as the transfer function gave the best predictive model for sulphate reduction. The ANN optimum conditions were a pH of 6.99, COD/SO42− of 0.50, and BW concentration of 200.31 mg/L with predicted sulphate reduction of 89.56%. The coefficient of determination (R2) and absolute average deviation (AAD) were estimated as 0.97 and 0.046, respectively, for RSM and 0.99 and 0.011, respectively, for ANN. Consequently, ANN was a better predictor than RSM. This study revealed that the exclusive use of BW without supplementation with refined carbon sources in the Postgate medium is feasible and could ensure the economic sustainability of biological sulphate reduction in the South African environment, or in any semi-arid country with significant brewing activity and AMD challenges. Full article
Show Figures

Figure 1

17 pages, 4273 KiB  
Article
Evaluating the Effect of pH, Temperature, and Hydraulic Retention Time on Biological Sulphate Reduction Using Response Surface Methodology
by Mukhethwa Judy Mukwevho, Dheepak Maharajh and Evans M. Nkhalambayausi Chirwa
Water 2020, 12(10), 2662; https://doi.org/10.3390/w12102662 - 23 Sep 2020
Cited by 15 | Viewed by 3439
Abstract
Biological sulphate reduction (BSR) has been identified as a promising alternative for treating acid mine drainage. In this study, the effect of pH, temperature, and hydraulic retention time (HRT) on BSR was investigated. The Box–Behnken design was used to matrix independent variables, namely [...] Read more.
Biological sulphate reduction (BSR) has been identified as a promising alternative for treating acid mine drainage. In this study, the effect of pH, temperature, and hydraulic retention time (HRT) on BSR was investigated. The Box–Behnken design was used to matrix independent variables, namely pH (4–6), temperature (10–30 °C), and HRT (2–7 days) with the sulphate reduction efficiency and sulphate reduction rate as response variables. Experiments were conducted in packed bed reactors operating in a downflow mode. Response surface methodology was used to statistically analyse the data and to develop statistical models that can be used to fully understand the individual effects and the interactions between the independent variables. The analysis of variance results showed that the data fitted the quadratic models well as confirmed by a non-significant lack of fit. The temperature and HRT effect were significant (p < 0.0001), and these two variables had a strong interaction. However, the influence of pH was insignificant (p > 0.05). Full article
(This article belongs to the Special Issue Water Quality Engineering and Wastewater Treatment)
Show Figures

Figure 1

10 pages, 957 KiB  
Article
Removal of Metals by Sulphide Precipitation Using Na2S and HS-Solution
by Hanna Prokkola, Emma-Tuulia Nurmesniemi and Ulla Lassi
ChemEngineering 2020, 4(3), 51; https://doi.org/10.3390/chemengineering4030051 - 4 Sep 2020
Cited by 58 | Viewed by 14339
Abstract
Precipitation of metals as metal sulphides is a practical way to recover metals from mine water. Sulphide precipitation is useful since many metals are very sparingly soluble as sulphides. Precipitation is also pH dependent. This article investigates the precipitation of metals individually as [...] Read more.
Precipitation of metals as metal sulphides is a practical way to recover metals from mine water. Sulphide precipitation is useful since many metals are very sparingly soluble as sulphides. Precipitation is also pH dependent. This article investigates the precipitation of metals individually as sulphides and assesses which metals are precipitated as metal hydroxides by adjustment of the pH. The precipitation of different metals as sulphides was studied to determine the conditions under which the HS solution from the sulphate reduction reaction could be used for precipitation. H2S gas and ionic HS produced during anaerobic treatment could be recycled from the process to precipitate metals in acidic mine drainage (AMD) prior to anaerobic treatment (Biological sulphate reduction), thereby recovering several metals. Precipitation of metals with HS was fast and produced fine precipitates. The pH of acid mine water is about 2–4, and it can be adjusted to pH 5.5 before sulphide precipitation, while the precipitation, on the other hand, requires a sulphide solution with pH at 8 and the sulphide in HS form. This prevents H2S formation and mitigates the risk posed from the evaporation of toxic hydrogen sulphur gas. This is a lower increase than is required for hydroxide precipitation, in which pH is typically raised to approximately nine. After precipitation, metal concentrations ranged from 1 to 30 μg/L. Full article
Show Figures

Figure 1

Back to TopTop