Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (113)

Search Parameters:
Keywords = biological balance of soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1188 KiB  
Article
Comprehensive Benefit Evaluation of Saline–Alkali Land Consolidation Based on the Optimal Land Use Value: Evidence from Jilin Province, China
by Man Teng, Longzhen Ni, Hua Li and Wenhui Chen
Land 2025, 14(8), 1687; https://doi.org/10.3390/land14081687 - 20 Aug 2025
Viewed by 134
Abstract
China, facing severe saline–alkali land degradation, is grappling with the paradox of technically adequate but systemically deficient land consolidation. In response to the existing evaluation system’s over-reliance on physicochemical indicators and neglect of socioeconomic value, this study proposes the use of the Optimal [...] Read more.
China, facing severe saline–alkali land degradation, is grappling with the paradox of technically adequate but systemically deficient land consolidation. In response to the existing evaluation system’s over-reliance on physicochemical indicators and neglect of socioeconomic value, this study proposes the use of the Optimal Land Use Value (OLV) to construct a comprehensive benefit evaluation indicator system for saline–alkali land consolidation that encompasses ecosystem resilience, supply–demand balancing, and common prosperity. Considering a case project implemented from 2019 to 2022 in the Western Songnen Plain of China—one of the world’s most severely affected soda saline–alkali regions—this study combines the land use transition matrix with a comprehensive evaluation model to systematically assess the effectiveness and sustainability of land consolidation. The results reveal systemic deficiencies: within ecological spaces, short-term desalination succeeds but pH and organic matter improvements remain inadequate, while ecosystem vulnerability increases due to climate fluctuations and grassland conversion. In production spaces, cropland expansion and saline land reduction are effective, but water resource management proves unsustainable. Living spaces show improved infrastructure and income but face threats due to economic simplification and intergenerational unsustainability. For the investigated case, recommendations include shifting from technical restoration to systemic governance via three strategies: (1) biological–engineering synergy employing green manure to enhance soil microbial activity; (2) hydrological balancing through groundwater quotas and rainwater utilization; (3) specialty industry development for rural economic diversification. This study contributes empirical evidence on the conversion of saline–alkali land, as well as an evaluation framework of wider relevance for developing countries combating land degradation and pursuing rural revitalization. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

24 pages, 836 KiB  
Article
Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops
by Elżbieta Harasim and Cezary A. Kwiatkowski
Sustainability 2025, 17(14), 6473; https://doi.org/10.3390/su17146473 - 15 Jul 2025
Viewed by 430
Abstract
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: [...] Read more.
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: A. organic system (control)—without the use of chemical plant protection products and NPK mineral fertilization; B. conventional system—the use of plant protection products and NPK fertilization in the range and doses recommended for spring wheat; C. integrated system—use of plant protection products and NPK fertilization in an “economical” way—doses reduced by 50%. The second experimental factor was irrigation strategy: 1. no irrigation—control; 2. double irrigation; 3. multiple irrigation The aim of the research was to determine the physical, chemical, and enzymatic properties of loess soil under spring wheat crops as influenced by the factors listed above. The highest organic C content of the soil (1.11%) was determined in the integrated system with multiple irrigation of spring wheat, whereas the lowest one (0.77%)—in the conventional system without irrigation. In the conventional system, the highest contents of total N (0.15%), P (131.4 mg kg−1), and K (269.6 mg kg−1) in the soil were determined under conditions of multiple irrigation. In turn, the organic system facilitated the highest contents of Mg, B, Cu, Mn, and Zn in the soil, especially upon multiple irrigation of crops. It also had the most beneficial effect on the evaluated physical parameters of the soil. In each farming system, the multiple irrigation of spring wheat significantly increased moisture content, density, and compaction of the soil and also improved its total sorption capacity (particularly in the integrated system). The highest count of beneficial fungi, the lowest population number of pathogenic fungi, and the highest count of actinobacteria were recorded in the soil from the organic system. Activity of soil enzymes was the highest in the integrated system, followed by the organic system—particularly upon multiple irrigation of crops. Summing up, the present study results demonstrate varied effects of the farming systems on the quality and health of loess soil. From a scientific point of view, the integrated farming system ensures the most stable and balanced physicochemical and biological parameters of the soil due to the sufficient amount of nutrients supplied to the soil and the minimized impact of chemical plant protection products on the soil. The multiple irrigation of crops resulting from indications of soil moisture sensors mounted on plots (indicating the real need for irrigation) contributed to the improvement of almost all analyzed soil quality indices. Multiple irrigation generated high costs, but in combination with fertilization and chemical crop protection (conventional and integrated system), it influenced the high productivity of spring wheat and compensated for the incurred costs (the greatest profit). Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

18 pages, 673 KiB  
Article
Effects of Tillage Methods on Carbon and Nitrogen Sequestration and Soil Microbial Stoichiometric Equilibrium in a Black Soil Farmland with Full Return of Straw to the Field
by Meiren Rong, Zhigang Wang, Xiangqian Zhang, Zhanyuan Lu, Lanfang Bai, Zhipeng Cheng, Tianhao Wang, Yajing Zhang, Hongwei Liang, Tiantian Meng, Lingyue Liu and Fang Luo
Agronomy 2025, 15(7), 1664; https://doi.org/10.3390/agronomy15071664 - 9 Jul 2025
Viewed by 313
Abstract
Long-term irrational farming practices and low return of organic materials to the fields in the black soil area have led to reduced soil carbon and nitrogen stability and nutrient imbalance, which in turn affect soil fertility and crop yields. Straw return is an [...] Read more.
Long-term irrational farming practices and low return of organic materials to the fields in the black soil area have led to reduced soil carbon and nitrogen stability and nutrient imbalance, which in turn affect soil fertility and crop yields. Straw return is an effective way to enhance soil organic matter and crop productivity, but the effects of long-term straw return under tilling practices on carbon and nitrogen sequestration and soil microbial stoichiometric equilibrium in black soil need to be further investigated. This study investigated the physical, chemical and biological properties of the 0–60 cm soil layer under deep tillage with straw return to the field (DTS), deep harrow with straw return to the field (DHS), rotary tillage with straw return to the field (RTS), no tillage with straw return to the field (NTS), and conventional tillage with straw removal (CT) on the basis of seven consecutive years of tillage pattern location trials in the black soil area of eastern Inner Mongolia. The results showed that DTS and NTS significantly increased the soil organic carbon (SOC), soil total nitrogen (TN), soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN) contents, and the SOC/TN ratio in the 0–40 cm soil layer, enhancing soil carbon and nitrogen sequestration capacity, while the concomitant increase in the average MBC/MBN ratio in the plow layer from 6.8 to 8.2. The soil microbial quotient increased by 29.0% and 26.2%, respectively, and the stoichiometric imbalance ratio decreased by 7.9% and 5.7%, respectively. Meanwhile, in terms of maize yield from 2018 to 2024, DTS showed the most stable and significant yield increase with 41.53%. Whereas NTS showed a higher yield increase potential with a 27.36% increase in yield as the number of years of straw return increased. Therefore, DTS and NTS are superior tillage methods to improve the quality of the black soil tillage layer, to promote soil microbial carbon and nitrogen balance, and to increase crop yields. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

20 pages, 3504 KiB  
Article
Integrating Multi-Trait Selection Indices for Climate-Resilient Lentils: A Three-Year Evaluation of Earliness and Yield Stability Under Semi-Arid Conditions
by Mustafa Ceritoglu, Fatih Çığ, Murat Erman and Figen Ceritoglu
Agronomy 2025, 15(7), 1554; https://doi.org/10.3390/agronomy15071554 - 26 Jun 2025
Cited by 1 | Viewed by 441
Abstract
This research assessed 42 lentil genotypes developed by ICARDA along with a local variety over three growing seasons (2019–2022) in Southeastern Türkiye. Phenological, morphological, and yield attributes were determined to observe earliness, yield stability, and adaptation properties. Genotype G3771 showed outstanding performance in [...] Read more.
This research assessed 42 lentil genotypes developed by ICARDA along with a local variety over three growing seasons (2019–2022) in Southeastern Türkiye. Phenological, morphological, and yield attributes were determined to observe earliness, yield stability, and adaptation properties. Genotype G3771 showed outstanding performance in grain yield (2579 kg ha−1), 1000-seed weight (54.9 g), and harvest index (37.3%), although it had lower stability under more severe drought conditions. Early-maturing genotypes like G3744, G3715, and G3716 consistently flowered and matured sooner, making them better suited for escaping terminal drought stress areas. The highest yields were recorded during the 2019–2020 season, which experienced favorable rainfall and soil nutrient levels, while the lowest yields occurred due to changing climatic conditions in the 2020–2021 season, highlighting the crop’s sensitivity to climate. Principal component analysis, hierarchical clustering, the Modified Multi-Trait Stability Index (MTSI), and the Multi-Trait Genotype-Ideotype Distance Index (MGIDI) aided in effective genotype classification. Although G3771 was the most productive, genotypes G3687, G3715, and G3689 proved to be the most stable and early maturing based on MGIDI scores. Strong relationships between grain yield, biological yield, and seed size identified these as key selection criteria. This study underscores the value of multi-trait selection tools like MGIDI and MTSI in consistently pinpointing lentil genotypes that balance earliness, productivity, and adaptability, laying a strong foundation for developing climate-resilient varieties suited to semi-arid climates. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

20 pages, 1478 KiB  
Review
Cyanobacteria and Soil Restoration: Bridging Molecular Insights with Practical Solutions
by Matias Garcia, Pablo Bruna, Paola Duran and Michel Abanto
Microorganisms 2025, 13(7), 1468; https://doi.org/10.3390/microorganisms13071468 - 24 Jun 2025
Viewed by 886
Abstract
Soil degradation has been accelerating globally due to climate change, which threatens food production, biodiversity, and ecosystem balance. Traditional soil restoration strategies are often expensive, slow, or unsustainable in the long term. In this context, cyanobacteria have emerged as promising biotechnological alternatives, being [...] Read more.
Soil degradation has been accelerating globally due to climate change, which threatens food production, biodiversity, and ecosystem balance. Traditional soil restoration strategies are often expensive, slow, or unsustainable in the long term. In this context, cyanobacteria have emerged as promising biotechnological alternatives, being the only prokaryotes capable of performing oxygenic photosynthesis. Moreover, they can capture atmospheric carbon and nitrogen, release exopolysaccharides (EPSs) that stabilize the soil, and facilitate the development of biological soil crusts (biocrusts). In recent years, the convergence of multi-omics tools, such as metagenomics, metatranscriptomics, and metabolomics, has advanced our understanding of cyanobacterial dynamics, their metabolic potential, and symbiotic interactions with microbial consortia, as exemplified by the cyanosphere of Microcoleus vaginatus. In addition, recent advances in bioinformatics have enabled high-resolution taxonomic and functional profiling of environmental samples, facilitating the identification and prediction of resilient microorganisms suited to challenging degraded soils. These tools also allow for the prediction of biosynthetic gene clusters and the detection of prophages or cyanophages within microbiomes, offering a novel approach to enhance carbon sequestration in dry and nutrient-poor soils. This review synthesizes the latest findings and proposes a roadmap for the translation of molecular-level knowledge into scalable biotechnological strategies for soil restoration. We discuss approaches ranging from the use of native biocrust strains to the exploration of cyanophages with the potential to enhance cyanobacterial photosynthetic activity. By bridging ecological functions with cutting-edge omics technologies, this study highlights the critical role of cyanobacteria as a nature-based solution for climate-smart soil management in degraded and arid ecosystems. Full article
(This article belongs to the Special Issue Omics Research in Microbial Ecology)
Show Figures

Figure 1

24 pages, 1710 KiB  
Review
Impacts of Cerium Dioxide Nanoparticles on the Soil–Plant System and Their Potential Agricultural Applications
by Nadeesha L. Ukwattage and Zhang Zhiyong
Nanomaterials 2025, 15(12), 950; https://doi.org/10.3390/nano15120950 - 19 Jun 2025
Cited by 1 | Viewed by 567
Abstract
Cerium dioxide nanoparticles (CeO2-NPs) are increasingly used in various industrial applications, leading to their inevitable release into the environment including the soil ecosystem. In soil, CeO2-NPs are taken up by plants, translocated, and accumulated in plant tissues. Within plant [...] Read more.
Cerium dioxide nanoparticles (CeO2-NPs) are increasingly used in various industrial applications, leading to their inevitable release into the environment including the soil ecosystem. In soil, CeO2-NPs are taken up by plants, translocated, and accumulated in plant tissues. Within plant tissues, CeO2-NPs have been shown to interfere with critical metabolic pathways, which may affect plant health and productivity. Moreover, their presence in soil can influence soil physico-chemical and biological properties, including microbial communities within the rhizosphere, where they can alter microbial physiology, diversity, and enzymatic activities. These interactions raise concerns about the potential disruption of plant–microbe symbiosis essential for plant nutrition and soil health. Despite these challenges, CeO2-NPs hold potential as tools for enhancing crop productivity and resilience to stress, such as drought or heavy metal contamination. However, understanding the balance between their beneficial and harmful effects is crucial for their safe application in agriculture. To date, the overall impact of CeO2-NPs on soil -plant system and the underlying mechanism remains unclear. Therefore, this review analyses the recent research findings to provide a comprehensive understanding of the fate of CeO2-NPs in soil–plant systems and the implications for soil health, plant growth, and agricultural productivity. As the current research is limited by inconsistent findings, often due to variations in experimental conditions, it is essential to study CeO2-NPs under more ecologically relevant settings. This review further emphasizes the need for future research to assess the long-term environmental impacts of CeO2-NPs in soil–plant systems and to develop guidelines for their responsible use in sustainable agriculture. Full article
(This article belongs to the Special Issue Interplay between Nanomaterials and Plants)
Show Figures

Figure 1

21 pages, 2648 KiB  
Article
Sustainable Soil Management: The Dynamic Impact of Combined Use of Crop Rotation and Fertilizers from Agri-Food and Sulfur Hydrocarbon Refining Processes Wastes
by Angela Maffia, Federica Marra, Mariateresa Oliva, Santo Battaglia, Carmelo Mallamaci and Adele Muscolo
Land 2025, 14(6), 1171; https://doi.org/10.3390/land14061171 - 29 May 2025
Viewed by 556
Abstract
Sustainable agriculture increasingly relies on strategies that improve soil fertility while reducing the environmental footprint of chemical inputs. The primary objective of this research was to disentangle the individual and combined effects of crop rotation and fertilization on soil quality. This study aimed [...] Read more.
Sustainable agriculture increasingly relies on strategies that improve soil fertility while reducing the environmental footprint of chemical inputs. The primary objective of this research was to disentangle the individual and combined effects of crop rotation and fertilization on soil quality. This study aimed to determine whether the effectiveness of fertilization was modified by rotational practices—exploring whether these interactions were additive, antagonistic, or synergistic. This study assessed the impact of two-year open-field crop rotations—broccoli–tomato and broccoli–pepper—combined with organic and mineral fertilization on soil chemical and biological properties. Treatments included sulfur bentonite enriched with orange waste (SBO), horse manure (HM), mineral fertilizer (NPK), and an unfertilized control (CTR). Soil samples were collected after each crop cycle and analyzed for enzymatic activities (fluorescein diacetate hydrolase, dehydrogenase, catalase), microbial biomass carbon (MBC), organic matter, total nitrogen, and macro- and micronutrient content. The results showed that organic amendments, particularly SBO and HM, significantly increased microbial activity, MBC, and nutrient availability compared to NPK and CTR. Organic treatments also led to a reduction in soil pH (−12%) and a more balanced ionic profile, enhancing soil biological fertility across both rotations. By contrast, the NPK treatments favored higher nitrate and chloride concentrations (3.5 and 4.6 mg * g−1 dw, respectively) but did not improve biological indicators. Improvements were more pronounced in the second crop cycle, suggesting the cumulative benefits of organic amendments over time. These findings highlight the potential of combining organic fertilization with crop rotation to enhance soil health and support long-term sustainability in horticultural systems. Full article
(This article belongs to the Special Issue Soil Ecological Risk Assessment Based on LULC)
Show Figures

Figure 1

29 pages, 1701 KiB  
Review
Microbially Enhanced Biofertilizers: Technologies, Mechanisms of Action, and Agricultural Applications
by Sylwia Figiel, Piotr Rusek, Urszula Ryszko and Marzena Sylwia Brodowska
Agronomy 2025, 15(5), 1191; https://doi.org/10.3390/agronomy15051191 - 15 May 2025
Viewed by 1951
Abstract
Intensive research has been conducted for many years to develop environmentally friendly techniques for plant cultivation that optimize the fertilization process. One of the most promising areas within the fertilizer industry is using microbiologically enriched fertilizers, which incorporate beneficial bacteria or fungi. Biofertilizers [...] Read more.
Intensive research has been conducted for many years to develop environmentally friendly techniques for plant cultivation that optimize the fertilization process. One of the most promising areas within the fertilizer industry is using microbiologically enriched fertilizers, which incorporate beneficial bacteria or fungi. Biofertilizers are the focus of studies on both their production technologies and their effects on crop growth and yield, presenting a potential alternative to conventional mineral fertilizers. The prolonged and improper use of mineral fertilizers, along with inadequate plant protection, a lack of organic fertilization, and poor crop rotation practices, negatively impact soil health, disrupting microbial populations and ultimately diminishing yield quality and quantity. Microorganisms, particularly specific groups known as plant growth -promoting rhizobacteria (PGPR) and beneficial fungi, are estimated to make up 85% of the total soil biomass and play a crucial role in soil fertility by mineralizing organic matter, suppressing pests and pathogens, forming humus, and maintaining proper soil structure. They also provide optimal conditions for plant growth. Soil microorganisms can be categorized as either autochthonous, naturally present in the soil, or zymogenic, which develop when easily assimilable organic matter is added. Key microorganisms such as Micrococcus, Bacillus, Azotobacter, and nitrogen-fixing bacteria like Rhizobium and Bradyrhizobium significantly contribute to soil health and plant growth. Microbially enhanced fertilizers not only supply essential macro- and micronutrients but also improve soil quality, enhance nutrient use efficiency, protect plants against pathogens, and restore natural soil fertility, fostering a balanced biological environment for sustainable agriculture. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

31 pages, 4028 KiB  
Review
Integrating Green Infrastructure into Sustainable Agriculture to Enhance Soil Health, Biodiversity, and Microclimate Resilience
by Matthew Chidozie Ogwu and Enoch Akwasi Kosoe
Sustainability 2025, 17(9), 3838; https://doi.org/10.3390/su17093838 - 24 Apr 2025
Viewed by 1968
Abstract
While green infrastructure (GI) offers numerous benefits, its implementation in low-resource settings remains constrained by limited policy support and upfront costs, highlighting the need for context-sensitive strategies. This paper highlights the value of integrating GI within sustainable agricultural systems and the effectiveness of [...] Read more.
While green infrastructure (GI) offers numerous benefits, its implementation in low-resource settings remains constrained by limited policy support and upfront costs, highlighting the need for context-sensitive strategies. This paper highlights the value of integrating GI within sustainable agricultural systems and the effectiveness of various GI techniques in improving soil microbial communities and reducing greenhouse gas emissions. The transition to sustainable agricultural systems requires innovative strategies that balance productivity, environmental conservation, and resilience to climate change. Sustainable agriculture increasingly leverages technological innovations in GI to enhance productivity, biodiversity, and microclimate resilience. Green infrastructure has found direct application in agroforestry, conservation buffers, precision agriculture, soil health monitoring systems, and nature-based solutions such as regenerative soil management. These applications are crucial in enhancing soil health, water retention, and biodiversity, while mitigating microclimatic impacts. Precision agriculture tools, like IoT sensors, drones, and AI-driven analytics, allow farmers to optimize water, nutrient, and pesticide use, boosting yields and efficiency while minimizing environmental impact. Simultaneously, advanced soil health monitoring technologies track soil moisture, nutrients, and biological activity in real time, informing practices that maintain long-term soil fertility and carbon sequestration. This integrated approach yields practical on-farm benefits, such as higher crop stability during droughts and enhanced habitats for beneficial species. In conclusion, there is a need for supportive frameworks, like subsidies for GI adoption, application of precision tools, incentives for improving soil microclimate, development of innovative GI programs, and knowledge-sharing initiatives, to encourage farmer adoption. Full article
(This article belongs to the Special Issue Sustainable Development of Agricultural Systems)
Show Figures

Figure 1

16 pages, 1775 KiB  
Article
Evaluating Directed Acyclic Graphs with DAGMetrics: Insights from Tuber and Soil Microbiome Data
by Pavel Averin, Ifigeneia Mellidou, Maria Ganopoulou, Aliki Xanthopoulou and Theodoros Moysiadis
Agronomy 2025, 15(4), 987; https://doi.org/10.3390/agronomy15040987 - 20 Apr 2025
Viewed by 617
Abstract
Understanding and evaluating directed acyclic graphs (DAGs) is crucial for causal discovery, particularly in high-dimensional and small-sample datasets such as microbial abundance data. This study introduces DAGMetrics, an R package designed to comprehensively evaluate and compare DAGs. The package provides descriptive and comparative [...] Read more.
Understanding and evaluating directed acyclic graphs (DAGs) is crucial for causal discovery, particularly in high-dimensional and small-sample datasets such as microbial abundance data. This study introduces DAGMetrics, an R package designed to comprehensively evaluate and compare DAGs. The package provides descriptive and comparative metrics, streamlining the assessment of outputs from various structure learning algorithms. It was applied to datasets generated for potato tubers and soils from different terroirs (continental and island) and stages (at harvest and post-harvest). Using a comprehensive set of descriptive and comparative metrics, DAGMetrics facilitated model selection by identifying balanced and robust DAGs. The PC algorithm with Spearman correlation produced DAGs with moderate complexity and high stability across scaling and transformation setups. Additionally, the package enabled detailed exploration of the Markov blanket space, revealing small Markov blankets (up to seven nodes) and numerous isolated nodes. Identified matching edges between Markov blankets across different terroirs and stages aligned with known microbial interactions, highlighting the package’s utility in facilitating the discovery of biologically meaningful relationships. This study illustrates the utility of DAGMetrics in providing objective and reproducible tools for DAG evaluation along with its potential application in agronomic and other domains involving complex structured data. Full article
(This article belongs to the Special Issue Advanced Machine Learning in Agriculture)
Show Figures

Figure 1

19 pages, 3539 KiB  
Article
Optimizing Straw and Manure Co-Substitution Regimes to Maintain Stable Crop Yields Through Enhanced Soil Stoichiometric Balance
by Peipei Li, Yuanyi Shang, Hui Li, Fang Li, Yi Wang, Xueqiang Zhu, Shiying Li, Xiaolin Wang and Yanlai Han
Agriculture 2025, 15(4), 429; https://doi.org/10.3390/agriculture15040429 - 18 Feb 2025
Viewed by 764
Abstract
The benefits of partially substituting inorganic fertilizers with organic fertilizers have been extensively acknowledged. However, the key mechanisms behind nutrient transformation and supply for stable crop yields are still not fully understood. Based on an 11-year field experiment with a wheat–maize rotation system, [...] Read more.
The benefits of partially substituting inorganic fertilizers with organic fertilizers have been extensively acknowledged. However, the key mechanisms behind nutrient transformation and supply for stable crop yields are still not fully understood. Based on an 11-year field experiment with a wheat–maize rotation system, this study explored the advantages of combined straw and manure substitution under various organic substitution regimes. These regimes included an unfertilized control (CK), inorganic nitrogen, phosphorus, and potassium fertilizers (NPK), NPK substituted with straw (NPKS), NPK substituted with manure (NPKM), and NPK substituted with both straw and manure (NPKSM). Compared to NPK and NPKS, NPKM and NPKSM significantly improved wheat yield by 12.8% and 13.8%, respectively. Bulk soil organic carbon (SOC), total nitrogen (TN), available superphosphate (AP), β-glucosidase (βG), urease (URE), and alkaline phosphatase (ALP) were all higher in the NPKM treatment than in the NPKSM treatment. However, compared to NPKM, NPKSM significantly decreased the potential nitrification rate by 31.0% and increased the soil NH4+-N content. Correspondingly, the functional genes of nitrification were also found to be decreased in the NPKSM treatment. In the rhizosphere, most soil factors increased compared to bulk soil, but treatment differences were smaller. However, the differences among treatments were reduced in the rhizosphere. The high amount of manure applied in the NPKM treatment caused excessive soil phosphorus accumulation, reaching over 46.7 mg/kg, resulting in lower N/P and C/P ratios. The soil quality index (SQI), based on soil nutrients, enzymes, functional genes, and C:N:P stoichiometry, was 9.9% higher in NPKSM than in NPKM. Bulk soil SQIs showed stronger correlations with wheat yields than rhizosphere SQIs, highlighting that bulk soil was superior to rhizosphere in predicting crop yield. Partial least squares path modeling showed that C/N, N/P, and C/P ratios strongly influenced SQIs. The NPKSM treatment, which improved soil nutrients, biological factors, and balanced C:N:P stoichiometry, is an effective strategy for sustainable agriculture. Future practices should focus on maintaining stoichiometric balance to sustain soil quality and crop yields. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

29 pages, 1929 KiB  
Review
Using Brown Algae in the Plant–Soil System: A Sustainable Approach to Improving the Yield and Quality of Agricultural Crops
by Oscar Sariñana-Aldaco, Luz Leticia Rivera-Solís, Adalberto Benavides-Mendoza, Armando Robledo-Olivo, Rosa María Rodríguez-Jasso and Susana González-Morales
Horticulturae 2025, 11(1), 94; https://doi.org/10.3390/horticulturae11010094 - 16 Jan 2025
Cited by 1 | Viewed by 3627
Abstract
The growing demand for food production and increasing stress scenarios increase the crucial need for sustainable alternatives to achieve increased crop yield and quality without affecting the environment. The use of brown macroalgae, being a renewable resource, is a promising option with various [...] Read more.
The growing demand for food production and increasing stress scenarios increase the crucial need for sustainable alternatives to achieve increased crop yield and quality without affecting the environment. The use of brown macroalgae, being a renewable resource, is a promising option with various application options in agricultural systems, mainly in the form of extracts, direct applications, and compost. Brown algae are a source of active biomolecules and minerals that are currently used as agricultural biostimulants, since they increase crop productivity. This type of biostimulants derived from brown algae improve seed germination, increase the accumulation of plant biomass by accelerating cell division and elongation, activating the antioxidant system of plants, making them more resistant to stress, and contributes to the absorption and translocation of nutrients present in the soil. These products are also compatible with other agricultural inputs, such as synthetic fertilizers and pesticides, which makes them ideal for comprehensive applications and maintaining a balance in agroecosystems. This review incorporates fundamental and applied aspects of brown seaweeds that impact yields, biochemical quality, physiology, stress mitigation, and soil properties. Based on the above, the review is divided into different Sections that show the formulation of brown seaweed products; their effect on crop yield, quality, and physiology; their effect on biotic and abiotic stress mitigation; and their impact on soil physical, chemical, and biological properties. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

21 pages, 5899 KiB  
Review
Bacterial Diversity Associated with Terrestrial and Aquatic Snails
by Konstantinos Apostolou, Canella Radea, Alexandra Meziti and Konstantinos Ar. Kormas
Microorganisms 2025, 13(1), 8; https://doi.org/10.3390/microorganisms13010008 - 24 Dec 2024
Cited by 1 | Viewed by 1820
Abstract
The introduction of the holobiont concept has triggered scientific interest in depicting the structural and functional diversity of animal microbial symbionts, which has resulted in an unprecedented wealth of such cross-domain biological associations. The steadfast technological progress in nucleic acid-based approaches would cause [...] Read more.
The introduction of the holobiont concept has triggered scientific interest in depicting the structural and functional diversity of animal microbial symbionts, which has resulted in an unprecedented wealth of such cross-domain biological associations. The steadfast technological progress in nucleic acid-based approaches would cause one to expect that scientific works on the microbial symbionts of animals would be balanced at least for the farmed animals of human interest. For some animals, such as ruminants and a few farmed fish species of financial significance, the scientific wealth of the microbial worlds they host is immense and ever growing. The opposite happens for other animals, such as snails, in both the wild and farmed species. Snails are evolutionary old animals, with complex ecophysiological roles, living in rich microbial habitats such as soil and sediments or water. In order to create a stepping stone for future snail microbiome studies, in this literature review, we combined all the available knowledge to date, as documented in scientific papers, on any microbes associated with healthy and diseased terrestrial and aquatic snail species from natural and farmed populations. We conducted a Boolean search in Scopus, Web of Science, and ScienceDirect until June 2024, identifying 137 papers, of which 60 were used for original data on snail bacterial communities in the gastrointestinal tract, hepatopancreas, and feces. We provide a synthesis on how representative this knowledge is towards depicting the possible snail core microbiota, as well as the steps that need to be taken in the immediate future to increase the in-depth and targeted knowledge of the bacterial component in snail holobionts. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

14 pages, 1220 KiB  
Article
Quantitative Determination of Nitrogen Fixed by Soybean and Its Uptake by Winter Wheat as Aftercrops Within Sustainable Agricultural Systems
by Karolina Ratajczak, Marcin Becher, Stanisław Kalembasa, Agnieszka Faligowska, Dorota Kalembasa, Barbara Symanowicz, Katarzyna Panasiewicz, Grażyna Szymańska and Hanna Sulewska
Sustainability 2024, 16(23), 10153; https://doi.org/10.3390/su162310153 - 21 Nov 2024
Cited by 2 | Viewed by 1474
Abstract
The future of agricultural production involves sustainable production systems with a balance between nutrients in soil–plant systems. These production systems are based on limiting the use of mineral fertilizers while introducing natural sources that increase soil fertility. The best example of such a [...] Read more.
The future of agricultural production involves sustainable production systems with a balance between nutrients in soil–plant systems. These production systems are based on limiting the use of mineral fertilizers while introducing natural sources that increase soil fertility. The best example of such a system is plant rotation, including legumes as a forecrop for cereal plants. For this reason, the goal of the present study was to determine the possibility of obtaining nitrogen from the air using 15N isotopes and to determine the quantity of nitrogen biologically fixed and taken up by winter wheat cultivated as a succeeding plant. In field experiments, we investigated the cycle of nitrogen fixed by legume plants in rotation under sustainable conditions, as follows: soybean–winter wheat–winter wheat. After soybean seedling emergence, a mineral fertilizer (15NH4)2SO4 containing 20.1 at% 15N (a dose of 30 kg∙ha−1) was applied, with summer wheat as a reference plant. The yield of soybean reached 2.48 t∙ha−1 for seeds and 8.73 t∙ha−1 for crop residue (CR), providing a total yield of 11.21 t∙ha−1. The total biomass of soybean contained 149.1 kg∙ha−1 of total nitrogen, with 108.1 kg∙ha−1 in the seeds and 41.0 kg∙ha−1 in the residue, of which 34.0 kg∙ha−1 in the seeds and 11.4 kg∙ha−1 in the residue was biologically fixed. CR was ploughed into the soil. Plots with winter wheat cultivated after soybean (2017) were divided into two sub-plots for the application of 0 and 100 kg∙ha−1 of mineral N. The scheme was repeated in 2018. Overall, winter wheat cultivated for two subsequent years took up 8.12 kg∙ha−1 of the total nitrogen from the CR from the control sub-plot and 15.51 kg∙ha−1 from the fertilized sub-plot, of which 2.61 and 2.98 kg∙ha−1 was biologically fixed by soybean plants, respectively. The dose of fertilizer contained 5.920 kg∙ha−1 of 15N, of which 3.024 kg∙ha−1 was accumulated in soybean. In wheat cultivated as the first subsequent crop, the accumulation of 15N was as follows: 0 kg N (control)—0.088 kg∙ha−1; 100 kg N—0.158 kg∙ha−1. Meanwhile, in winter wheat cultivated as the second aftercrop, 0.052 and 0.163 kg∙ha−1 of 15N was accumulated, respectively. This study demonstrates that biological nitrogen fixation in soybeans is an underappreciated solution for enhancing crop productivity within sustainable agricultural systems. It holds significant implications for planning rational fertilizer management, reducing the application of chemical fertilizers, and improving nitrogen use efficiency within crop rotation systems. Full article
(This article belongs to the Special Issue Sustainability Assessment of Agricultural Cropping Systems)
Show Figures

Figure 1

10 pages, 1699 KiB  
Article
Fungi Preference of Fungivorous Nematode Aphelenchus avenae (Aphelenchida: Aphelenchidae) and Its Impact on Strawberry (Fragaria ananassa Duch.) Root
by Xingyue Li, Shuocheng Zeng, Jun Yi, Haiting Zhang, Huijuan Fu, Cheng Chen, Qizhi Liu, Aocheng Cao and Wuyun Yang
Agriculture 2024, 14(11), 2035; https://doi.org/10.3390/agriculture14112035 - 12 Nov 2024
Viewed by 1401
Abstract
In continuously cropped strawberry soil, a large population of the fungivorous nematode, Aphelenchus avenae, was observed to increase significantly over time. This nematode, which feeds on pathogenic fungi affecting strawberries, has significant potential as a biocontrol agent. The purpose of this article [...] Read more.
In continuously cropped strawberry soil, a large population of the fungivorous nematode, Aphelenchus avenae, was observed to increase significantly over time. This nematode, which feeds on pathogenic fungi affecting strawberries, has significant potential as a biocontrol agent. The purpose of this article is to discuss the nematode’s preference for fungi associated with strawberries and its impact on the growth of strawberry roots. With the exception of Trichoderma harzianum, most of the pathogenic fungi commonly found in strawberry soil, such as Fusarium oxysporum, Rhizoctonia solani, Verticillium, Phytophthora infestans, and Botrytis cinerea Pers. attracted A. avenae and supported their propagation. All treatments with A. avenae and the non-nematode control showed a consistent trend throughout strawberry development, indicating that a moderate amount of A. avenae does not adversely affect strawberry roots. Moderate and low levels of A. avenae significantly increased the activity of antioxidant enzymes, superoxide dismutase (SOD), and peroxidase (POD) in strawberry roots in all treatments during the entire growth stages. Also, the malondialdehyde (MDA) content of strawberry roots in all nematode treatments was lower than that in the no-nematode control. Despite an overabundance of A. avenae, which negatively affected the redox system balance of strawberry roots, A. avenae can protect the roots from pathogenic fungi by preventing infection and damage. These results lay the foundation for the potential use of A. avenae as a biological agent to control these pathogenic fungi in strawberry soil, in combination with the biological fungi (T. harzianum). Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

Back to TopTop