Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = bioelectrochemical treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2268 KiB  
Review
Recent Progress in Selenium Remediation from Aqueous Systems: State-of-the-Art Technologies, Challenges, and Prospects
by Muhammad Ali Inam, Muhammad Usman, Rashid Iftikhar, Svetlozar Velizarov and Mathias Ernst
Water 2025, 17(15), 2241; https://doi.org/10.3390/w17152241 - 28 Jul 2025
Viewed by 522
Abstract
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations [...] Read more.
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations in aquatic environments. In addition, the chemical behavior and speciation of selenium can vary noticeably depending on the origin of the source water. The Se(VI) oxyanion is more soluble and therefore more abundant in surface water. Se levels in contaminated waters often exceed 50 µg/L and may reach several hundred µg/L, well above drinking water limits set by the World Health Organization (40 µg/L) and Germany (10 µg/L), as well as typical industrial discharge limits (5–10 µg/L). Overall, Se is difficult to remove using conventionally available physical, chemical, and biological treatment technologies. The recent literature has therefore highlighted promising advancements in Se removal using emerging technologies. These include advanced physical separation methods such as membrane-based treatment systems and engineered nanomaterials for selective Se decontamination. Additionally, other integrated approaches incorporating photocatalysis coupled adsorption processes, and bio-electrochemical systems have also demonstrated high efficiency in redox transformation and capturing of Se from contaminated water bodies. These innovative strategies may offer enhanced selectivity, removal, and recovery potential for Se-containing species. Here, a current review outlines the sources, distribution, and chemical behavior of Se in natural waters, along with its toxicity and associated health risks. It also provides a broad and multi-perspective assessment of conventional as well as emerging physical, chemical, and biological approaches for Se removal and/or recovery with further prospects for integrated and sustainable strategies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Graphical abstract

37 pages, 5333 KiB  
Review
The Potential of Microbial Fuel Cells as a Dual Solution for Sustainable Wastewater Treatment and Energy Generation: A Case Study
by Shajjadur Rahman Shajid, Monjur Mourshed, Md. Golam Kibria and Bahman Shabani
Energies 2025, 18(14), 3725; https://doi.org/10.3390/en18143725 - 14 Jul 2025
Viewed by 419
Abstract
Microbial fuel cells (MFCs) are bio-electrochemical systems that harness microorganisms to convert organic pollutants in wastewater directly into electricity, offering a dual solution for sustainable wastewater treatment and renewable energy generation. This paper presents a holistic techno-economic and environmental feasibility assessment of large-scale [...] Read more.
Microbial fuel cells (MFCs) are bio-electrochemical systems that harness microorganisms to convert organic pollutants in wastewater directly into electricity, offering a dual solution for sustainable wastewater treatment and renewable energy generation. This paper presents a holistic techno-economic and environmental feasibility assessment of large-scale MFC deployment in Dhaka’s industrial zone, Bangladesh, as a relevant case study. Here, treating 100,000 cubic meters of wastewater daily would require a capital investment of approximately USD 500 million, with a total project cost ranging between USD 307.38 million and 1.711 billion, depending on system configurations. This setup has an estimated theoretical energy recovery of 478.4 MWh/day and a realistic output of 382 MWh/day, translating to a per-unit energy cost of USD 0.2–1/kWh. MFCs show great potential for treating wastewater and addressing energy challenges. However, this paper explores remaining challenges, including high capital costs, electrode and membrane inefficiencies, and scalability issues. Full article
(This article belongs to the Special Issue A Circular Economy Perspective: From Waste to Energy)
Show Figures

Figure 1

23 pages, 2711 KiB  
Systematic Review
Electro-Composting: An Emerging Technology
by Ahmad Shabir Hozad and Christian Abendroth
Fermentation 2025, 11(7), 401; https://doi.org/10.3390/fermentation11070401 - 14 Jul 2025
Viewed by 438
Abstract
This study focuses on electrical stimulation for composting. Using the PSALSAR method, a comprehensive systematic review analysis identified 22 relevant articles. The examined studies fall into four main systems: electric field-assisted aerobic composting (EAAC), electrolytic oxygen aerobic composting (EOAC), microbial fuel cells (MFCs), [...] Read more.
This study focuses on electrical stimulation for composting. Using the PSALSAR method, a comprehensive systematic review analysis identified 22 relevant articles. The examined studies fall into four main systems: electric field-assisted aerobic composting (EAAC), electrolytic oxygen aerobic composting (EOAC), microbial fuel cells (MFCs), and thermoelectric generators (TEGs). Apart from the main systems highlighted above, bioelectrochemically assisted anaerobic composting (AnCBE, III) is discussed as an underexplored system with the potential to improve the efficiency of anaerobic degradation. Each system is described in terms of key materials, composter design, operating conditions, temperature evolution, compost maturity, microbial community, and environmental outcomes. EAAC and EOAC systems accelerate organic matter decomposition by improving oxygen distribution and microbial activity, whereas MFC and TEG systems have dual functioning due to the energy generated alongside waste degradation. These innovative systems not only significantly improve composting efficiency by speeding up organic matter breakdown and increasing oxygen supply but also support sustainable waste management by reducing greenhouse gas emissions and generating bioelectricity or heat. Together, these systems overcome the drawbacks of conventional composting systems and promote future environmental sustainability solutions. Full article
Show Figures

Figure 1

26 pages, 1964 KiB  
Review
Food Waste Anaerobic Digestion Under High Organic Loading Rate: Inhibiting Factors, Mechanisms, and Mitigation Strategies
by Hong-Ming Wu, Xiang Li, Jia-Ning Chen, Yi-Juan Yan, Takuro Kobayashi, Yong Hu and Xueying Zhang
Processes 2025, 13(7), 2090; https://doi.org/10.3390/pr13072090 - 1 Jul 2025
Viewed by 450
Abstract
Anaerobic digestion (AD) for food waste (FW) treatment has faced many challenges, especially ammonia nitrogen, acid, and salinity inhibition at a high organic loading rate (OLR). Therefore, a systematic understanding of the issues arising during the FW AD process is a necessity under [...] Read more.
Anaerobic digestion (AD) for food waste (FW) treatment has faced many challenges, especially ammonia nitrogen, acid, and salinity inhibition at a high organic loading rate (OLR). Therefore, a systematic understanding of the issues arising during the FW AD process is a necessity under a high OLR (over 3 g-VS/L d). Primarily, in terms of ammonia nitrogen inhibition, ammonia ions inhibit methane synthesis enzymes, and free ammonia (FAN) contributes to the imbalance of microbial protons. Regulation strategies include substrate C/N ratio regulation, microbial domestication, and ammonia nitrogen removal. In addition, with regard to acid inhibition, including volatile fatty acid (VFA) and long-chain fatty acid (LCFA) accumulation, the elevated acid concentration can contribute to reactive oxygen species stress, and a solution to this includes the addition of alkaline agents and trace elements or the use of microbial electrochemical and biofortification technology and micro-aeration-based AD technology. Furthermore, in terms of salinity inhibition, high salinity can result in a rapid increase in cell osmotic pressure, which can cause cell rupture, and water washing and bio-electrochemical AD are defined as solutions. Future research directions are proposed, mainly in terms of avoiding the introduction of novel containments into these regulation strategies and applying them in large-scale AD plants under a high OLR. Full article
Show Figures

Graphical abstract

35 pages, 3044 KiB  
Review
Tools for Enhancing Extracellular Electron Transfer in Bioelectrochemical Systems: A Review
by Kaline Araújo Soares, Jhoni Anderson Schembek Silva, Xin Wang, André Valente Bueno and Fernanda Leite Lobo
Fermentation 2025, 11(7), 381; https://doi.org/10.3390/fermentation11070381 - 30 Jun 2025
Viewed by 909
Abstract
Microbial Electrochemistry Technology (MET) leverages the unique process of extracellular electron transfer (EET) between electroactive bacteria (EAB) and electrodes to enable various applications, such as electricity generation, bioremediation, and wastewater treatment. This review highlights significant advancements in EET mechanisms, emphasizing both outward and [...] Read more.
Microbial Electrochemistry Technology (MET) leverages the unique process of extracellular electron transfer (EET) between electroactive bacteria (EAB) and electrodes to enable various applications, such as electricity generation, bioremediation, and wastewater treatment. This review highlights significant advancements in EET mechanisms, emphasizing both outward and inward electron transfer pathways mediated by diverse electroactive microorganisms. Notably, the role of electron shuttles, genetic modifications, and innovative electrode materials are discussed as strategies to enhance EET efficiency. Recent studies illustrate the importance of redox-active molecules, such as flavins and metal nanoparticles, in facilitating electron transfer, while genetic engineering has proven effective in optimizing microbial physiology to boost EET rates. The review also examines the impact of electrode materials on microbial attachment and performance, showcasing new composites and nanostructures that enhance power output in microbial fuel cells. By synthesizing the recent findings and proposing emerging research directions, this work provides an overview of EET enhancement strategies, aiming to inform future technological innovations in bioelectrochemical systems (BESs). Full article
(This article belongs to the Special Issue Microbial Fuel Cell Advances)
Show Figures

Figure 1

19 pages, 3483 KiB  
Article
Preparation of CF-NiO-PANI Electrodes and Study on the Efficiency of MFC in Recovering Potato Starch Wastewater
by Yiwei Han, Jingyuan Wang, Liming Jiang, Jiuming Lei, Wenjing Li, Tianyi Yang, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 776; https://doi.org/10.3390/coatings15070776 - 30 Jun 2025
Viewed by 268
Abstract
Microbial Fuel Cell (MFC) is a novel bioelectrochemical system that catalyzes the oxidation of chemical energy in organic waste and converts it directly into electrical energy through the attachment and growth of electroactive microorganisms on the electrode surface. This technology realizes the synergistic [...] Read more.
Microbial Fuel Cell (MFC) is a novel bioelectrochemical system that catalyzes the oxidation of chemical energy in organic waste and converts it directly into electrical energy through the attachment and growth of electroactive microorganisms on the electrode surface. This technology realizes the synergistic effect of waste treatment and renewable energy production. A CF-NiO-PANI capacitor composite anode was prepared by loading polyaniline on a CF-NiO electrode to improve the capacitance of a CF electrode. The electrochemical characteristics of the composite anode were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the electrode materials were analyzed comprehensively by scanning electron microscopy (SEM), energy diffusion spectrometer (EDS), and Fourier transform infrared spectroscopy (FTIR). MFC system based on CF-NiO-PANI composite anode showed excellent energy conversion efficiency in potato starch wastewater treatment, and its maximum power density increased to 0.4 W/m3, which was 300% higher than that of the traditional CF anode. In the standard charge–discharge test (C1000/D1000), the charge storage capacity of the composite anode reached 2607.06 C/m2, which was higher than that of the CF anode (348.77 C/m2). Microbial community analysis revealed that the CF-NiO-PANI anode surface formed a highly efficient electroactive biofilm dominated by electrogenic bacteria (accounting for 47.01%), confirming its excellent electron transfer ability. The development of this innovative capacitance-catalytic dual-function anode material provides a new technical path for the synergistic optimization of wastewater treatment and energy recovery in MFC systems. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

21 pages, 2036 KiB  
Review
A Mini-Review of Sludge-Derived Biochar (SDB) for Wastewater Treatment: Recent Advances in 2020–2025
by Lia Wang, Lan Liang, Ning Li, Guanyi Chen, Haixiao Guo and Li’an Hou
Appl. Sci. 2025, 15(11), 6173; https://doi.org/10.3390/app15116173 - 30 May 2025
Cited by 1 | Viewed by 1237
Abstract
Sludge-derived biochar (SDB) synthesized by the pyrolysis of sludge is gaining enormous interest as a sustainable solution to wastewater treatment and sludge disposal. Despite the proliferation of general biochar reviews, a focused synthesis on SDB-specific advances, particularly covering the recent surge in multifunctional [...] Read more.
Sludge-derived biochar (SDB) synthesized by the pyrolysis of sludge is gaining enormous interest as a sustainable solution to wastewater treatment and sludge disposal. Despite the proliferation of general biochar reviews, a focused synthesis on SDB-specific advances, particularly covering the recent surge in multifunctional wastewater treatment applications (2020–2025), receives little emphasis. In particular, a critical analysis of recent trends, application challenges, and future research directions for SDB is still limited. Unlike broader biochar reviews, this mini-review highlights the comparative advantages and limitations of SDB, identifies emerging integration strategies (e.g., bio-electrochemical systems, catalytic membranes), and outlines future research priorities toward enhancing the durability and environmental safety of SDB applications. Specifically, this review summarized the advances from 2020 to 2025, focusing exclusively on functional modifications, and practical applications of SDB across diverse wastewater treatment technologies involved in adsorption, catalytic oxidation, membrane integration, electrochemical processes and bio-treatment systems. Quantitative comparisons of adsorption capacities (e.g., >99% Cd2+ removal, >150 mg/g tetracycline adsorption) and catalytic degradation efficiencies are provided to illustrate recent improvements. The potential of SDB in evaluating traditional and emerging contaminant degradation among the Fenton-like, persulfate, and peracetic acid activation systems was emphasized. Integration with membrane technologies reduces fouling, while electrochemical applications, including microbial fuel cells, yield higher power densities. To improve the functionality of SDB-based systems in targeting contamination removal, modification strategies, i.e., thermal activation, heteroatom doping (N, S, P), and metal loading, played crucial roles. Emerging trends highlight hybrid systems and persistent free radicals for non-radical pathways. Despite progress, critical challenges persist in scalability, long-term stability, lifecycle assessments, and scale-up implementation. The targeted synthesis of this review offers valuable insights to guide the development and practical deployment of SDB in sustainable wastewater management. Full article
Show Figures

Figure 1

17 pages, 3126 KiB  
Article
A Bench-Scale Woodchip-Enhanced Bioelectrochemical Denitrification Remediation Wall for Simulating Nitrate-Contaminated Groundwater In Situ Treatment
by Chen Yang, Yiheng Cao and Chuanping Feng
Water 2025, 17(11), 1593; https://doi.org/10.3390/w17111593 - 24 May 2025
Viewed by 494
Abstract
Excessive nitrogen fertilizer use has resulted in growing nitrate contamination of groundwater. In this study, an in situ bioelectrochemical reactor (isBER) reinforced with woodchips was developed for the treatment of actual nitrate-contaminated groundwater. During the 75-day experiment, the denitrification performance, grid permeability, and [...] Read more.
Excessive nitrogen fertilizer use has resulted in growing nitrate contamination of groundwater. In this study, an in situ bioelectrochemical reactor (isBER) reinforced with woodchips was developed for the treatment of actual nitrate-contaminated groundwater. During the 75-day experiment, the denitrification performance, grid permeability, and microbial community structure were investigated under different flow rates and current densities. The reactor achieved a remarkable nitrate removal efficiency of 97.6% ± 0.4% and a rate of 2.09 ± 0.14 mg-N/(L·h). These results were obtained at a temperature of 18.5 ± 0.8 °C, a current density of 350 mA/m2, and a flow rate of 10 cm/d. Notably, the reactor can adapt to a wide flow-rate range of 5~20 cm/d and the operation proceeded smoothly without any blockages. Furthermore, the cathode module demonstrated enrichment of hydrogen autotrophic denitrifying bacteria (Pseudomonas, Stenotrophomonas) and heterotrophic denitrifying bacteria (Brucella, Enterobacteriaceae). Conversely, the anode module exhibited relatively high enrichment levels of aerobic microorganisms and lignin-degrading bacteria (Cellvibrio). The research results can provide novel insights and technical support for in situ remediation of groundwater nitrate contamination. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

15 pages, 4312 KiB  
Review
A Review on Anatomical and Physiological Traits of Aquatic Macrophytes Coupled to a Bioelectrochemical System: Comparative Wastewater Treatment Performance
by Laura M. González-Méndez, Silvia Y. Martínez-Amador, Leopoldo J. Ríos-González, Pedro Pérez-Rodríguez, Miguel A. Perez-Rodríguez, Alfredo V. Reyes-Acosta and José A. Rodríguez-De la Garza
Processes 2025, 13(5), 1545; https://doi.org/10.3390/pr13051545 - 17 May 2025
Viewed by 548
Abstract
Anthropogenic activities, such as agricultural, industrial, and domestic, generate wastewater, leading to environmental concerns. Wastewater constituents (organic matter, pathogens, pharmaceuticals, heavy metals, and nutrients) have a negative impact if not treated, harming ecosystems and human health. Phytoremediator plants are a good option for [...] Read more.
Anthropogenic activities, such as agricultural, industrial, and domestic, generate wastewater, leading to environmental concerns. Wastewater constituents (organic matter, pathogens, pharmaceuticals, heavy metals, and nutrients) have a negative impact if not treated, harming ecosystems and human health. Phytoremediator plants are a good option for domestic wastewater treatment since they help remove pollutants through their physiological activities, which are highly related to anatomical adaptations due to their growth in humid habitats. Macrophytes are a useful tool when coupled with a bioelectrochemical constructed wetland and MFC (CW-MFC), which can enhance the removal efficiency of organic matter present in wastewater and promote higher bioelectricity due to the root activity of plants. This review aims to compare different aquatic macrophyte types in wastewater treatment efficiency and provide useful information for plant selection. Full article
(This article belongs to the Special Issue Sustainable Management of Wastewater and Sludge)
Show Figures

Figure 1

13 pages, 3678 KiB  
Communication
Ecotechnologies for Glucose Oxidase-GOx Immobilization on Nonconductive and Conductive Textiles for Heterogeneous Catalysis and Water Decontamination
by Nemeshwaree Behary, May Kahoush, Mohammad Neaz Morshed, Jinping Guan and Vincent Nierstrasz
Catalysts 2025, 15(5), 472; https://doi.org/10.3390/catal15050472 - 10 May 2025
Viewed by 637
Abstract
The need for sustainable and efficient water decontamination methods has led to the increasing use of redox enzymes such as glucose oxidase (GOx). GOx immobilization on textile supports provides a promising alternative for catalyzing pollutant degradation in bio-Fenton (BF) and bio-electro-Fenton (BEF) systems. [...] Read more.
The need for sustainable and efficient water decontamination methods has led to the increasing use of redox enzymes such as glucose oxidase (GOx). GOx immobilization on textile supports provides a promising alternative for catalyzing pollutant degradation in bio-Fenton (BF) and bio-electro-Fenton (BEF) systems. However, challenges related to enzyme stability, reusability, and environmental impact remain a concern. This communication paper outlines innovative strategies developed to address these challenges, notably the use of ecotechnologies to achieve efficient GOx immobilization while maintaining biocatalytic activity. Plasma ecoprocesses, amino-bearing biopolymer-chitosan, as well as a bio-crosslinker genipin have been used efficiently on conductive carbon and non-conductive polyester-PET nonwovens. In certain cases, immobilized GOx can retain high catalytic activity after multiple cycles, making them an effective biocatalyst for organic dye degradation (Crystal Violet and Remazol Blue) via bio-Fenton reactions, including total heterogeneous bio-Fention system. Moreover, the conductive carbon felt-based bioelectrodes successfully supported simultaneous pollutant degradation and energy generation in a BEF system. This work highlights the potential of textile-based enzyme immobilization for sustainable wastewater treatment, bio-electrochemical energy conversion, and also for bacterial deactivation. Future research will focus on optimizing enzyme stability and enhancing BEF efficiency for large-scale applications. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Figure 1

24 pages, 951 KiB  
Review
Proposal for a Conceptual Biorefinery for the Conversion of Waste into Biocrude, H2 and Electricity Based on Hydrothermal Co-Liquefaction and Bioelectrochemical Systems
by Sara Cangussú Bassoli, Matheus Henrique Alcântara de Lima Cardozo, Fabiano Luiz Naves, Gisella Lamas-Samanamud and Mateus de Souza Amaral
Fermentation 2025, 11(4), 162; https://doi.org/10.3390/fermentation11040162 - 22 Mar 2025
Cited by 1 | Viewed by 881
Abstract
Microalgal biomass contributes to the valorization of urban and agro-industrial solid waste via hydrothermal co-liquefaction (co-HTL) for the production of biocrude, a sustainable substitute for petroleum. Tropical and populous countries like Brazil generate a lot of agro-industrial waste, such as sugarcane bagasse and [...] Read more.
Microalgal biomass contributes to the valorization of urban and agro-industrial solid waste via hydrothermal co-liquefaction (co-HTL) for the production of biocrude, a sustainable substitute for petroleum. Tropical and populous countries like Brazil generate a lot of agro-industrial waste, such as sugarcane bagasse and malt bagasse, as well as sludge from sewage treatment plants. Such residues are potential sources of biocrude production via thermochemical conversion. To increase biocrude productivity, microalgal biomass has been successfully used in mixing the co-HTL process feed with different residues. In addition to biocrude, co-HTL generates an aqueous phase that can be used to produce H2 and/or electricity via microbial energy cells. In this sense, this paper aims to present the potential for generating energy from solid waste commonly generated in emerging countries such as Brazil based on a simplified scheme of a conceptual biorefinery employing algal biomass co-HTL together with sugarcane bagasse, malt bagasse, and sludge. The biorefinery model could be integrated into an ethanol production plant, a brewery, or a sewage treatment plant, aiming at the production of biocrude and H2 and/or electricity by bioelectrochemical systems, such as microbial electrolysis cells and microbial fuel cells. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

19 pages, 995 KiB  
Review
Microalgae-Assisted Microbial Fuel Cell for Treatment of Difficult Waste Streams
by Paulina Rusanowska, Marcin Dębowski and Marcin Zieliński
Energies 2025, 18(4), 963; https://doi.org/10.3390/en18040963 - 17 Feb 2025
Cited by 1 | Viewed by 1457
Abstract
Microalgae microbial fuel cells (pMFCs) are distinguished by their ability to combine waste utilization with the simultaneous recovery of energy and valuable materials. The generation of high current density is linked to the efficient electron transfer to the anode via the anodic biofilm [...] Read more.
Microalgae microbial fuel cells (pMFCs) are distinguished by their ability to combine waste utilization with the simultaneous recovery of energy and valuable materials. The generation of high current density is linked to the efficient electron transfer to the anode via the anodic biofilm and the high photosynthetic activity of the microalgae cultivated in the cathode chamber. This review explores the impact of wastewater type on energy production and wastewater treatment. Additionally, it discusses the challenges related to microalgae growth in the cathode chamber, the necessity of aeration, and the sequestration of carbon dioxide from the anode chamber. The efficiency of microalgae in utilizing nutrients from various types of wastewater is also presented. In conclusion, the comparison between wastewater treatment and energy balance in pMFCs and conventional wastewater treatment plants is provided. On average, MFCs consume only 0.024 kW or 0.076 kWh/kg COD, which is approximately ten times less than the energy used by activated sludge bioprocesses. This demonstrates that MFCs offer highly efficient energy consumption compared to traditional wastewater treatment systems while simultaneously recovering energy through exoelectrogenic, bioelectrochemical processes. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 2009 KiB  
Review
Microalga-Based Electricity Production: A Comprehensive Review
by Wid Alrashidi, Safiah Alhazmi, Fotoon Sayegh and Sherif Edris
Energies 2025, 18(3), 536; https://doi.org/10.3390/en18030536 - 24 Jan 2025
Cited by 2 | Viewed by 2354
Abstract
This review evaluates the feasibility of using microalgal culture for sustainable energy production, emphasizing microbial fuel cells (MFCs) and biophotovoltaics (BPVs). This study’s uniqueness is rooted in its thorough examination of recent developments (2014–present) in microalgal strain selection, bioreactor design, and electrode materials. [...] Read more.
This review evaluates the feasibility of using microalgal culture for sustainable energy production, emphasizing microbial fuel cells (MFCs) and biophotovoltaics (BPVs). This study’s uniqueness is rooted in its thorough examination of recent developments (2014–present) in microalgal strain selection, bioreactor design, and electrode materials. Furthermore, this review combines microalga cultivation with wastewater treatment, highlighting its importance. Notably, it examines advanced methodologies, such as the use of genetic engineering to enhance microalgal traits, nanotechnology to optimize electrode efficacy, and artificial intelligence (AI) to optimize bioelectrochemical systems. In addition, this study identifies possible future research avenues by examining microalga–bacterium consortia and cascaded biobattery systems. Consequently, the incorporation of case studies illustrating microalga biobatteries’ practical applications in low-power devices and wastewater treatment underscores the technology’s promise. Similarly, this study examines significant problems with enhancing farming methods, reconciling cost and yield, and integrating renewable energy sources with the grid, offering vital insights for academics and policymakers. Ultimately, this review emphasizes the need for economical cultivation methods, waste stream utilization, and scalable bioreactor designs, thereby considerably advancing sustainable energy options. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

22 pages, 1622 KiB  
Review
The Promotion of Anaerobic Digestion Technology Upgrades in Waste Stream Treatment Plants for Circular Economy in the Context of “Dual Carbon”: Global Status, Development Trend, and Future Challenges
by Xinjia Huang
Water 2024, 16(24), 3718; https://doi.org/10.3390/w16243718 - 23 Dec 2024
Cited by 6 | Viewed by 4630
Abstract
This review provides a comprehensive overview of the advancements and challenges of anaerobic digestion technology in waste stream treatment plants under the framework of the circular economy, emphasizing its role in achieving “dual carbon” goals. As climate change intensifies, with waste stream treatment [...] Read more.
This review provides a comprehensive overview of the advancements and challenges of anaerobic digestion technology in waste stream treatment plants under the framework of the circular economy, emphasizing its role in achieving “dual carbon” goals. As climate change intensifies, with waste stream treatment contributing significantly to global emissions, there is a pressing need to optimize energy efficiency and reduce carbon outputs in this sector. Anaerobic digestion is highlighted as a solution for converting organic waste into renewable biogas and digestate, enabling energy self-sufficiency and reducing greenhouse gasses. The study highlights that anaerobic digestion enables the conversion of organic waste into renewable biogas and nutrient-rich digestate, facilitating energy self-sufficiency and significant reductions in GHG emissions. Successful implementations, such as in Weifang, China, demonstrate the feasibility of upgrading biogas into biomethane for local energy use. Advanced technologies like bioelectrochemical methanation and membrane bioreactors enhance biogas production efficiency, while co-digestion proves effective even in challenging conditions. Despite these advancements, the review identifies critical challenges, including high investment costs, technical inefficiencies, and regulatory barriers, particularly in developing countries. This study provides insights into integrating anaerobic digestion with circular economy principles and offers a foundation for future policies and research aimed at achieving carbon neutrality and sustainable waste management. Full article
(This article belongs to the Special Issue Sustainable Wastewater Treatment and the Circular Economy)
Show Figures

Graphical abstract

17 pages, 1819 KiB  
Article
Bioelectroremediation of a Real Industrial Wastewater: The Role of Electroactive Biofilm and Planktonic Cells through Enzymatic Activities
by Laura Katherin Chaparro Díaz, Antonio Berná and Karina Boltes
Toxics 2024, 12(8), 614; https://doi.org/10.3390/toxics12080614 - 20 Aug 2024
Cited by 1 | Viewed by 1535
Abstract
Bioelectrochemical processes are emerging as one of the most efficient and sustainable technologies for wastewater treatment. Their application for industrial wastewater treatment is still low due to the high toxicity and difficulty of biological treatment for industrial effluents. This is especially relevant in [...] Read more.
Bioelectrochemical processes are emerging as one of the most efficient and sustainable technologies for wastewater treatment. Their application for industrial wastewater treatment is still low due to the high toxicity and difficulty of biological treatment for industrial effluents. This is especially relevant in pharmaceutical industries, where different solvents, active pharma ingredients (APIs), extreme pH, and salinity usually form a lethal cocktail for the bacterial community in bioreactors. This work evaluates the impact of the anode architecture on the detoxification performance and analyzes, for the first time, the profile of some key bioremediation enzymes (catalase and esterase) and reactive oxygen species (ROS) during the operation of microbial electrochemical cells treating real pharmaceutical wastewater. Our results show the existence of oxidative stress and loss of cell viability in planktonic cells, while the electrogenic bacteria that form the biofilm maintain their biochemical machinery intact, as observed in the bioelectrochemical response. Monitorization of electrical current flowing in the bioelectrochemical system showed how electroactive biofilm, after a short adaptation period, started to degrade the pharma effluent. The electroactive biofilms are responsible for the detoxification of this type of industrial wastewater. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

Back to TopTop