Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = biogenic selenium nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4082 KB  
Article
Biogenic Selenium Nanoparticles from Lactiplantibacillus plantarum as a Potent Antimicrobial Agent Against Methicillin-Resistant Staphylococcus aureus
by Gyeong-min Kim, SeCheol Oh and Kwang-sun Kim
Pharmaceutics 2026, 18(1), 14; https://doi.org/10.3390/pharmaceutics18010014 - 22 Dec 2025
Viewed by 619
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) remains a major global health concern owing to its multidrug resistance and persistence despite continued antibiotic development. Eco-friendly nanomaterials such as selenium nanoparticles (SeNPs) have emerged as promising antimicrobial alternatives because of their high biocompatibility and lower toxicity [...] Read more.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) remains a major global health concern owing to its multidrug resistance and persistence despite continued antibiotic development. Eco-friendly nanomaterials such as selenium nanoparticles (SeNPs) have emerged as promising antimicrobial alternatives because of their high biocompatibility and lower toxicity compared to conventional metallic nanoparticles. In this study, we investigated the inhibitory effects and underlying mechanisms of Lactiplantibacillus plantarum (LP)–derived SeNPs (LP-SeNPs) on MRSA. Methods: SeNPs were biosynthesized using the antibacterial cell-free supernatant (CFS) of LP, which provides naturally reducing and stabilizing biomolecules. The resulting LP-SeNPs were characterized by physicochemical and structural analyses and compared to chemically synthesized SeNPs (Chem-SeNPs). Antibacterial activity was assessed through minimum inhibitory concentration (MIC) testing, time-kill kinetics, and cell viability assays. Results: LP-SeNPs, which were spherical with an average diameter of 107 nm, exhibited selective antibacterial activity against Gram-positive bacteria and showed no effect on Gram-negative strains. Notably, all six MRSA isolates demonstrated high susceptibility, with MIC values approximately 100-fold lower than that of S. aureus ATCC 25923, a non-MRSA reference strain. LP-SeNPs were also non-cytotoxic up to 20-fold the MIC (IC50 > 10 µg/mL). Mechanistic analyses indicated that disruption of the bacterial cell membrane was the primary antibacterial mechanism, supported by additional contributions from reactive oxygen species generation and protein synthesis inhibition. Conclusions: LP-SeNPs represent a sustainable, biocompatible, and potent antibacterial nanoplatform with strong selectivity for Gram-positive pathogens, particularly MRSA. These findings highlight their potential as eco-friendly and targeted therapeutic strategies for combating MRSA infections. Full article
Show Figures

Figure 1

14 pages, 2542 KB  
Article
Innovative Antimicrobial Fabrics Loaded with Nanocomposites from Chitosan and Black Mulberry Polysaccharide-Mediated Selenium Nanoparticles to Suppress Skin Pathogens
by Mousa Abdullah Alghuthaymi
Polymers 2025, 17(21), 2902; https://doi.org/10.3390/polym17212902 - 30 Oct 2025
Viewed by 671
Abstract
Skin pathogenic microbes continue to seriously endanger humans, particularly resistant strains. Nanomaterials/composites are promising answers for this. Black mulberry (MB) polysaccharides were employed for biosynthesizing/capping selenium nanoparticles (SeNPs); their conjugations alongside chitosan (Cht) nanoforms were constructed and assessed for skin pathogens’ (Staphylococcus [...] Read more.
Skin pathogenic microbes continue to seriously endanger humans, particularly resistant strains. Nanomaterials/composites are promising answers for this. Black mulberry (MB) polysaccharides were employed for biosynthesizing/capping selenium nanoparticles (SeNPs); their conjugations alongside chitosan (Cht) nanoforms were constructed and assessed for skin pathogens’ (Staphylococcus aureus bacteria and Candida albicans yeast) suppression and destruction. The biosynthesis of SeNPs with MB was verified using FTIR analysis and UV-vis spectroscopy. The nanocomposites were constructed from Cht–MB-SeNPs at concentrations of 2:1 (F1), 1:1 (F2), and 1:2 (F3). The SeNPs had a mean diameter of 46.19 nm, whereas the F-2 nanocomposites had the lowest particle diameter (212.42 nm) compared to F-1 (239.88 nm) and F-3 (266.16 nm) nanocomposites. The F-2 nanocomposites significantly exhibited the strongest antimicrobial efficacy against skin pathogens, with 26.3 and 27.1 mm inhibition zones and 22.5 and 20.0 μg/mL inhibitory concentrations against bacteria and C. albicans yeast, respectively. The scanning imaging of microbes exposed to nanocomposite emphasized the severe destruction/lyses of microbial cells within 10 h. Loading of cotton fabrics with nanomaterials, particularly with Cht/MB-SeNP nanocomposites, generated potent durable antimicrobial textiles that could prohibit microbial growth, with inhibition zones of 6.2 mm against C. albicans and 3.7 mm against S. aureus; the textiles could preserve their antimicrobial actions after two washing cycles. The biogenic construction of Cht/MB-SeNP nanocomposites can provide innovative solutions to manage and control skin pathogens. Full article
Show Figures

Graphical abstract

20 pages, 1653 KB  
Review
An Updated Review of the Antimicrobial Potential of Selenium Nanoparticles and Selenium-Related Toxicological Issues
by Tainá Pereira da Silva Oliveira, Alan Kelbis Oliveira Lima and Luís Alexandre Muehlmann
Future Pharmacol. 2025, 5(1), 3; https://doi.org/10.3390/futurepharmacol5010003 - 8 Jan 2025
Cited by 7 | Viewed by 4189
Abstract
Discovered in mid-1817 by Jöns Jacob Berzelius, selenium, belonging to Group 16 of the periodic table is an essential trace element for human and animal health, due to its biocompatibility and bioavailability. Additionally, it is known for having different oxidation states, which allows [...] Read more.
Discovered in mid-1817 by Jöns Jacob Berzelius, selenium, belonging to Group 16 of the periodic table is an essential trace element for human and animal health, due to its biocompatibility and bioavailability. Additionally, it is known for having different oxidation states, which allows it to interact with distinct chemical elements to form various compounds. Selenium exhibits two forms, organic and inorganic; the latter is known for its genotoxicity. Selenium nanoparticles have been investigated as an alternative to mitigate the toxicity of this element. With antidiabetic, antiviral, chemopreventive, and antimicrobial properties, SeNPs possess significant biomedical potential and can be synthesized using chemical, physical, or green methods, offering new solutions for combating microbial resistance and other diseases. This review discusses the historical discovery of selenium, preparation methods, the versatility of combinations for synthesis, morphological characteristics, and sizes, as well as the impact of SeNP applications obtained through different approaches against medically relevant microorganisms, particularly those exhibiting resistance to conventional antimicrobials. Full article
Show Figures

Figure 1

14 pages, 4881 KB  
Article
Biogenic Synthesis of Selenium and Copper Oxide Nanoparticles and Inhibitory Effect against Multi-Drug Resistant Biofilm-Forming Bacterial Pathogens
by Rida Rasheed, Abhijnan Bhat, Baljit Singh and Furong Tian
Biomedicines 2024, 12(5), 994; https://doi.org/10.3390/biomedicines12050994 - 30 Apr 2024
Cited by 8 | Viewed by 2813
Abstract
Antimicrobial resistance (AMR), caused by microbial infections, has become a major contributor to morbid rates of mortality worldwide and a serious threat to public health. The exponential increase in resistant pathogen strains including Staphylococcus aureus (S. aureus) and Escherichia coli ( [...] Read more.
Antimicrobial resistance (AMR), caused by microbial infections, has become a major contributor to morbid rates of mortality worldwide and a serious threat to public health. The exponential increase in resistant pathogen strains including Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) poses significant hurdles in the health sector due to their greater resistance to traditional treatments and medicines. Efforts to tackle infectious diseases caused by resistant microbes have prompted the development of novel antibacterial agents. Herein, we present selenium and copper oxide monometallic nanoparticles (Se-MMNPs and CuO-MMNPs), characterized using various techniques and evaluated for their antibacterial potential via disc diffusion, determination of minimum inhibitory concentration (MIC), antibiofilm, and killing kinetic action. Dynamic light scattering (DLS), scanning electron microscopy (SEM/EDX), and X-ray diffraction (XRD) techniques confirmed the size-distribution, spherical-shape, stability, elemental composition, and structural aspects of the synthesized nanoparticles. The MIC values of Se-MMNPs and CuO-MMNPs against S. aureus and E. coli were determined to be 125 μg/mL and 100 μg/mL, respectively. Time–kill kinetics studies revealed that CuO-MMNPs efficiently mitigate the growth of S. aureus and E. coli within 3 and 3.5 h while Se-MMNPs took 4 and 5 h, respectively. Moreover, CuO-MMNPs demonstrated better inhibition compared to Se-MMNPs. Overall, the proposed materials exhibited promising antibacterial activity against S. aureus and E. coli pathogens. Full article
(This article belongs to the Special Issue Nanobiomaterials with Antimicrobial and Anticancer Applications)
Show Figures

Graphical abstract

33 pages, 5244 KB  
Review
The Clothes Matter—Exploiting Agronomical Functions of Trichogenic Selenium Nanoparticles Sharing Activities with Biological Systems Wherein (Were) Formed
by Livia Teodora Ciobanu, Victoria Bînzari, Ștefan-Ovidiu Dima, Ileana Cornelia Farcasanu, Florin Oancea and Diana Constantinescu-Aruxandei
Agronomy 2024, 14(1), 190; https://doi.org/10.3390/agronomy14010190 - 15 Jan 2024
Cited by 7 | Viewed by 3277
Abstract
The formation of biogenic selenium nanoparticles (SeNPs) through microbial activities is a promising technique that can contribute to the development of reliable, non-toxic and environmentally friendly synthesis methods. Among these, under optimal conditions, myconanotechnology confers particular characteristics due to the generation of bioactive [...] Read more.
The formation of biogenic selenium nanoparticles (SeNPs) through microbial activities is a promising technique that can contribute to the development of reliable, non-toxic and environmentally friendly synthesis methods. Among these, under optimal conditions, myconanotechnology confers particular characteristics due to the generation of bioactive fungal metabolites with various bioactivities. The formed SeNPs are known to be stabilized by the biomolecules of the microorganism, forming a so-called bio-corona or capping structure. The composition of this bio-corona greatly impacts the SeNPs activity, but investigations have been limited to date. The SeNPs produced by Trichoderma sp. have potential applications in crops and environmental management, as both selenium and Trichoderma are known to benefit cultivated plants and phytoremediation. This review summarizes the biosynthesis of SeNPs by Trichoderma sp. and contextualizes the possible correlations between SeNPs and biomolecules produced by Trichoderma; it also provides a missing analysis that could help understand and optimize this process. Biosynthesis methods and probable mechanisms are briefly discussed as well as the role and applications of trichogenic SeNPs as plant protectants, plant biostimulants, and safe biofortifying agents. The knowledge gaps related to mechanisms of trichogenic SeNPs biosynthesis, the control of the desired characteristics for a specific agricultural function, and technology scale-up are discussed in connection with the needed future research directions. Full article
Show Figures

Figure 1

34 pages, 24442 KB  
Article
Cytocompatibility, Antimicrobial and Antioxidant Activity of a Mucoadhesive Biopolymeric Hydrogel Embedding Selenium Nanoparticles Phytosynthesized by Sea Buckthorn Leaf Extract
by Naomi Tritean, Luminița Dimitriu, Ștefan-Ovidiu Dima, Rusăndica Stoica, Bogdan Trică, Marius Ghiurea, Ionuț Moraru, Anisoara Cimpean, Florin Oancea and Diana Constantinescu-Aruxandei
Pharmaceuticals 2024, 17(1), 23; https://doi.org/10.3390/ph17010023 - 22 Dec 2023
Cited by 11 | Viewed by 3331
Abstract
Phytosynthesized selenium nanoparticles (SeNPs) are less toxic than the inorganic salts of selenium and show high antioxidant and antibacterial activity. Chitosan prevents microbial biofilm formation and can also determine microbial biofilm dispersal. Never-dried bacterial nanocellulose (NDBNC) is an efficient carrier of bioactive compounds [...] Read more.
Phytosynthesized selenium nanoparticles (SeNPs) are less toxic than the inorganic salts of selenium and show high antioxidant and antibacterial activity. Chitosan prevents microbial biofilm formation and can also determine microbial biofilm dispersal. Never-dried bacterial nanocellulose (NDBNC) is an efficient carrier of bioactive compounds and a flexible nanofibrillar hydrophilic biopolymer. This study aimed to develop a selenium-enriched hydrogel nanoformulation (Se-HNF) based on NDBNC from kombucha fermentation and fungal chitosan with embedded biogenic SeNPs phytosynthesized by an aqueous extract of sea buckthorn leaves (SbLEx)—SeNPsSb—in order to both disperse gingival dysbiotic biofilm and prevent its development. We determined the total phenolic content and antioxidant activity of SbLEx. Liquid chromatography–mass spectrometry (LC-MS) and high-performance liquid chromatography (HPLC) were used for the identification of polyphenols from SbLEx. SeNPsSb were characterized by transmission electron microscopy–energy-dispersive X-ray spectroscopy (TEM-EDX), dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) in small- and wide-angle X-ray scattering (SAXS and WAXS). The hydrogel nanoformulation with embedded SeNPsSb was characterized by SEM, FTIR, XRD, rheology, mucin binding efficiency, contact angle and interfacial tension measurements. We also assessed the in vitro biocompatibility, antioxidant activity and antimicrobial and antibiofilm potential of SeNPsSb and Se-HNF. TEM, DLS and SAXS evidenced polydisperse SeNPsSb, whereas FTIR highlighted a heterogeneous biocorona with various biocompounds. The contact angle on the polar surface was smaller (52.82 ± 1.23°) than that obtained on the non-polar surface (73.85 ± 0.39°). The interfacial tension was 97.6 ± 0.47 mN/m. The mucin binding efficiency of Se-HNF decreased as the amount of hydrogel decreased, and the SEM analysis showed a relatively compact structure upon mucin contact. FTIR and XRD analyses of Se-HNF evidenced an interaction between BNC and CS through characteristic peak shifting, and the rheological measurements highlighted a pseudoplastic behavior, 0.186 N adhesion force and 0.386 adhesion energy. The results showed a high degree of cytocompatibility and the significant antioxidant and antimicrobial efficiency of SeNPsSb and Se-HNF. Full article
(This article belongs to the Special Issue Hydrogels for Pharmaceutical and Biomedical Applications 2024)
Show Figures

Graphical abstract

17 pages, 4178 KB  
Article
Biogenic Selenium Nanoparticles Synthesized Using Alginate Oligosaccharides Attenuate Heat Stress-Induced Impairment of Breast Meat Quality via Regulating Oxidative Stress, Metabolome and Ferroptosis in Broilers
by Yu-Ying Yang, Yu-Chen An, Shu-Yue Zhang, Meng-Yi Huang, Xue-Qing Ye, Zhi-Hui Zhao and Wen-Chao Liu
Antioxidants 2023, 12(12), 2032; https://doi.org/10.3390/antiox12122032 - 22 Nov 2023
Cited by 19 | Viewed by 3291
Abstract
Selenium (Se) is an indispensable trace element with versatile functions in antioxidant defense in poultry. In our previous study, we synthesized a novel type of biogenic selenium nanoparticle based on alginate oligosaccharides (SeNPs-AOS), and found that the particles are sized around 80 nm [...] Read more.
Selenium (Se) is an indispensable trace element with versatile functions in antioxidant defense in poultry. In our previous study, we synthesized a novel type of biogenic selenium nanoparticle based on alginate oligosaccharides (SeNPs-AOS), and found that the particles are sized around 80 nm with an 8% Se content, and the dietary addition of 5 mg/kg of SeNPs-AOS could effectively alleviate the deleterious effects of heat stress (HS) in broilers, but it is still unclear whether SeNPs-AOS can improve the meat quality. Therefore, the aim of this study was to evaluate the protective effects of SeNPs-AOS on breast meat quality in heat-stressed broilers, and explore the relevant mechanisms. Birds at the age of 21 days were randomly divided into four groups with six replicates per group (eight broilers per replicate) according to a 2 × 2 experimental design, using HS (33 ± 2 °C, 10 h/day vs. thermoneutral, TN, under 23 ± 1.5 °C) and SeNPs-AOS (5 mg/kg feed vs. no inclusion) as variables. The results showed that dietary SeNPs-AOS decreased the cooking loss (p < 0.05), freezing loss (p < 0.001), and shear force (p < 0.01) of breast muscle in heat-stressed broilers. The non-targeted metabolomics analysis of the breast muscle identified 78 differential metabolites between the HS and HS + SeNPs-AOS groups, mainly enriched in the arginine and proline metabolism, β-alanine metabolism, D-arginine and D-ornithine metabolism, pantothenate, and CoA biosynthesis pathways (p < 0.05). Meanwhile, supplementation with SeNPs-AOS increased the levels of the total antioxidant capacity (T-AOC), the activities of catalase (CAT) and glutathione peroxidase (GSH-Px), and decreased the content of malondialdehyde (MDA) in the breast muscle (p < 0.05) in broilers under HS exposure. Additionally, SeNPs-AOS upregulated the mRNA expression of CAT, GPX1, GPX3, heme oxygenase-1 (HO-1), masculoaponeurotic fibrosarcoma G (MafG), MafK, selenoprotein W (SELENOW), SELENOK, ferritin heavy polypeptide-1 (FTH1), Ferroportin 1 (Fpn1), and nuclear factor erythroid 2-related factor 2 (Nrf2) (p < 0.05), while it downregulated Kelch-like ECH-associated pro-36 tein 1 (Keap1) and prostaglandin-endoperoxide Synthase 2 (PTGS2) expression (p < 0.05) in broilers under HS. These findings demonstrated that the dietary addition of SeNPs-AOS mitigated HS-induced oxidative damage and metabolite changes in the breast muscle of broilers, which may be related to the regulation of the Nrf2 signaling pathway and selenoprotein synthesis. In addition, SeNPs-AOS upregulated the breast muscle gene expression of anti-ferroptosis-related molecules in broilers under HS, suggesting that SeNPs-AOS can be used as novel Se supplements against HS in broilers. Full article
Show Figures

Figure 1

20 pages, 3655 KB  
Article
Biogenic Selenium Nanoparticles Synthesized with Alginate Oligosaccharides Alleviate Heat Stress-Induced Oxidative Damage to Organs in Broilers through Activating Nrf2-Mediated Anti-Oxidation and Anti-Ferroptosis Pathways
by Xue-Qing Ye, Yan-Ru Zhu, Yu-Ying Yang, Sheng-Jian Qiu and Wen-Chao Liu
Antioxidants 2023, 12(11), 1973; https://doi.org/10.3390/antiox12111973 - 6 Nov 2023
Cited by 23 | Viewed by 3331
Abstract
Selenium (Se) is an essential trace element for maintaining health due to its ideal antioxidant properties. We previously prepared a new type of biogenic selenium nanoparticles based on alginate oligosaccharides (SeNPs-AOS), and this study aimed to investigate the protective effects of SeNPs-AOS (Se [...] Read more.
Selenium (Se) is an essential trace element for maintaining health due to its ideal antioxidant properties. We previously prepared a new type of biogenic selenium nanoparticles based on alginate oligosaccharides (SeNPs-AOS), and this study aimed to investigate the protective effects of SeNPs-AOS (Se particle size = 80 nm, Se content = 8%) on organ health in broilers challenged with HS. A total of 192 21-day-old Arbor Acres broilers were randomly divided into four groups according to a 2 × 2 experimental design, including a thermoneutral zone group (TN, raised under 23 ± 1.5 °C); TN + SeNPs-AOS group (TN group supplemented 5 mg/kg SeNPS-AOS); HS group (HS, raised under 33 ± 2 °C for 10 h/day); and HS + SeNPs-AOS group (HS group supplemented 5 mg/kg SeNPS-AOS). There were six replicates in each group (eight broilers per replicate). The results showed that SeNPs-AOS improved the splenic histomorphology, enhanced the activity of catalase (CAT) and glutathione peroxidase (GSH-Px) of the spleen, as well as upregulating the splenic mRNA expression of antioxidant-related genes in broilers under HS. In addition, SeNPs-AOS reversed the pathological changes in bursa caused by HS increased the activity of GST, GSH-Px, and CAT and upregulated the mRNA expression of Nrf2 and antioxidant-related genes in the bursa of heat-stressed broilers. In addition, dietary SeNPs-AOS improved the hepatic damage, increased the activity of GSH-Px in the liver, and upregulated the mRNA expression of antioxidant-related genes while downregulating the Keap1 gene expression of the liver in broilers during HS. Moreover, dietary SeNPs-AOS upregulated the anti-ferroptosis-related genes expression of liver in broilers under HS. In conclusion, dietary SeNPs-AOS could relieve HS-induced oxidative damage to the spleen, bursa of Fabricius and liver in broilers by upregulating the Nrf2-mediated antioxidant gene expression and SeNPs-AOS could also upregulate the expression of hepatic Nrf2-related anti-ferroptosis genes in heat-stressed broilers. These findings are beneficial for the development of new nano-antioxidants in broilers. Full article
Show Figures

Figure 1

19 pages, 8266 KB  
Article
Biogenic Selenium Nanoparticles: Anticancer, Antimicrobial, Insecticidal Properties and Their Impact on Soybean (Glycine max L.) Seed Germination and Seedling Growth
by Asmaa Abdelsalam, Heba El-Sayed, Heba M. Hamama, Mostafa Y. Morad, Abeer S. Aloufi and Rehab M. Abd El-Hameed
Biology 2023, 12(11), 1361; https://doi.org/10.3390/biology12111361 - 24 Oct 2023
Cited by 11 | Viewed by 3488
Abstract
Selenium nanoparticles (SeNPs) have demonstrated significant potential in a variety of disciplines, making them an extremely desirable subject of research. This study investigated the anticancer and antibacterial properties of my-co-fabricated selenium SeNPs, as well as their effects on soybean (Glycine max L.) [...] Read more.
Selenium nanoparticles (SeNPs) have demonstrated significant potential in a variety of disciplines, making them an extremely desirable subject of research. This study investigated the anticancer and antibacterial properties of my-co-fabricated selenium SeNPs, as well as their effects on soybean (Glycine max L.) seeds, seedling growth, cotton leafworm (Spodoptera littoralis) combat, and plant pathogenic fungi inhibition. SeNPs showed anticancer activity with an IC50 value of 1.95 µg/mL against MCF-7 breast adenocarcinoma cells. The myco-synthesized SeNPs exhibited an antibacterial effect against Proteus mirabilis and Klebsiella pneumoniae at 20 mg/mL. The use of 1 µM SeNPs improved soybean seed germination (93%), germination energy (76.5%), germination rate (19.0), and mean germination time (4.3 days). At 0.5 and 1.0 µM SeNPs, the growth parameters of seedlings improved. SeNPs increased the 4th instar larval mortality of cotton leafworm compared to control, with a median lethal concentration of 23.08 mg/mL. They inhibited the growth of Fusarium oxysporum, Rhizoctonia solani, and Fusarium solani. These findings demonstrate that biogenic SeNPs represent a promising approach to achieving sustainable progress in the fields of agriculture, cancer therapy, and infection control. Full article
Show Figures

Figure 1

37 pages, 17086 KB  
Article
Selenium-Fortified Kombucha–Pollen Beverage by In Situ Biosynthesized Selenium Nanoparticles with High Biocompatibility and Antioxidant Activity
by Naomi Tritean, Ștefan-Ovidiu Dima, Bogdan Trică, Rusăndica Stoica, Marius Ghiurea, Ionuț Moraru, Anisoara Cimpean, Florin Oancea and Diana Constantinescu-Aruxandei
Antioxidants 2023, 12(9), 1711; https://doi.org/10.3390/antiox12091711 - 2 Sep 2023
Cited by 17 | Viewed by 3977
Abstract
Biogenic selenium nanoparticles (SeNPs) have been shown to exhibit increased bioavailability. Fermentation of pollen by a symbiotic culture of bacteria and yeasts (SCOBY/Kombucha) leads to the release of pollen content and enhances the prebiotic and probiotic effects of Kombucha. The aim of this [...] Read more.
Biogenic selenium nanoparticles (SeNPs) have been shown to exhibit increased bioavailability. Fermentation of pollen by a symbiotic culture of bacteria and yeasts (SCOBY/Kombucha) leads to the release of pollen content and enhances the prebiotic and probiotic effects of Kombucha. The aim of this study was to fortify Kombucha beverage with SeNPs formed in situ by Kombucha fermentation with pollen. Response Surface Methodology (RSM) was used to optimize the biosynthesis of SeNPs and the pollen-fermented Kombucha beverage. SeNPs were characterized by Transmission electron microscopy energy-dispersive X-ray spectroscopy (TEM-EDX), Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), and Zeta potential. The pollen-fermented Kombucha beverage enriched with SeNPs was characterized by measuring the total phenolic content, antioxidant activity, soluble silicon, saccharides, lactic acid, and the total content of Se0. The polyphenols were identified by liquid chromatography–mass spectrometry (LC-MS). The pollen and the bacterial (nano)cellulose were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), FTIR, and X-Ray diffraction (XRD). We also assessed the in vitro biocompatibility in terms of gingival fibroblast viability and proliferation, as well as the antioxidant activity of SeNPs and the pollen-fermented Kombucha beverage enriched with SeNPs. The results highlight their increased biological performance in this regard. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

20 pages, 3238 KB  
Article
A Comparative Study of the Synthesis and Characterization of Biogenic Selenium Nanoparticles by Two Contrasting Endophytic Selenobacteria
by Eulàlia Sans-Serramitjana, Carla Gallardo-Benavente, Francisco Melo, José M. Pérez-Donoso, Cornelia Rumpel, Patricio Javier Barra, Paola Durán and María de La Luz Mora
Microorganisms 2023, 11(6), 1600; https://doi.org/10.3390/microorganisms11061600 - 16 Jun 2023
Cited by 17 | Viewed by 3912
Abstract
The present study examined the biosynthesis and characterization of selenium nanoparticles (SeNPs) using two contrasting endophytic selenobacteria, one Gram-positive (Bacillus sp. E5 identified as Bacillus paranthracis) and one Gram-negative (Enterobacter sp. EC5.2 identified as Enterobacter ludwigi), for further use [...] Read more.
The present study examined the biosynthesis and characterization of selenium nanoparticles (SeNPs) using two contrasting endophytic selenobacteria, one Gram-positive (Bacillus sp. E5 identified as Bacillus paranthracis) and one Gram-negative (Enterobacter sp. EC5.2 identified as Enterobacter ludwigi), for further use as biofortifying agents and/or for other biotechnological purposes. We demonstrated that, upon regulating culture conditions and selenite exposure time, both strains were suitable “cell factories” for producing SeNPs (B-SeNPs from B. paranthracis and E-SeNPs from E. ludwigii) with different properties. Briefly, dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) studies revealed that intracellular E-SeNPs (56.23 ± 4.85 nm) were smaller in diameter than B-SeNPs (83.44 ± 2.90 nm) and that both formulations were located in the surrounding medium or bound to the cell wall. AFM images indicated the absence of relevant variations in bacterial volume and shape and revealed the existence of layers of peptidoglycan surrounding the bacterial cell wall under the conditions of biosynthesis, particularly in the case of B. paranthracis. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) showed that SeNPs were surrounded by the proteins, lipids, and polysaccharides of bacterial cells and that the numbers of the functional groups present in B-SeNPs were higher than in E-SeNPs. Thus, considering that these findings support the suitability of these two endophytic stains as potential biocatalysts to produce high-quality Se-based nanoparticles, our future efforts must be focused on the evaluation of their bioactivity, as well as on the determination of how the different features of each SeNP modulate their biological action and their stability. Full article
(This article belongs to the Special Issue Microbial Nanotechnology)
Show Figures

Figure 1

20 pages, 14427 KB  
Article
Biological Selenite Reduction, Characterization and Bioactivities of Selenium Nanoparticles Biosynthesised by Pediococcus acidilactici DSM20284
by Qingdong Wang, Chunyue Wang, Shanshan Kuang, Dezhen Wang and Yuhua Shi
Molecules 2023, 28(9), 3793; https://doi.org/10.3390/molecules28093793 - 28 Apr 2023
Cited by 11 | Viewed by 3451
Abstract
Selenium (Se) is in great demand as a health supplement due to its superior reactivity and excellent bioavailability, despite selenium nanoparticles (SeNPs) having signs of minor toxicity. At present, the efficiency of preparing SeNPs using lactic acid bacteria is unsatisfactory. Therefore, a probiotic [...] Read more.
Selenium (Se) is in great demand as a health supplement due to its superior reactivity and excellent bioavailability, despite selenium nanoparticles (SeNPs) having signs of minor toxicity. At present, the efficiency of preparing SeNPs using lactic acid bacteria is unsatisfactory. Therefore, a probiotic bacterial strain that is highly efficient at converting selenite to elemental selenium is needed. In our work, four selenite-reducing bacteria were isolated from soil samples. Strain LAB-Se2, identified as Pediococcus acidilactici DSM20284, had a reduction rate of up to 98% at ambient temperature. This strain could reduce 100 mg L−1 of selenite to elemental Se within 48 h at pH 4.5–6.0, a temperature of 30–40 °C, and a salinity of 1.0–6.5%. The produced SeNPs were purified, freeze-dried, and subsequently systematically characterised using FTIR, DSL, SEM-EDS, and TEM techniques. SEM-EDS analysis proved the presence of selenium as the foremost constituent of SeNPs. The strain was able to form spherical SeNPs, as determined by TEM. In addition, DLS analysis confirmed that SeNPs were negatively charged (−26.9 mV) with an average particle size of 239.6 nm. FTIR analysis of the SeNPs indicated proteins and polysaccharides as capping agents on the SeNPs. The SeNPs synthesised by P. acidilactici showed remarkable antibacterial activity against E. coli, B. subtilis, S. aureus, and K. pneumoniae with inhibition zones of 17.5 mm, 13.4 mm, 27.9 mm, and 16.2 mm, respectively; they also showed varied MIC values in the range of 15–120 μg mL−1. The DPPH, ABTS, and hydroxyl, and superoxide scavenging activities of the SeNPs were 70.3%, 72.8%, 95.2%, and 85.7%, respectively. The SeNPs synthesised by the probiotic Lactococcus lactis have the potential for safe use in biomedical and nutritional applications. Full article
Show Figures

Figure 1

16 pages, 3081 KB  
Article
Antifungal Properties of Biogenic Selenium Nanoparticles Functionalized with Nystatin for the Inhibition of Candida albicans Biofilm Formation
by Shivraj Hariram Nile, Dipalee Thombre, Amruta Shelar, Krithika Gosavi, Jaiprakash Sangshetti, Weiping Zhang, Elwira Sieniawska, Rajendra Patil and Guoyin Kai
Molecules 2023, 28(4), 1836; https://doi.org/10.3390/molecules28041836 - 15 Feb 2023
Cited by 35 | Viewed by 4660
Abstract
In the present study, biogenic selenium nanoparticles (SeNPs) have been prepared using Paenibacillus terreus and functionalized with nystatin (SeNP@PVP_Nystatin nanoconjugates) for inhibiting growth, morphogenesis, and a biofilm in Candida albicans. Ultraviolet–visible spectroscopy analysis has shown a characteristic absorption at 289, 303, and [...] Read more.
In the present study, biogenic selenium nanoparticles (SeNPs) have been prepared using Paenibacillus terreus and functionalized with nystatin (SeNP@PVP_Nystatin nanoconjugates) for inhibiting growth, morphogenesis, and a biofilm in Candida albicans. Ultraviolet–visible spectroscopy analysis has shown a characteristic absorption at 289, 303, and 318 nm, and X-ray diffraction analysis has shown characteristic peaks at different 2θ values for SeNPs. Electron microscopy analysis has shown that biogenic SeNPs are spherical in shape with a size in the range of 220–240 nm. Fourier transform infrared spectroscopy has confirmed the functionalization of nystatin on SeNPs (formation of SeNP@PVP_Nystatin nanoconjugates), and the zeta potential has confirmed the negative charge on the nanoconjugates. Biogenic SeNPs are inactive; however, nanoconjugates have shown antifungal activities on C. albicans (inhibited growth, morphogenesis, and a biofilm). The molecular mechanism for the action of nanoconjugates via a real-time polymerase chain reaction has shown that genes involved in the RAS/cAMP/PKA signaling pathway play an important role in antifungal activity. In cytotoxic studies, nanoconjugates have inhibited only 12% growth of the human embryonic kidney cell line 293 cells, indicating that the nanocomposites are not cytotoxic. Thus, the biogenic SeNPs produced by P. terreus can be used as innovative and effective drug carriers to increase the antifungal activity of nystatin. Full article
Show Figures

Figure 1

70 pages, 5907 KB  
Review
Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine
by Marjorie C. Zambonino, Ernesto Mateo Quizhpe, Lynda Mouheb, Ashiqur Rahman, Spiros N. Agathos and Si Amar Dahoumane
Nanomaterials 2023, 13(3), 424; https://doi.org/10.3390/nano13030424 - 19 Jan 2023
Cited by 128 | Viewed by 13945
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate [...] Read more.
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine. Full article
Show Figures

Graphical abstract

15 pages, 2325 KB  
Article
Rhizobium pusense-Mediated Selenium Nanoparticles–Antibiotics Combinations against Acanthamoeba sp.
by Pradnya B. Nikam, Jitendra D. Salunkhe, Kiran R. Marathe, Mousa A. Alghuthaymi, Kamel A. Abd-Elsalam and Satish V. Patil
Microorganisms 2022, 10(12), 2502; https://doi.org/10.3390/microorganisms10122502 - 16 Dec 2022
Cited by 5 | Viewed by 3073
Abstract
Severe ocular infections by Acanthamoeba sp. lead to keratitis, resulting in irreversible vision loss in immune-compromised individuals. When a protozoal infection spreads to neural tissues, it causes granulomatous encephalitis, which can be fatal. Treatment often takes longer due to the transition of amoeba [...] Read more.
Severe ocular infections by Acanthamoeba sp. lead to keratitis, resulting in irreversible vision loss in immune-compromised individuals. When a protozoal infection spreads to neural tissues, it causes granulomatous encephalitis, which can be fatal. Treatment often takes longer due to the transition of amoeba from trophozoites to cyst stages, cyst being the dormant form of Acanthamoeba. A prolonged use of therapeutic agents, such as ciprofloxacin (Cipro), results in severe side effects; thus, it is critical to improve the therapeutic efficacy of these widely used antibiotics, possibly by limiting the drug-sensitive protozoal-phase transition to cyst formation. Owing to the biomedical potential of selenium nanoparticles (SeNPs), we evaluated the synergistic effects of ciprofloxacin and Rhizobium pusense–biogenic SeNPs combination. SeNPs synthesized using Rhizobium pusense isolated from root nodules were characterized using UV–Visible spectrophotometer, FT-IR, SEM with EDX, particle size analysis, and Zeta potential. The combination was observed to reduce the sub-lethal dose of Cipro, which may help reduce its side effects. The selenium and ciprofloxacin (SeNPs–Cipro) combination reduced the LC50 by 33.43%. The anti-protozoal efficacy of SeNPs–Cipro was found to transduce through decreased protozoal-cyst formations and the inhibition of the galactosidase and protease enzymes of trophozoites. Furthermore, high leakage of sugar, proteins, and amino acids during the SeNPs–Cipro treatment was one primary reason for killing the trophozoites. These experimental results may be helpful in the further pre-clinical evaluation of SeNPs–Cipro to combat protozoal infections. Future studies for combinations of SeNPs with other antibiotics need to be conducted to know the potential of SeNPs against antibiotic resistance in Acanthamoeba. Full article
(This article belongs to the Special Issue Microbial Nanotechnology)
Show Figures

Figure 1

Back to TopTop