Removal of Metals by Sulphide Precipitation Using Na2S and HS−-Solution
Abstract
:1. Introduction
2. Theory
3. Materials and Methods
4. Results and Discussion
4.1. Sulphide Precipitation Using Solid Na2S
4.2. Sulphide Precipitation Using Na2S Solution
4.3. Two-Step Precipitation with First pH Adjustment Followed by Sulphide Precipitation Using Na2S Solution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gautam, R.K.; Sharma, S.K.; Mahiya, S.; Chattopadhyaya, M.C. Heavy Metals in Water: Presence, Removal and Safety, 1st ed.; Sharma, S.K., Ed.; Royal Society of Chemistry: London, UK, 2014; ISBN 9781849738859. [Google Scholar]
- Engwa, G.A.; Ferdinand, P.U.; Nwalo, F.N.; Unachukwu, M.N. Mechanism and Health effects of heavy metal toxicity in humans. In Poisoning in the Modern World-New Tricks for an Old Dog? Karcioglu, O., Arslan, B., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Kanamarlapudi, S.L.R.K.; Chintalpudi, V.K.C.; Muddada, S. Application of biosorption for removal of heavy metals from wastewater. In Biosorption; Derco, J., Vrana, B., Eds.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Hammack, R.W.; Edenborn, H.M.; Dvorak, D.H. Treatment of water from an open-pit copper mine using biogenic sulfide and limestone: A feasibility study. Water Res. 1994, 28, 2321–2329. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Vanhanen, M.-L.R.; Puhakka, J.A. Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res. 2003, 37, 255–266. [Google Scholar] [CrossRef]
- Lewis, A.E. Review of metal sulphide precipitation. Hydrometallurgy 2010, 104, 222–234. [Google Scholar] [CrossRef]
- Monhemius, A.J. Precipitation diagrams for metal hydroxides, sulphides, arsenates and phosphates. Trans. Inst. Min. Metall. 1977, 86, c202–c206. [Google Scholar]
- Antikainen, P.J. Inorganic Qualitative Analysis; Werner Södeström: Helsinki, Finland, 1964; p. 99. [Google Scholar]
- Wang, L.K.; Hung, Y.T.; Shammas, N. Solubility of metal hydroxides and sulfides at various pH. In Handbook of Environmental Engineering; The human Press Inc.: Totowa, NJ, USA, 2005; Volume 3, p. 768. [Google Scholar]
- Hammack, R.W.; Dvorak, D.H.; Edenborn, H.M. Bench-scale test to selectively recover metals from metal mine drainage using biogenic H2S. Proc. Am. Soc. Min. Reclam. 1993, 214–222. [Google Scholar] [CrossRef]
- Gharabaghi, M.; Irannajad, M.; Azadmehr, A.R. Selective sulphide precipitation of heavy metals from acidic polymetallic aqueous solution by thioacetamide. Ind. Eng. Chem. Res. 2012, 51, 954–963. [Google Scholar] [CrossRef]
- Nevatalo, L. Bioreactor Applications Utilizing Mesophilic Sulphate-Reducing Bacteria for Treatment of Mine Wastewaters. Ph.D. Thesis, Tampere University of Technology, Tampere, Finland, 2010. [Google Scholar]
- Marchioretto, M.M.; Bruning, H.; Rulkens, W. Heavy metals precipitation in sewage sludge. Sep. Sci. Technol. 2005, 40, 3393–3405. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. An introduction emphasizing chemical equilibria in natural waters. In Aquatic Chemistry; John Wiley & Sons: New York, NY, USA, 1970. [Google Scholar]
- Runtti, H.; Tolonen, E.-T.; Tuomikoski, S.; Luukkonen, T.; Lassi, U. How to tackle the stringent sulfate removal requirements in mine water treatment—A review of potential methods. Environ. Res. 2018, 167, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Séby, F.; Gautier, M.P.; Giffaut, E.; Donard, O.F.X. A critical review of thermodynamic data for inorganic tin species. Geochim. Cosmochim. Acta 2001, 65, 3041–3053. [Google Scholar] [CrossRef]
Metal | Solubility Product Metal Sulphide (log Ksp) | Solubility Product Metal Hydroxide (log Ksp) |
---|---|---|
Zn | −24.5 | −16.1 |
Co | −22.1 | −14.5 |
Ni | −21.0 | −15.3 |
Fe | - | −38.6 |
Fe(II) | −18.8 | −16.3 |
Mn | −13.3 | −12.7 |
Ag | −49.2 | −7.9 |
Cd | −28.9 | −14.3 |
Co | −22.9 | −14.5 |
Cu | −35.9 | −19.8 |
Hg | −52.2 | −25.4 |
Pb | −28.1 | −19.9 |
Sn | −27.5 | −26.3 |
Metal Sulphide | Precipitation pH 1 | Precipitation pH 2 |
---|---|---|
CuS | 2.5 | 1.5–2 |
ZnS | 5.5 | 2.2–4.1 |
CdS | 4 | |
CoS | 4.5–5.8 | |
NiS | 7.5 | 5.6–8.6 |
FeS | 5–7.4 | |
MnS | 7.7–9.7 |
Metal | Initial Metal Concentration [mg/L] | Concentration after Precipitation pH 2 [mg/L] | Concentration after Precipitation pH 6 [mg/L] | Concentration after Precipitation pH 10 [mg/L] |
---|---|---|---|---|
Co | 31.9 | <0.015 | <0.015 | <0.015 |
Cu | 51.0 | <0.025 | <0.025 | <0.025 |
Fe | 30.4 | <0.075 | <0.075 | <0.075 |
Mg | 28.8 | 0.46 | <0.13 | <0.13 |
Mn | 48.6 | <0.025 | <0.025 | <0.025 |
Sr | 90.7 | 32.8 | 0.37 | 0.72 |
Zn | 36.4 | <0.050 | <0.050 | <0.050 |
Salt | pH When Salt Dissolves | End pH | Precipitate Formed |
---|---|---|---|
NiSO4 | 5 | 8.8 | Yes |
Al2(SO4)3 | 4.3 | 7.5 | No |
FeSO4 | 4.5 | 6.0 | Yes |
MnSO4 | 4.8 | 7.5 | Yes |
Metal | Weight [g] | Initial pH | Adjusted pH | Precipitate after Adjustment | Precipitate as Sulphide |
---|---|---|---|---|---|
Mg | 0.0985 | 6.55 | 8.31 | Black/white | |
Co | 0.0754 | 8.47 | Black | ||
Cu | 0.1907 | 5.03 | 8.11 | Blue | Green/brown |
Cd | 0.0965 | 5.51 | 8.16 | White | Yellow |
Zn | 0.0730 | 7.34 | 8.04 | White | White 1 |
Sn | 0.1112 | 2.55 | 8.14 | White | Brown |
Mn | 0.0504 | 4.99 | 8.90 | White/brown 1 | Orange |
Sb | 0.1120 | ||||
Ce | 0.1370 | 6.15 | 8.00 | Slowly Dissolved | |
Al | 0.0719 | 4.27 | 8.04 | Slowly dissolved White | White |
Hg Ni | 0.1320 | 4.32 | 8.01 | Yellow White | Black Black |
Sr | 0.0665 | 5.83 | 9.89 | White | - |
Ni | 0.0802 | 7.40 | 8.38 | White | Black |
Pb | 0.1470 | 5.33 | 8.03 | White | Black |
Metal | Initial Concentration of First Precipitation [mg/L] | Final Concentration of First Precipitation [mg/L] | Initial Concentration of Second Precipitation [mg/L] | Final Concentration of Second Precipitation [mg/L] |
---|---|---|---|---|
Cd | 26.0 | 9.8 × 10−3 | 0.260 | 11.0 × 10−3 |
Co | 34.2 | 7.7 × 10−3 | 0.342 | 5.8 × 10−3 |
Cu | 76.0 | 2.4 × 10−3 | 0.760 | <0.5 × 10−3 |
Hg | 48.8 | 0.6 × 10−3 | 0.488 | 6.2 × 10−3 |
Mg | 5.9 | 2.0 × 10−3 | 0.590 | <0.13 × 10−3 |
Mn | 26.0 | 7.9 × 10−3 | 0.260 | 5.6 × 10−3 |
Ni | 15.2 | 20.1 × 10−3 | 0.152 | 9.7 × 10−3 |
Pb | 46.0 | 29.2 × 10−3 | 0.460 | 19. 7 × 10−3 |
Sn | 34.8 | <0.5 × 10−3 | 0.348 | <0.5 × 10−3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prokkola, H.; Nurmesniemi, E.-T.; Lassi, U. Removal of Metals by Sulphide Precipitation Using Na2S and HS−-Solution. ChemEngineering 2020, 4, 51. https://doi.org/10.3390/chemengineering4030051
Prokkola H, Nurmesniemi E-T, Lassi U. Removal of Metals by Sulphide Precipitation Using Na2S and HS−-Solution. ChemEngineering. 2020; 4(3):51. https://doi.org/10.3390/chemengineering4030051
Chicago/Turabian StyleProkkola, Hanna, Emma-Tuulia Nurmesniemi, and Ulla Lassi. 2020. "Removal of Metals by Sulphide Precipitation Using Na2S and HS−-Solution" ChemEngineering 4, no. 3: 51. https://doi.org/10.3390/chemengineering4030051
APA StyleProkkola, H., Nurmesniemi, E. -T., & Lassi, U. (2020). Removal of Metals by Sulphide Precipitation Using Na2S and HS−-Solution. ChemEngineering, 4(3), 51. https://doi.org/10.3390/chemengineering4030051