Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,034)

Search Parameters:
Keywords = biological barriers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1164 KB  
Review
Immunosenescence and Allergy: Molecular and Cellular Links Between Inflammaging, Neuro-Immune Aging, and Response to Biologic Therapies
by Ernesto Aitella, Gianluca Azzellino, Barbara Antonella Cammisuli, Carmen De Benedictis, Domenica Di Mattia, Ciro Romano, Lia Ginaldi and Massimo De Martinis
Int. J. Mol. Sci. 2026, 27(3), 1206; https://doi.org/10.3390/ijms27031206 (registering DOI) - 25 Jan 2026
Abstract
With the global increase in population aging, allergic diseases in older adults are becoming an increasingly relevant clinical and public health challenge. Age-related molecular and cellular alterations significantly affect the pathophysiology, clinical manifestations, diagnosis, and management of major allergic diseases in the elderly. [...] Read more.
With the global increase in population aging, allergic diseases in older adults are becoming an increasingly relevant clinical and public health challenge. Age-related molecular and cellular alterations significantly affect the pathophysiology, clinical manifestations, diagnosis, and management of major allergic diseases in the elderly. This review focuses on immunosenescence in major allergic conditions, including asthma, chronic urticaria and angioedema, dermatitis, food and drug allergies, and hymenoptera venom hypersensitivity. Particular emphasis is placed on molecular mechanisms underlying immune aging, such as inflammaging, dysregulation of innate and adaptive immune responses, epithelial barrier dysfunction, microbiota alterations, neuro-immune interactions, and age-related comorbidities. Sex-related differences in immune responses are also addressed, together with current diagnostic and therapeutic strategies, including the opportunities and limitations of biologic therapies in aging populations. Despite growing interest in this field, a major limitation remains the paucity of studies specifically targeting geriatric populations, underscoring the need for age- and sex-specific research and dedicated clinical trials. A personalized approach integrating frailty assessment and immune profiling is essential to optimize the management of allergic diseases in older adults. Full article
(This article belongs to the Section Molecular Immunology)
19 pages, 639 KB  
Review
Dietary Lithium, Silicon, and Boron: An Updated Critical Review of Their Roles in Metabolic Regulation, Neurobiology, Bone Health, and the Gut Microbiome
by Eleni Melenikioti, Eleni Pavlidou, Antonios Dakanalis, Constantinos Giaginis and Sousana K. Papadopoulou
Nutrients 2026, 18(3), 386; https://doi.org/10.3390/nu18030386 (registering DOI) - 24 Jan 2026
Abstract
Background/Objectives: Lithium (Li), silicon (Si), and boron (B) are proposed nutritional trace elements with potential roles in metabolic, neurobiological, endocrine, inflammatory, and bone-related processes. This review provides a critical synthesis of data on Li–Si–B, emphasizing (i) physiological and mechanistic pathways, (ii) human clinical [...] Read more.
Background/Objectives: Lithium (Li), silicon (Si), and boron (B) are proposed nutritional trace elements with potential roles in metabolic, neurobiological, endocrine, inflammatory, and bone-related processes. This review provides a critical synthesis of data on Li–Si–B, emphasizing (i) physiological and mechanistic pathways, (ii) human clinical relevance, (iii) shared biological domains, and (iv) safety considerations. Methods: A narrative review was conducted across PubMed, Scopus, and Web of Science from inception to January 2025. Predefined search strings targeted dietary, environmental, and supplemental exposures of lithium, silicon, or boron in relation to metabolism, endocrine function, neurobiology, inflammation, bone health, and the gut microbiome. Inclusion criteria required peer-reviewed studies in English. Data extraction followed a structured template, and evidence was stratified into human, animal, cellular, and ecological tiers. Methodological limitations were critically appraised. Results: Li, Si, and B influence overlapping molecular pathways including oxidative stress modulation, mitochondrial stability, inflammatory signaling, endocrine regulation, and epithelial/gut barrier function. Human evidence remains limited: Li is supported primarily by small trials; Si by bone-related observational studies and biomarker-oriented interventions; and B by metabolic, inflammatory, and cognitive studies of modest sample size. Convergence across elements appears in redox control, barrier function, and neuroimmune interactions, but mechanistic synergism remains hypothetical. Conclusions: Although Li–Si–B display compelling mechanistic potential, current human data are insufficient to justify dietary recommendations or supplementation. Considerable research gaps—including exposure assessment, dose–response characterization, toxicity thresholds, and controlled human trials—must be addressed before translation into public health policy. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

47 pages, 948 KB  
Review
A Decade of Innovation in Breast Cancer (2015–2025): A Comprehensive Review of Clinical Trials, Targeted Therapies and Molecular Perspectives
by Klaudia Dynarowicz, Dorota Bartusik-Aebisher, Sara Czech, Aleksandra Kawczyk-Krupka and David Aebisher
Cancers 2026, 18(3), 361; https://doi.org/10.3390/cancers18030361 - 23 Jan 2026
Abstract
The past decade has witnessed an unprecedented transformation in breast cancer management, driven by parallel advances in targeted therapies, immunomodulation, drug-delivery technologies, and molecular diagnostic tools. This review summarizes the key achievements of 2015–2025, encompassing all major biological subtypes of breast cancer as [...] Read more.
The past decade has witnessed an unprecedented transformation in breast cancer management, driven by parallel advances in targeted therapies, immunomodulation, drug-delivery technologies, and molecular diagnostic tools. This review summarizes the key achievements of 2015–2025, encompassing all major biological subtypes of breast cancer as well as technological innovations with substantial clinical relevance. In hormone receptor-positive (HR+)/HER2− disease, the integration of CDK4/6 inhibitors, modulators of the PI3K/AKT/mTOR pathway, oral Selective Estrogen Receptor Degraders (SERDs), and real-time monitoring of Estrogen Receptor 1 (ESR1) mutations has enabled clinicians to overcome endocrine resistance and dynamically tailor treatment based on evolving molecular alterations detected in circulating biomarkers. In HER2-positive breast cancer, treatment paradigms have been revolutionized by next-generation antibody–drug conjugates, advanced antibody formats, and technologies facilitating drug penetration across the blood–brain barrier, collectively improving systemic and central nervous system disease control. The most rapid progress has occurred in triple-negative breast cancer (TNBC), where synergistic strategies combining selective cytotoxicity via Antibody-Drug Conjugates (ADCs), DNA damage response inhibitors, immunotherapy, epigenetic modulation, and therapies targeting immunometabolic pathways have markedly expanded therapeutic opportunities for this historically challenging subtype. In parallel, photodynamic therapy has emerged as an investigational and predominantly local phototheranostic approach, incorporating nanocarriers, next-generation photosensitizers, and photoimmunotherapy capable of inducing immunogenic cell death and modulating antitumor immune responses. A defining feature of the past decade has been the surge in patent-driven innovation, encompassing multispecific antibodies, optimized ADC architectures, novel linker–payload designs, and advanced nanotechnological and photoactive delivery systems. By integrating data from clinical trials, molecular analyses, and patent landscapes, this review illustrates how multimechanistic, biomarker-guided therapies supported by advanced drug-delivery technologies are redefining contemporary precision oncology in breast cancer. The emerging therapeutic paradigm underscores the convergence of targeted therapy, immunomodulation, synthetic lethality, and localized immune-activating approaches, charting a path toward further personalization of treatment in the years ahead. Full article
(This article belongs to the Section Cancer Therapy)
22 pages, 1407 KB  
Review
Artificial Intelligence Drives Advances in Multi-Omics Analysis and Precision Medicine for Sepsis
by Youxie Shen, Peidong Zhang, Jialiu Luo, Shunyao Chen, Shuaipeng Gu, Zhiqiang Lin and Zhaohui Tang
Biomedicines 2026, 14(2), 261; https://doi.org/10.3390/biomedicines14020261 - 23 Jan 2026
Abstract
Sepsis is a life-threatening syndrome characterized by marked clinical heterogeneity and complex host–pathogen interactions. Although traditional mechanistic studies have identified key molecular pathways, they remain insufficient to capture the highly dynamic, multifactorial, and systems-level nature of this condition. The advent of high-throughput omics [...] Read more.
Sepsis is a life-threatening syndrome characterized by marked clinical heterogeneity and complex host–pathogen interactions. Although traditional mechanistic studies have identified key molecular pathways, they remain insufficient to capture the highly dynamic, multifactorial, and systems-level nature of this condition. The advent of high-throughput omics technologies—particularly integrative multi-omics approaches encompassing genomics, transcriptomics, proteomics, and metabolomics—has profoundly reshaped sepsis research by enabling comprehensive profiling of molecular perturbations across biological layers. However, the unprecedented scale, dimensionality, and heterogeneity of multi-omics datasets exceed the analytical capacity of conventional statistical methods, necessitating more advanced computational strategies to derive biologically meaningful and clinically actionable insights. In this context, artificial intelligence (AI) has emerged as a powerful paradigm for decoding the complexity of sepsis. By leveraging machine learning and deep learning algorithms, AI can efficiently process ultra-high-dimensional and heterogeneous multi-omics data, uncover latent molecular patterns, and integrate multilayered biological information into unified predictive frameworks. These capabilities have driven substantial advances in early sepsis detection, molecular subtyping, prognosis prediction, and therapeutic target identification, thereby narrowing the gap between molecular mechanisms and clinical application. As a result, the convergence of AI and multi-omics is redefining sepsis research, shifting the field from descriptive analyses toward predictive, mechanistic, and precision-oriented medicine. Despite these advances, the clinical translation of AI-driven multi-omics approaches in sepsis remains constrained by several challenges, including limited data availability, cohort heterogeneity, restricted interpretability and causal inference, high computational demands, difficulties in integrating static molecular profiles with dynamic clinical data, ethical and governance concerns, and limited generalizability across populations and platforms. Addressing these barriers will require the establishment of standardized, multicenter datasets, the development of explainable and robust AI frameworks, and sustained interdisciplinary collaboration between computational scientists and clinicians. Through these efforts, AI-enabled multi-omics research may progress toward reproducible, interpretable, and equitable clinical implementation. Ultimately, the synergy between artificial intelligence and multi-omics heralds a new era of intelligent discovery and precision medicine in sepsis, with the potential to transform both research paradigms and bedside practice. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

14 pages, 1541 KB  
Article
Curing Parthenogenesis-Inducing (PI) Wolbachia-Induced Reproductive Disorders in the Egg Parasitoid Telenomus remus
by I-Cheng Tu, Ching-Ting Lai and Li-Hsin Wu
Biology 2026, 15(3), 210; https://doi.org/10.3390/biology15030210 - 23 Jan 2026
Viewed by 28
Abstract
Wolbachia is an endosymbiotic bacterium widespread in invertebrates that causes various reproductive effects, including cytoplasmic incompatibility, feminization, male killing, and the induction of parthenogenesis (PI). PI-Wolbachia wRem converts Telenomus remus, an egg parasitoid of Spodoptera frugiperda, from arrhenotokous reproduction (male-producing) [...] Read more.
Wolbachia is an endosymbiotic bacterium widespread in invertebrates that causes various reproductive effects, including cytoplasmic incompatibility, feminization, male killing, and the induction of parthenogenesis (PI). PI-Wolbachia wRem converts Telenomus remus, an egg parasitoid of Spodoptera frugiperda, from arrhenotokous reproduction (male-producing) to thelytokous reproduction (female-producing). Long-term symbiosis between egg parasitoids and Wolbachia has been shown to lead to reproductive barriers and “female functional virginity,” causing progressive and potentially irreversible sex ratio imbalances. However, whether such reproductive barriers occur in T. remus remains unknown, which has important implications for biological control programs utilizing this parasitoid. To address this question, we cured wRem using tetracycline and conducted crossing experiments with naturally uninfected strains (W-). The results indicated that the cured strain (Wcure) retained normal sexual reproductive capability, with self-crossing fertilization rates comparable to those of W- strains. However, first-generation hybridization between Wcure and W- strains produced strongly male-biased offspring (male proportion: 94.3% and 85.8% for W-♂ × Wcure♀ and Wcure♂ × W-♀, respectively), indicating substantial reproductive incompatibility. Notably, an asymmetric pattern was observed between reciprocal crosses. In second-generation hybridization experiments, hybrid females (W-/Wcure) mated with W- or Wcure males showed markedly recovered sex ratios (male proportion: 14.3% and 15.6%, respectively), although total offspring numbers remained lower than in self-crossing groups. These results suggest that the reproductive incompatibility in T. remus differs from female functional virginity and is more consistent with mitonuclear incompatibility arising from population divergence. The partial recovery in second-generation hybrids indicates that surviving F1 hybrid females likely represent individuals selected for compatibility, rather than exhibiting progressive deterioration of sexual function. These findings offer insights into Wolbachia’s impact on parasitoid reproduction and highlight key considerations for biological control applications, underscoring the importance of evaluating reproductive barriers before deploying cured strains and preventing symbiont loss within populations. Full article
(This article belongs to the Special Issue Studies on Insect Genetics and Genomics)
Show Figures

Figure 1

22 pages, 3060 KB  
Article
Exopolysaccharides from Lacticaseibacillus rhamnosus Fmb14 Ameliorate Fructose-Induced Hyperuricemia and Fatty Liver via Gut Modulation
by Hongyuan Zhao, Zihan Zhang, Xiaoyu Chen, Chao Tang, Li Song, Zhaoxin Lu and Yingjian Lu
Foods 2026, 15(3), 409; https://doi.org/10.3390/foods15030409 - 23 Jan 2026
Viewed by 34
Abstract
Fructose dietary intake is one of the most common risk factors for hyperuricemia, which is a critical threat to human health, and the lack of an effective biological intervention method is the main problem in preventing hyperuricemia caused by fructose intake. Lacticaseibacillus rhamnosus [...] Read more.
Fructose dietary intake is one of the most common risk factors for hyperuricemia, which is a critical threat to human health, and the lack of an effective biological intervention method is the main problem in preventing hyperuricemia caused by fructose intake. Lacticaseibacillus rhamnosus Fmb14 (L. rhamnosus Fmb14) has a fructose-metabolizing ability to produce extracellular polysaccharides (EPSs), and the yield of EPSs reached 0.50 and 0.42 g/L after 48 h of fermentation in liquid media of glucose-MRS and fructose-MRS. Six pure polysaccharide components were obtained after purification. A hyperuricemic mouse model was subsequently established by feeding a 60% high-fructose diet with potassium oxyazinate for 8 weeks, and the results revealed that L. rhamnosus Fmb14 and fructose-derived EPS (F-EPS) intervention significantly reduced the serum uric acid level of the model mice from 133.6 μmol/L to 106.7 to 111.0 μmol/L. The content of XOD in the liver decreased from 2188.1 ng/L in the model group to 1797.9 ng/L in the H-Fmb14 group and 1906.6 ng/L in the H-F-EPS group, alleviating fatty liver degeneration and improving intestinal barrier (increasing OCLN and ZO1 expression in colon). The abundances of allobaculum, bacteroides, Lactobacilli prevotella, and clostridium, the new potential biomarkers of fructose-induced hyperuricemia, were found to be modulated after Fmb14 and F-EPS intervention. The effects of Fmb14 and F-EPS in reducing uric acid synthesis and protecting the intestinal tract are very promising as food intervention agents in the prevention of hyperuricemia caused by fructose dietary. Full article
Show Figures

Graphical abstract

17 pages, 1715 KB  
Article
Subcytotoxic Exposure to Avobenzone and Ethylhexyl Salicylate Induces microRNA Modulation and Stress-Responsive PI3K/AKT and MAPK Signaling in Differentiated SH-SY5Y Cells
by Agnese Graziosi, Luca Ghelli, Camilla Corrieri, Lisa Iacenda, Maria Chiara Manfredi, Sabrina Angelini, Giulia Sita, Patrizia Hrelia and Fabiana Morroni
Int. J. Mol. Sci. 2026, 27(3), 1134; https://doi.org/10.3390/ijms27031134 - 23 Jan 2026
Viewed by 42
Abstract
Avobenzone (AVO) and ethylhexyl salicylate (EHS) are widely used organic UV filters with distinct photochemical properties and reported biological effects. Experimental and predictive evidence suggests that some lipophilic UV filters may reach systemic circulation and potentially cross the blood–brain barrier (BBB), raising concerns [...] Read more.
Avobenzone (AVO) and ethylhexyl salicylate (EHS) are widely used organic UV filters with distinct photochemical properties and reported biological effects. Experimental and predictive evidence suggests that some lipophilic UV filters may reach systemic circulation and potentially cross the blood–brain barrier (BBB), raising concerns about possible central nervous system effects, although direct evidence for AVO and EHS remains limited. This study evaluated the effects of subcytotoxic concentrations (0.01–1 µM) of AVO and EHS on differentiated SH-SY5Y human neuroblastoma cells, focusing on early stress-related molecular responses. Cell viability and reactive oxygen species production were not significantly affected at any tested concentration. Integrated analyses of microRNA, gene, and protein expression revealed modest and variable modulation of miR-200a-3p and miR-29b-3p. Western blot analysis showed increased phosphorylation of AKT and ERK, no significant changes in mTOR activation, and an increased Bax/Bcl-2 ratio. Overall, these findings indicate that AVO and EHS trigger an early stress-adaptive response involving PI3K/AKT and MAPK/ERK signaling and modulation of apoptosis-related pathways. Such responses reflect a dynamic balance between cellular adaptation and pro-apoptotic signaling, which may become relevant under prolonged or higher-intensity exposure conditions. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

22 pages, 6486 KB  
Article
Regenerative Skin Remodeling by a Dual Hyaluronic Acid Hybrid Complex in Multimodal Preclinical Models
by Hyojin Roh, Ngoc Ha Nguyen, Jinyoung Jung, Jewan Kaiser Hwang, Young In Lee, Inhee Jung and Ju Hee Lee
Int. J. Mol. Sci. 2026, 27(2), 1027; https://doi.org/10.3390/ijms27021027 - 20 Jan 2026
Viewed by 102
Abstract
Skin aging arises from extracellular matrix degradation, inflammation, and pigmentation dysregulation, yet most existing rejuvenation strategies target only a subset of these processes. This study investigated the multimodal rejuvenation potential of a dual hyaluronic acid compound (DHC), composed of low- and high-molecular-weight HA [...] Read more.
Skin aging arises from extracellular matrix degradation, inflammation, and pigmentation dysregulation, yet most existing rejuvenation strategies target only a subset of these processes. This study investigated the multimodal rejuvenation potential of a dual hyaluronic acid compound (DHC), composed of low- and high-molecular-weight HA integrated within a minimally cross-linked hybrid complex. In vitro assays using dermal fibroblasts, melanoma cells, and macrophages demonstrated that DHC enhanced fibroblast viability, collagen I/III and elastin production, antioxidant enzyme activity, and wound-healing capacity while reducing senescence markers. DHC markedly suppressed melanogenesis by downregulating the gene expression of MITF, TYR, and TRP1, and exerted strong anti-inflammatory activity by decreasing nitric oxide (NO) production and key cytokines, including TNF-α, IL-1β, IL-6, and CCL1. In a UVB-induced photoaging rat model, DHC reduced wrinkle depth, epidermal thickening, and melanin accumulation while improving elasticity, collagen density, hydration, and barrier integrity. Across these outcomes, DHC demonstrated biological effects that were comparable to, and in selected endpoints greater than, those of commonly used biostimulators and HA fillers in preclinical models. Collectively, these laboratory findings suggest that DHC exhibits broad preclinical bioactivity through combined biostimulatory, antioxidant, anti-inflammatory, and pigmentation-modulating effects. Further mechanistic and clinical studies are required to determine its translational relevance. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
Show Figures

Figure 1

22 pages, 9556 KB  
Article
L-Borneolum Attenuates Ischemic Stroke Through Remodeling BBB Transporter Function via Regulating MFSD2A/Cav-1 Signaling Pathway
by Peiru Wang, Yilun Ma, Dazhong Lu, Li Wen, Fengyu Huang, Jianing Lian, Mengmeng Zhang and Taiwei Dong
Brain Sci. 2026, 16(1), 111; https://doi.org/10.3390/brainsci16010111 - 20 Jan 2026
Viewed by 128
Abstract
Objective: This study compares the brain protective effects of L-borneolum and its main components (a combined application of L-borneol and L-camphor) on the rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). It also makes clear the intrinsic regulatory mechanisms that link the neuroprotective [...] Read more.
Objective: This study compares the brain protective effects of L-borneolum and its main components (a combined application of L-borneol and L-camphor) on the rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). It also makes clear the intrinsic regulatory mechanisms that link the neuroprotective effects of these compounds on IS to the blood-brain barrier (BBB), based on network pharmacology predictions. Furthermore, the study investigates the relationship between these compounds and the Major Facilitator Superfamily Domain-containing Protein 2A (MFSD2A)/Caveolin-1 (Cav-1) signaling axis. Methods: The MCAO/R model in rats was established to evaluate the therapeutic effect of L-borneolum (200 mg/kg) and its main components combination of L-borneol and L-camphor (6:4 ratio, 200 mg/kg). Neurological scores, 2,3,5-triphenyl tetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and Nissl staining were performed to evaluate the neurological damage in the rats. Cerebral blood flow Doppler was applied to monitor the cerebral blood flow changes. Immunofluorescence analysis of albumin leakage and transmission electron microscopy (TEM) were conducted to evaluate blood-brain barrier (BBB) integrity. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the optimal drug concentration. Trans-epithelial electrical resistance (TEER) and horseradish peroxidase (HRP) assays were employed to confirm the successful establishment of an in vitro BBB co-culture model. Network pharmacology was utilized to predict the biological processes, molecular functions, and cellular components involved in the treatment of ischemic stroke (IS) by the main components of L-borneolum (L-borneol and L-camphor). Finally, immunofluorescence, real-time fluorescent quantitative PCR (RT-qPCR) and western blot analyses were performed to detect the expression of Major Facilitator Superfamily Domain Containing 2A (MFSD2A), caveolin-1 (CAV-1), sterol regulatory element-binding protein 1 (SREBP1) in brain tissue and hCMEC/D3 cells. Results: Network pharmacology prediction indicated that L-borneolum and its main components (L-borneol and L-camphor) in the treatment of IS are likely associated with vesicle transport and neuroprotection. Treatment of IS with L-borneolum and its main components significantly decreased neurological function scores and cerebral infarction area, while alleviating pathological morphological changes and increasing the number of Nissl bodies in the hippocampus. Additionally, it improved cerebral blood flow, reduced albumin leakage, and decreased vesicle counts in the brain. The trans-epithelial electrical resistance (TEER) of the co-culture model stabilized on the fifth day after co-culture, and the permeability to horseradish peroxidase (HRP) in the co-culture model was significantly lower than that of the blank chamber at this time. RT-qPCR and Western blot results demonstrated that, compared to the model group, the expression of SREBP1 and MFSD2A significantly increased, while the expression of Cav-1 decreased. Conclusions: L-borneolum and its main components combination (L-borneol/L-camphor, 6:4 ratio) may exert a protective effect in rats with IS by improving BBB transport function through modulation of the MFSD2A/Cav-1 signaling pathway. Full article
(This article belongs to the Special Issue Drug Development for Schizophrenia)
Show Figures

Figure 1

33 pages, 798 KB  
Review
Gut Microbiota and Short-Chain Fatty Acids in Cardiometabolic HFpEF: Mechanistic Pathways and Nutritional Therapeutic Perspectives
by Antonio Vacca, Gabriele Brosolo, Stefano Marcante, Sabrina Della Mora, Luca Bulfone, Andrea Da Porto, Claudio Pagano, Cristiana Catena and Leonardo A. Sechi
Nutrients 2026, 18(2), 321; https://doi.org/10.3390/nu18020321 - 20 Jan 2026
Viewed by 142
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for more than half of the cases of HF worldwide. Among the different phenotypes, cardiometabolic HFpEF has the highest prevalence. Cumulative insults related to cardiometabolic comorbidities—obesity, hypertension and type 2 diabetes—create a milieu of metabolic [...] Read more.
Heart failure with preserved ejection fraction (HFpEF) accounts for more than half of the cases of HF worldwide. Among the different phenotypes, cardiometabolic HFpEF has the highest prevalence. Cumulative insults related to cardiometabolic comorbidities—obesity, hypertension and type 2 diabetes—create a milieu of metabolic derangements, low-grade systemic inflammation (i.e., metainflammation), endothelial dysfunction, and coronary microvascular disease. Emerging data indicate that the gut–heart axis is a potential amplifier of this process. Cardiometabolic comorbidities promote gut dysbiosis, loss of short-chain fatty acid (SCFA)-producing taxa, and disruption of the intestinal barrier, leading to endotoxemia and upregulation of pro-inflammatory pathways such as TLR4- and NLRP3-mediated signaling. Concomitantly, beneficial gut-derived metabolites (acetate, propionate, butyrate) decrease, while detrimental metabolites increase (e.g., TMAO), potentially fostering myocardial fibrosis, diastolic dysfunction, and adverse remodeling. SCFAs—acetate, propionate, and butyrate—may exert pleiotropic actions that directly target HFpEF pathophysiology: they may provide a CPT1-independent energy substrate to the failing myocardium, may improve lipid and glucose homeostasis via G protein-coupled receptors and AMPK activation, and may contribute to lower blood pressure and sympathetic tone, reinforce gut barrier integrity, and act as anti-inflammatory and epigenetic modulators through the inhibition of NF-κB, NLRP3, and histone deacetylases. This review summarizes current evidence linking gut microbiota dysfunction to cardiometabolic HFpEF, elucidates the mechanistic role of SCFAs, and discusses nutritional approaches aimed at enhancing their production and activity. Targeting gut–heart axis and SCFAs pathways may represent a biologically plausible and low-risk approach that could help attenuate inflammation and metabolic dysfunctions in patients with cardiometabolic HFpEF, offering novel potential therapeutic targets for their management. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

9 pages, 232 KB  
Perspective
Yoga for Healthy Ageing: Evidence, Clinical Practice, and Policy Implications in the WHO Decade of Healthy Ageing
by Aditi Garg, Carolina Estevao and Saamdu Chetri
J. Ageing Longev. 2026, 6(1), 14; https://doi.org/10.3390/jal6010014 - 20 Jan 2026
Viewed by 143
Abstract
Ageing is a dynamic biological process involving interconnected physiological, psychological, and social changes, making the promotion of healthy ageing a global public health priority. The World Health Organization (WHO) defines healthy ageing as the process of developing and maintaining functional ability that enables [...] Read more.
Ageing is a dynamic biological process involving interconnected physiological, psychological, and social changes, making the promotion of healthy ageing a global public health priority. The World Health Organization (WHO) defines healthy ageing as the process of developing and maintaining functional ability that enables well-being in older age. The WHO’s Decade of Healthy Aging (2021–2030) outlines four key action areas: changing attitudes toward ageing, creating age-friendly environments, delivering integrated and person-centred care, and ensuring access to long-term care. This Perspective examines yoga, a holistic mind–body practice integrating physical postures, breath regulation, and mindfulness, as a potentially safe, adaptable, and scalable intervention for older adults. Evidence suggests that yoga may improve flexibility, balance, mobility, and cardiovascular function, reduce pain, and support the management of chronic conditions commonly associated with ageing. Psychological and cognitive research further indicates reductions in stress, anxiety, and depressive symptoms, alongside potential benefits for attention, memory, and executive function. Improvements in health-related quality of life (HRQoL) have been reported across physical, psychological, and social domains, with benefits sustained through regular practice. Adaptations such as chair-based practices, restorative postures, and the use of props enhance accessibility and safety, allowing participation across diverse functional levels. Mindfulness and breath-focused components of yoga may additionally support emotional regulation, resilience, and psychological well-being, particularly among older adults experiencing stress or limited mobility. Yoga interventions are generally well tolerated, demonstrate high adherence, and can be delivered through in-person and digital formats, addressing common access barriers. Despite this growing evidence base, yoga remains underintegrated within health policy and care systems in the US, UK, and India. Strengthening its role may require coordinated efforts across research, policy, and implementation to support healthy ageing outcomes. Full article
39 pages, 9691 KB  
Review
Advances in Targeting BCR-ABLT315I Mutation with Imatinib Derivatives and Hybrid Anti-Leukemic Molecules
by Aleksandra Tuzikiewicz, Wiktoria Wawrzyniak, Andrzej Kutner and Teresa Żołek
Molecules 2026, 31(2), 341; https://doi.org/10.3390/molecules31020341 - 19 Jan 2026
Viewed by 102
Abstract
Resistance to imatinib remains a therapeutic challenge, largely driven by point mutations within the kinase domain of the BCR-ABL, among which the T315I substitution constitutes the most clinically significant barrier. Ponatinib effectively inhibits this mutant form but is limited by dose-dependent cardiovascular [...] Read more.
Resistance to imatinib remains a therapeutic challenge, largely driven by point mutations within the kinase domain of the BCR-ABL, among which the T315I substitution constitutes the most clinically significant barrier. Ponatinib effectively inhibits this mutant form but is limited by dose-dependent cardiovascular toxicity, prompting efforts to develop safer and more selective agents. Recent advances highlight aminopyrimidine-derived scaffolds and their evolution into thienopyrimidines, oxadiazoles, and pyrazines with improved activity against BCR-ABLT315I. Further progress has been achieved with benzothiazole–picolinamide hybrids incorporating a urea-based pharmacophore, which benefit from strategic hinge-region substitutions and phenyl linkers that enhance potency. Parallel research into dual-mechanism inhibitors, including Aurora and p38 kinase modulators, demonstrates additional opportunities for overcoming resistance. Combination strategies, such as vorinostat with ponatinib, provide complementary therapeutic avenues. Natural-product-inspired approaches utilizing fungal metabolites provided structurally diverse scaffolds that could engage sterically constrained mutant kinases. Hybrid molecules derived from approved TKIs, including GNF-7, olverembatinib, and HG-7-85-01, exemplify rational design trends that balance efficacy with improved safety. Molecular modeling continues to deepen understanding of ligand engagement within the T315I-mutated active site, supporting the development of next-generation inhibitors. In this review, we summarized recent progress in the design, optimization, and biological evaluation of small molecules targeting the BCR-ABLT315I mutation. Full article
Show Figures

Figure 1

39 pages, 1895 KB  
Review
Therapeutic Potential of Bovine Colostrum- and Milk-Derived Exosomes in Cancer Prevention and Treatment: Mechanisms, Evidence, and Future Perspectives
by Yusuf Serhat Karakülah, Yalçın Mert Yalçıntaş, Mikhael Bechelany and Sercan Karav
Pharmaceuticals 2026, 19(1), 168; https://doi.org/10.3390/ph19010168 - 17 Jan 2026
Viewed by 245
Abstract
Due to their therapeutic potential and effects on cells, exosomes derived from bovine colostrum (BCE) and milk (BME) are molecules that have been at the center of recent studies. Their properties include the ability to cross biological barriers, their natural biocompatibility, and their [...] Read more.
Due to their therapeutic potential and effects on cells, exosomes derived from bovine colostrum (BCE) and milk (BME) are molecules that have been at the center of recent studies. Their properties include the ability to cross biological barriers, their natural biocompatibility, and their structure, which enable them to act as stable nanocarriers. Exosomes derived from milk and colostrum stand out in cancer prevention and treatment due to these properties. BMEs can be enriched with bioactive peptides, lipids, and nucleic acids. The targeted drug delivery capacity of BMEs can be made more efficient through these enrichment processes. For example, BME enriched with an iRGD peptide and developed using hypoxia-sensitive lipids selectively transported drugs and reduced the survival rate of triple-negative breast cancer (TNBC) cells. ARV-825-CME formulations increased antitumor activity in some cancer types. The anticancer effects of exosomes are supported by these examples. In addition to their anticancer activities, exosomes also exhibit effects that maintain immune balance. BME and BCE can regulate inflammatory responses with their miRNA and protein loads. These effects of BMEs have been demonstrated in studies on colon, breast, liver, and lung cancers. The findings support the safety and scalability of these effects. However, significant challenges remain in terms of their large-scale isolation, load heterogeneity, and regulatory standardization. Consequently, BMEs represent a new generation of biogenic nanoplatforms at the intersection of nutrition, immunology, and oncology, paving the way for innovative therapeutic approaches. Full article
Show Figures

Graphical abstract

20 pages, 1709 KB  
Review
Type 2 Diabetes and Alzheimer’s Disease: Molecular Mechanisms and Therapeutic Insights with a Focus on Anthocyanin
by Muhammad Sohail Khan, Ashfaq Ahmad, Somayyeh Nasiripour and Jean C. Bopassa
J. Dement. Alzheimer's Dis. 2026, 3(1), 5; https://doi.org/10.3390/jdad3010005 - 16 Jan 2026
Viewed by 133
Abstract
Type 2 Diabetes Mellitus (T2DM) is a recognized risk factor for Alzheimer’s Disease (AD), as epidemiological research indicates that those with T2DM have a markedly increased risk of experiencing cognitive decline and dementia. Chronic hyperglycemia and insulin resistance in T2DM hinder cerebral glucose [...] Read more.
Type 2 Diabetes Mellitus (T2DM) is a recognized risk factor for Alzheimer’s Disease (AD), as epidemiological research indicates that those with T2DM have a markedly increased risk of experiencing cognitive decline and dementia. Chronic hyperglycemia and insulin resistance in T2DM hinder cerebral glucose metabolism, reducing the primary energy source for neurons and compromising synaptic function. Insulin resistance impairs signaling pathways crucial for neuronal survival and plasticity, while high insulin levels compete with amyloid-β (Aβ) for breakdown by insulin-degrading enzyme, promoting Aβ buildup. Additionally, vascular issues linked to T2DM impair blood–brain barrier functionality, decrease cerebral blood flow, and worsen neuroinflammation. Elevated oxidative stress and advanced glycation end-products (AGEs) in diabetes exacerbate tau hyperphosphorylation and mitochondrial dysfunction, worsening neurodegeneration. Collectively, these processes create a robust biological connection between T2DM and AD, emphasizing the significance of metabolic regulation as a possible treatment approach for preventing or reducing cognitive decline. Here, we review the relationship between T2DM and AD and discuss the roles insulin, hyperglycemia, and inflammation therapeutic strategies have in successful development of AD therapies. Additionally evaluated are recent therapeutic advances, especially involving the polyflavonoid anthocyanin, against T2DM-mediated AD pathology. Full article
Show Figures

Figure 1

16 pages, 8167 KB  
Article
Overwinter Syndrome in Grass Carp (Ctenopharyngodon idellus) Links Enteric Viral Proliferation to Mucosal Disruption via Multiomics Investigation
by Yang Feng, Yi Geng, Senyue Liu, Xiaoli Huang, Chengyan Mou, Han Zhao, Jian Zhou, Qiang Li and Yongqiang Deng
Cells 2026, 15(2), 157; https://doi.org/10.3390/cells15020157 - 15 Jan 2026
Viewed by 163
Abstract
Overwinter Syndrome (OWS) affects grass carp (Ctenopharyngodon idellus) aquaculture in China, causing high mortality and economic losses under low temperatures. Failure of antibiotic therapies shows limits of the ‘low–temperature–pathogen’ model and shifts focus to mucosal barrier dysfunction and host–microbiome interactions in [...] Read more.
Overwinter Syndrome (OWS) affects grass carp (Ctenopharyngodon idellus) aquaculture in China, causing high mortality and economic losses under low temperatures. Failure of antibiotic therapies shows limits of the ‘low–temperature–pathogen’ model and shifts focus to mucosal barrier dysfunction and host–microbiome interactions in OWS. We compared healthy and diseased grass carp collected from the same pond using histopathology, transcriptomics, proteomics, and metagenomics. This integrated approach was used to characterize intestinal structure, microbial composition, and host molecular responses at both taxonomic and functional levels. Results revealed a three-layer barrier failure in OWS fish: the physical barrier was compromised, with structural damage and reduced mucosal index; microbial dysbiosis featured increased richness without changes in diversity or evenness, and expansion of the virobiota, notably uncultured Caudovirales phage; and mucosal immune dysregulation indicated loss of local immune balance. Multi-omics integration identified downregulation of lysosome-related and glycosphingolipid biosynthesis pathways at transcript and protein levels, with disrupted nucleotide metabolism. Overall gut microbial richness, rather than individual taxa abundance, correlated most strongly with host gene changes linked to immunity, metabolism, and epithelial integrity. Although biological replicates were limited by natural outbreak sampling, matched high-depth multi-omics datasets provide exploratory insights into OWS-associated intestinal dysfunction. In summary, OWS entails a cold-triggered breakdown of intestinal barrier integrity and immune homeostasis. This breakdown is driven by a global restructuring of the gut microbiome, which is marked by increased richness, viral expansion, and functional shifts, ultimately resulting in altered host–microbe crosstalk. This ecological perspective informs future mechanistic and applied studies for disease prevention. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Graphical abstract

Back to TopTop