Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,009)

Search Parameters:
Keywords = biocompatible carriers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2630 KiB  
Review
Transfection Technologies for Next-Generation Therapies
by Dinesh Simkhada, Su Hui Catherine Teo, Nandu Deorkar and Mohan C. Vemuri
J. Clin. Med. 2025, 14(15), 5515; https://doi.org/10.3390/jcm14155515 - 5 Aug 2025
Abstract
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency [...] Read more.
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency and therapeutic outcomes. Methods: This review synthesizes the current literature and recent advancements in non-viral transfection technologies. It focuses on the mechanisms, advantages, and limitations of various delivery systems, including lipid nanoparticles, biodegradable polymers, electroporation, peptide-based carriers, and microfluidic platforms. Comparative analysis was conducted to evaluate their performance in terms of transfection efficiency, cellular uptake, biocompatibility, and potential for clinical translation. Several academic search engines and online resources were utilized for data collection, including Science Direct, PubMed, Google Scholar Scopus, the National Cancer Institute’s online portal, and other reputable online databases. Results: Non-viral systems demonstrated superior performance in delivering mRNA, siRNA, and antisense oligonucleotides, particularly in clinical applications. Biodegradable polymers and peptide-based systems showed promise in enhancing biocompatibility and targeted delivery. Electroporation and microfluidic systems offered precise control over transfection parameters, improving reproducibility and scalability. Collectively, these innovations address key challenges in gene delivery, such as stability, immune response, and cell-type specificity. Conclusions: The continuous evolution of transfection technologies is pivotal for advancing gene and cell-based therapies. Non-viral delivery systems, particularly LNPs and emerging platforms like microfluidics and biodegradable polymers, offer safer and more adaptable alternatives to viral vectors. These innovations are critical for optimizing therapeutic efficacy and enabling personalized medicine, immunotherapy, and regenerative treatments. Future research should focus on integrating these technologies to develop next-generation transfection platforms with enhanced precision and clinical applicability. Full article
Show Figures

Figure 1

26 pages, 3020 KiB  
Review
Fabrication of Cellulose-Based Hydrogels Through Ionizing Radiation for Environmental and Agricultural Applications
by Muhammad Asim Raza
Gels 2025, 11(8), 604; https://doi.org/10.3390/gels11080604 - 2 Aug 2025
Viewed by 146
Abstract
Hydrogels exhibit remarkable physicochemical properties, including high water absorption and retention capacities, as well as controlled release behavior. Their inherent biodegradability, biocompatibility, and non-toxicity make them suitable for a wide range of applications. Cellulose, a biodegradable, renewable, and abundantly available polysaccharide, is a [...] Read more.
Hydrogels exhibit remarkable physicochemical properties, including high water absorption and retention capacities, as well as controlled release behavior. Their inherent biodegradability, biocompatibility, and non-toxicity make them suitable for a wide range of applications. Cellulose, a biodegradable, renewable, and abundantly available polysaccharide, is a viable source for hydrogel preparation. Ionizing radiation, using electron-beam (EB) or gamma (γ) irradiation, provides a promising approach for synthesizing hydrogels. This study reviews recent advancements in cellulose-based hydrogels, focusing on cellulose and its derivatives, brief information regarding ionizing radiation, comparison between EB and γ-irradiation, synthesis and modification through ionizing radiation technology, and their environmental and agricultural applications. For environmental remediation, these hydrogels have demonstrated significant potential in water purification, particularly in the removal of heavy metals, dyes, and organic contaminants. In agricultural applications, cellulose-based hydrogels function as soil conditioners by enhancing water retention and serving as carriers for agrochemicals. Full article
Show Figures

Graphical abstract

26 pages, 9475 KiB  
Article
Microalgae-Derived Vesicles: Natural Nanocarriers of Exogenous and Endogenous Proteins
by Luiza Garaeva, Eugene Tolstyko, Elena Putevich, Yury Kil, Anastasiia Spitsyna, Svetlana Emelianova, Anastasia Solianik, Eugeny Yastremsky, Yuri Garmay, Elena Komarova, Elena Varfolomeeva, Anton Ershov, Irina Sizova, Evgeny Pichkur, Ilya A. Vinnikov, Varvara Kvanchiani, Alina Kilasoniya Marfina, Andrey L. Konevega and Tatiana Shtam
Plants 2025, 14(15), 2354; https://doi.org/10.3390/plants14152354 - 31 Jul 2025
Viewed by 295
Abstract
Extracellular vesicles (EVs), nanoscale membrane-enclosed particles, are natural carriers of proteins and nucleic acids. Microalgae are widely used as a source of bioactive substances in the food and cosmetic industries and definitely have a potential to be used as the producers of EVs [...] Read more.
Extracellular vesicles (EVs), nanoscale membrane-enclosed particles, are natural carriers of proteins and nucleic acids. Microalgae are widely used as a source of bioactive substances in the food and cosmetic industries and definitely have a potential to be used as the producers of EVs for biomedical applications. In this study, the extracellular vesicles isolated from the culture medium of two unicellular microalgae, Chlamydomonas reinhardtii (Chlamy-EVs) and Parachlorella kessleri (Chlore-EVs), were characterized by atomic force microscopy (AFM), cryo-electronic microscopy (cryo-EM), and nanoparticle tracking analysis (NTA). The biocompatibility with human cells in vitro (HEK-293T, DF-2 and A172) and biodistribution in mouse organs and tissues in vivo were tested for both microalgal EVs. An exogenous therapeutic protein, human heat shock protein 70 (HSP70), was successfully loaded to Chlamy- and Chlore-EVs, and its efficient delivery to human glioma and colon carcinoma cell lines has been confirmed. Additionally, in order to search for potential therapeutic biomolecules within the EVs, their proteomes have been characterized. A total of 105 proteins were identified for Chlamy-EVs and 33 for Chlore-EVs. The presence of superoxide dismutase and catalase in the Chlamy-EV constituents allows for considering them as antioxidant agents. The effective delivery of exogenous cargo to human cells and the possibility of the particle yield optimization by varying the microalgae growth conditions make them favorable producers of EVs for biotechnology and biomedical application. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

52 pages, 4770 KiB  
Review
Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine
by Qi-Xiang Wu, Natalia De Isla and Lei Zhang
Int. J. Mol. Sci. 2025, 26(15), 7384; https://doi.org/10.3390/ijms26157384 - 30 Jul 2025
Viewed by 438
Abstract
Gene therapy is a groundbreaking strategy in regenerative medicine, enabling precise cellular behavior modulation for tissue repair. In situ nucleic acid delivery systems aim to directly deliver nucleic acids to target cells or tissues to realize localized genetic reprogramming and avoid issues like [...] Read more.
Gene therapy is a groundbreaking strategy in regenerative medicine, enabling precise cellular behavior modulation for tissue repair. In situ nucleic acid delivery systems aim to directly deliver nucleic acids to target cells or tissues to realize localized genetic reprogramming and avoid issues like donor cell dependency and immune rejection. The key to success relies on biomaterial-engineered delivery platforms that ensure tissue-specific targeting and efficient intracellular transport. Viral vectors and non-viral carriers are strategically modified to enhance nucleic acid stability and cellular uptake, and integrate them into injectable or 3D-printed scaffolds. These scaffolds not only control nucleic acid release but also mimic native extracellular microenvironments to support stem cell recruitment and tissue regeneration. This review explores three key aspects: the mechanisms of gene editing in tissue repair; advancements in viral and non-viral vector engineering; and innovations in biomaterial scaffolds, including stimuli-responsive hydrogels and 3D-printed matrices. We evaluate scaffold fabrication methodologies, nucleic acid loading–release kinetics, and their biological impacts. Despite progress in spatiotemporal gene delivery control, challenges remain in balancing vector biocompatibility, manufacturing scalability, and long-term safety. Future research should focus on multifunctional “smart” scaffolds with CRISPR-based editing tools, multi-stimuli responsiveness, and patient-specific designs. This work systematically integrates the latest methodological advances, outlines actionable strategies for future investigations and advances clinical translation perspectives beyond the existing literature. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

21 pages, 3471 KiB  
Review
Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy
by Raisa Nazir Ahmed Kazi, Ibrahim W. Hasani, Doaa S. R. Khafaga, Samer Kabba, Mohd Farhan, Mohammad Aatif, Ghazala Muteeb and Yosri A. Fahim
Pharmaceutics 2025, 17(8), 987; https://doi.org/10.3390/pharmaceutics17080987 - 30 Jul 2025
Viewed by 200
Abstract
Nanotechnology is revolutionizing medicine by enabling highly precise diagnostics, targeted therapies, and personalized healthcare solutions. This review explores the multifaceted applications of nanotechnology across medical fields such as oncology and infectious disease control. Engineered nanoparticles (NPs), such as liposomes, polymeric carriers, and carbon-based [...] Read more.
Nanotechnology is revolutionizing medicine by enabling highly precise diagnostics, targeted therapies, and personalized healthcare solutions. This review explores the multifaceted applications of nanotechnology across medical fields such as oncology and infectious disease control. Engineered nanoparticles (NPs), such as liposomes, polymeric carriers, and carbon-based nanomaterials, enhance drug solubility, protect therapeutic agents from degradation, and enable site-specific delivery, thereby reducing toxicity to healthy tissues. In diagnostics, nanosensors and contrast agents provide ultra-sensitive detection of biomarkers, supporting early diagnosis and real-time monitoring. Nanotechnology also contributes to regenerative medicine, antimicrobial therapies, wearable devices, and theranostics, which integrate treatment and diagnosis into unified systems. Advanced innovations such as nanobots and smart nanosystems further extend these capabilities, enabling responsive drug delivery and minimally invasive interventions. Despite its immense potential, nanomedicine faces challenges, including biocompatibility, environmental safety, manufacturing scalability, and regulatory oversight. Addressing these issues is essential for clinical translation and public acceptance. In summary, nanotechnology offers transformative tools that are reshaping medical diagnostics, therapeutics, and disease prevention. Through continued research and interdisciplinary collaboration, it holds the potential to significantly enhance treatment outcomes, reduce healthcare costs, and usher in a new era of precise and personalized medicine. Full article
Show Figures

Figure 1

18 pages, 3577 KiB  
Article
Smart Thermoresponsive Sol–Gel Formulation of Polyhexanide for Rapid and Painless Burn and Wound Management
by Levent Alparslan, Gülşah Torkay, Ayca Bal-Öztürk, Çinel Köksal Karayıldırım and Samet Özdemir
Polymers 2025, 17(15), 2079; https://doi.org/10.3390/polym17152079 - 30 Jul 2025
Viewed by 431
Abstract
Traditional wound and burn treatments often fall short in balancing antimicrobial efficacy, patient comfort, and ease of application. This study introduces a novel, transparent, thermoresponsive sol–gel formulation incorporating polyhexamethylene biguanide (PHMB) for advanced topical therapy. Utilizing Poloxamer 407 as a biocompatible carrier, the [...] Read more.
Traditional wound and burn treatments often fall short in balancing antimicrobial efficacy, patient comfort, and ease of application. This study introduces a novel, transparent, thermoresponsive sol–gel formulation incorporating polyhexamethylene biguanide (PHMB) for advanced topical therapy. Utilizing Poloxamer 407 as a biocompatible carrier, the formulation remains a sprayable liquid at room temperature and instantly gels upon contact with body temperature, enabling painless, pressure-free application on sensitive, injured skin. Comprehensive in vitro and in vivo evaluations confirmed the formulation’s broad-spectrum antimicrobial efficacy (≥5 log10 reduction in 30 s), high biocompatibility (viability > 70% in fibroblasts), non-irritancy (OECD 425-compliant), and physical stability across three months. Importantly, the formulation maintained fibroblast migration capacity—crucial for wound regeneration—while exhibiting rapid sol-to-gel transition at ~34 °C. These findings highlight the system’s potential as a next-generation wound dressing with enhanced user compliance, transparent monitoring capability, and rapid healing support, particularly in disaster or emergency scenarios. Full article
(This article belongs to the Special Issue Functional Polymers and Novel Applications)
Show Figures

Graphical abstract

18 pages, 3793 KiB  
Review
Research Progress on Vaterite Mineral and Its Synthetic Analogs
by Guoxi Sun, Xiuming Liu, Bin Lian and Shijie Wang
Minerals 2025, 15(8), 796; https://doi.org/10.3390/min15080796 - 29 Jul 2025
Viewed by 244
Abstract
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the [...] Read more.
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the following breakthroughs in the last two decades: (1) From primitive calculations and spectroscopic analyses to modern multidimensional research methods combining calculations and experiments, the crystal structure of vaterite has turned from early identifications in orthorhombic and hexagonal crystal systems to a complex polymorphic structure within the monoclinic crystal system. (2) The formation process of vaterite not only conforms to the classical crystal growth theory but also encompasses the nanoparticle aggregation theory, which incorporates the concepts of oriented nanoparticle assembly and mesoscale transformation. (3) Regardless of the conditions, the formation of vaterite depends on an excess of CO32− relative to Ca2+, and its stability duration relates to preservation conditions. (4) Vaterite demonstrates significant value in biomedical applications—including bone repair scaffolds, targeted drug carriers, and antibacterial coating materials—leveraging its porous structure, high specific surface area, and exceptional biocompatibility. While it also shows utility in environmental pollutant adsorption and general coating technologies, the current research remains predominantly concentrated on its medical applications. Currently, the rapid transformation of vaterite presents the primary limitation for its industrial application. Future research should prioritize investigating its formation kinetics and stability. Full article
Show Figures

Figure 1

33 pages, 2684 KiB  
Review
Biocompatible Natural Polymer-Based Amorphous Solid Dispersion System Improving Drug Physicochemical Properties, Stability, and Efficacy
by Arif Budiman, Helen Ivana, Kelly Angeline Huang, Stella Aurelia Huang, Mazaya Salwa Nadhira, Agus Rusdin and Diah Lia Aulifa
Polymers 2025, 17(15), 2059; https://doi.org/10.3390/polym17152059 - 28 Jul 2025
Viewed by 359
Abstract
Poor aqueous solubility still disqualifies many promising drug candidates at late stages of development. Amorphous solid dispersion (ASD) technology solves this limitation by trapping the active pharmaceutical ingredient (API) in a high-energy, non-crystalline form, yet most marketed ASDs rely on synthetic carriers such [...] Read more.
Poor aqueous solubility still disqualifies many promising drug candidates at late stages of development. Amorphous solid dispersion (ASD) technology solves this limitation by trapping the active pharmaceutical ingredient (API) in a high-energy, non-crystalline form, yet most marketed ASDs rely on synthetic carriers such as polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC), which raise concerns about long-term biocompatibility, residual solvent load, and sustainability. This study summarizes the emergence of natural polymer-based ASDs (NP-ASDs), along with the bond mechanism reactions through which these natural polymers enhance drug performance. As a result, NP-ASDs exhibit improved physical stability and significantly enhance the dissolution rate of poorly soluble drugs. The structural features of natural polymers play a critical role in stabilizing the amorphous state and modulating drug release profiles. These findings support the growing potential of NP-ASDs as sustainable and biocompatible alternatives to synthetic carriers in pharmaceutical development. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

13 pages, 3736 KiB  
Article
Quantum Diamond Microscopy of Individual Vaterite Microspheres Containing Magnetite Nanoparticles
by Mona Jani, Hani Barhum, Janis Alnis, Mohammad Attrash, Tamara Amro, Nir Bar-Gill, Toms Salgals, Pavel Ginzburg and Ilja Fescenko
Nanomaterials 2025, 15(15), 1141; https://doi.org/10.3390/nano15151141 - 23 Jul 2025
Viewed by 415
Abstract
Biocompatible vaterite microspheres, renowned for their porous structure, are promising carriers for magnetic nanoparticles (MNPs) in biomedical applications such as targeted drug delivery and diagnostic imaging. Precise control over the magnetic moment of individual microspheres is crucial for these applications. This study employs [...] Read more.
Biocompatible vaterite microspheres, renowned for their porous structure, are promising carriers for magnetic nanoparticles (MNPs) in biomedical applications such as targeted drug delivery and diagnostic imaging. Precise control over the magnetic moment of individual microspheres is crucial for these applications. This study employs widefield quantum diamond microscopy to map the stray magnetic fields of individual vaterite microspheres (3–10 μm) loaded with Fe3O4 MNPs of varying sizes (5 nm, 10 nm, and 20 nm). By analyzing over 35 microspheres under a 222 mT external magnetizing field, we measured peak-to-peak stray field amplitudes of 41 ± 1 μT for 5 nm and 10 nm superparamagnetic MNPs, reflecting their comparable magnetic response, and 12 ± 1 μT for 20 nm ferrimagnetic MNPs, due to distinct magnetization behavior. Finite-element simulations confirm variations in MNP distribution and magnetization uniformity within the vaterite matrix, with each microsphere encapsulating thousands of MNPs to generate its magnetization. This high-resolution magnetic imaging approach yields critical insights into MNP-loaded vaterite, enabling optimized synthesis and magnetically controlled systems for precision therapies and diagnostics. Full article
Show Figures

Figure 1

24 pages, 1532 KiB  
Review
Polymeric Nanoparticle-Mediated Photodynamic Therapy: A Synergistic Approach for Glioblastoma Treatment
by Bandar Aldhubiab and Rashed M. Almuqbil
Pharmaceuticals 2025, 18(7), 1057; https://doi.org/10.3390/ph18071057 - 18 Jul 2025
Viewed by 431
Abstract
Glioblastoma is the most common and aggressive malignant primary brain tumour. Patients with glioblastoma have a median survival of only around 14.6 months after diagnosis, despite the availability of various conventional multimodal treatments including chemotherapy, radiation therapy, and surgery. Therefore, photodynamic therapy (PDT) [...] Read more.
Glioblastoma is the most common and aggressive malignant primary brain tumour. Patients with glioblastoma have a median survival of only around 14.6 months after diagnosis, despite the availability of various conventional multimodal treatments including chemotherapy, radiation therapy, and surgery. Therefore, photodynamic therapy (PDT) has emerged as an advanced, selective and more controlled therapeutic approach, which has minimal systemic toxicity and fewer side effects. PDT is a less invasive therapy that targets all cells or tissues that possess the photosensitizer (PS) itself, without affecting the surrounding healthy tissues. Polymeric NPs (PNPs) as carriers can improve the targeting ability and stability of PSs and co-deliver various anticancer agents to achieve combined cancer therapy. Because of their versatile tuneable features, these PNPs have the capacity to open tight junctions of the blood–brain barrier (BBB), easily transport drugs across the BBB, protect against enzymatic degradation, prolong the systemic circulation, and sustainably release the drug. Conjugated polymer NPs, poly(lactic-co-glycolic acid)-based NPs, lipid–polymer hybrid NPs, and polyethylene-glycolated PNPs have demonstrated great potential in PDT owing to their unique biocompatibility and optical properties. Although the combination of PDT and PNPs has great potential and can provide several benefits over conventional cancer therapies, there are several limitations that are hindering its translation into clinical use. This review aims to summarize the recent advances in the combined use of PNPs and PDT in the case of glioblastoma treatment. By evaluating various types of PDT and PNPs, this review emphasizes how these innovative approaches can play an important role in overcoming glioblastoma-associated critical challenges, including BBB and tumour heterogeneity. Furthermore, this review also discusses the challenges and future directions for PNPs and PDT, which provides insight into the potential solutions to various problems that are hindering their clinical translation in glioblastoma treatment. Full article
(This article belongs to the Special Issue Tumor Therapy and Drug Delivery)
Show Figures

Graphical abstract

33 pages, 7665 KiB  
Review
A Comprehensive Review of Thermosensitive Hydrogels: Mechanism, Optimization Strategies, and Applications
by Tianyang Lv, Yuzhu Chen, Ning Li, Xiaoyu Liao, Yumin Heng, Yayuan Guo and Kaijin Hu
Gels 2025, 11(7), 544; https://doi.org/10.3390/gels11070544 - 14 Jul 2025
Viewed by 656
Abstract
Thermosensitive hydrogels undergo reversible sol-gel phase transitions in response to changes in temperature. Owing to their excellent biocompatibility, mild reaction conditions, and controllable gelation properties, these hydrogels represent a promising class of biomaterials suitable for minimally invasive treatment systems in diverse biomedical applications. [...] Read more.
Thermosensitive hydrogels undergo reversible sol-gel phase transitions in response to changes in temperature. Owing to their excellent biocompatibility, mild reaction conditions, and controllable gelation properties, these hydrogels represent a promising class of biomaterials suitable for minimally invasive treatment systems in diverse biomedical applications. This review systematically summarizes the gelation mechanisms of thermosensitive hydrogels and optimization strategies to enhance their performance for broader application requirements. In particular, we highlight recent advances in injectable thermosensitive hydrogels as a carrier within stem cells, bioactive substances, and drug delivery for treating various tissue defects and diseases involving bone, cartilage, and other tissues. Furthermore, we propose challenges and directions for the future development of thermosensitive hydrogels. These insights provide new ideas for researchers to explore novel thermosensitive hydrogels for tissue repair and disease treatment. Full article
Show Figures

Figure 1

17 pages, 3193 KiB  
Article
Distinct In Vitro Effects of Liposomal and Nanostructured Lipid Nanoformulations with Entrapped Acidic and Neutral Doxorubicin on B16-F10 Melanoma and Walker 256 Carcinoma Cells
by Roxana Pop, Mădălina Nistor, Carmen Socaciu, Mihai Cenariu, Flaviu Tăbăran, Dumitriţa Rugină, Adela Pintea and Mihai Adrian Socaciu
Pharmaceutics 2025, 17(7), 904; https://doi.org/10.3390/pharmaceutics17070904 - 12 Jul 2025
Viewed by 694
Abstract
Background: Liposomes and, more recently, structured nanolipid particles have demonstrated effectiveness as carriers for delivering hydrophilic or lipophilic anticancer agents, enhancing their biocompatibility, bioavailability, and sustained release to target cells. Objective: Herein, four doxorubicin formulations—comprising either the acidic or neutral form—were encapsulated into [...] Read more.
Background: Liposomes and, more recently, structured nanolipid particles have demonstrated effectiveness as carriers for delivering hydrophilic or lipophilic anticancer agents, enhancing their biocompatibility, bioavailability, and sustained release to target cells. Objective: Herein, four doxorubicin formulations—comprising either the acidic or neutral form—were encapsulated into liposomes (Lipo) or nanostructured lipid carriers (NLCs) and characterized in terms of size, entrapment efficiency, morphology, and effects on two cancer cell lines (melanoma B16-F10 and breast carcinoma Walker 256 cells). Methods and Results: While liposomal formulations containing acidic doxorubicin displayed IC50 values ranging from 1.33 to 0.37 µM, NLC-based formulations, particularly NLC-Doxo@Ac, demonstrated enhanced cytotoxicity with IC50 values as low as 0.58 µM. Neutral Doxorubicin demonstrated lower cytotoxicity in both the nanoformulations and cell lines. Differences were also observed in their internalization patterns, cell-cycle impact, and apoptotic/necrotic effects. Compared to liposomes, NLCs exhibited distinct internalization patterns and induced stronger cell-cycle arrest and necrosis, especially in melanoma cells. Notably, NLC-Doxo@Ac outperformed liposomal counterparts in melanoma cells, while liposomal formulations showed slightly higher efficacy in Walker cells. Early and late apoptosis were more pronounced in Walker cells, whereas necrosis was more prominent in melanoma B16-F10 cells, particularly with the nanolipid formulations. Conclusions: These results correlated positively with cell-cycle measurements, highlighting the potential of NLCs as an alternative to liposomes for the delivery of neutral or acidic doxorubicin, particularly in tumor types that respond poorly to conventional formulations. Full article
Show Figures

Figure 1

18 pages, 1539 KiB  
Review
Collagen-Based Drug Delivery Agents for Glioblastoma Multiforme Treatment
by Barbara Guzdek, Kaja Fołta, Natalia Staniek, Magdalena Stolarczyk and Katarzyna Krukiewicz
Int. J. Mol. Sci. 2025, 26(13), 6513; https://doi.org/10.3390/ijms26136513 - 6 Jul 2025
Viewed by 748
Abstract
Being one of the most aggressive primary brain tumors, glioblastoma multiforme (GBM) is known from the median survivals of just 15 months following diagnosis. Conventional treatments, including surgical resection, radiotherapy, and chemotherapy, have limited efficiency due to the invasive nature of glioma cells [...] Read more.
Being one of the most aggressive primary brain tumors, glioblastoma multiforme (GBM) is known from the median survivals of just 15 months following diagnosis. Conventional treatments, including surgical resection, radiotherapy, and chemotherapy, have limited efficiency due to the invasive nature of glioma cells and the presence of a blood–brain barrier. Therefore, adjuvant therapy in the form of a localized delivery of chemotherapeutic agents is indispensable to increase the chances of patients. Among a variety of advanced drug carriers, collagen has recently emerged as an excellent choice for regional chemotherapy, mainly due to its biocompatibility, biodegradability, weak antigenicity, biomimetics, and well-known safety profile, as well as its native presence in the extracellular matrix of the central nervous system. The aim of this paper is to highlight the most recent studies describing the application of collagen as a drug carrier able to provide an extended delivery of chemotherapeutic agents directly to the GBM site, and to provide exciting opportunities for its future applications. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

26 pages, 808 KiB  
Review
A Review of Formulation Strategies for Cyclodextrin-Enhanced Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs)
by Tarek Alloush and Burcu Demiralp
Int. J. Mol. Sci. 2025, 26(13), 6509; https://doi.org/10.3390/ijms26136509 - 6 Jul 2025
Viewed by 941
Abstract
The advancement of efficient drug delivery systems continues to pose a significant problem in pharmaceutical sciences, especially for compounds with limited water solubility. Lipid-based systems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have emerged as viable options owing to their [...] Read more.
The advancement of efficient drug delivery systems continues to pose a significant problem in pharmaceutical sciences, especially for compounds with limited water solubility. Lipid-based systems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have emerged as viable options owing to their biocompatibility, capability to safeguard labile chemicals, and potential for prolonged release. Nonetheless, the encapsulation efficiency (EE) and release dynamics of these carriers can be enhanced by including cyclodextrins (CDs)—cyclic oligosaccharides recognized for their ability to form inclusion complexes with hydrophobic compounds. This article offers an extensive analysis of CD-modified SLNs and NLCs as multifunctional drug delivery systems. The article analyses the fundamental principles of these systems, highlighting the pre-complexation of the drug with cyclodextrins before lipid incorporation, co-encapsulation techniques, and surface adsorption after formulation. Attention is concentrated on the physicochemical interactions between cyclodextrins and lipid matrices, which influence essential factors such as particle size, encapsulation efficiency, and colloidal stability. The review includes characterization techniques, such as particle size analysis, zeta potential measurement, drug release studies, and Fourier-transform infrared spectroscopy (FT-IR)/Nuclear Magnetic Resonance (NMR) analyses. The study highlights the application of these systems across many routes of administration, including oral, topical, and mucosal, illustrating their adaptability and potential for targeted delivery. The review outlines current formulation challenges, including stability issues, drug leakage, and scalability concerns, and proposes solutions through advanced approaches, such as stimuli-responsive release mechanisms and computer modeling for system optimization. The study emphasizes the importance of regulatory aspects and outlines future directions in the development of CD-lipid hybrid nanocarriers, showcasing its potential to revolutionize the delivery of poorly soluble drugs. Full article
(This article belongs to the Special Issue Research on Cyclodextrin)
Show Figures

Graphical abstract

24 pages, 8040 KiB  
Article
Development of Modified Drug Delivery Systems with Metformin Loaded in Mesoporous Silica Matrices: Experimental and Theoretical Designs
by Mousa Sha’at, Maria Ignat, Florica Doroftei, Vlad Ghizdovat, Maricel Agop, Alexandra Barsan (Bujor), Monica Stamate Cretan, Fawzia Sha’at, Ramona-Daniela Pavaloiu, Adrian Florin Spac, Lacramioara Ochiuz, Carmen Nicoleta Filip and Ovidiu Popa
Pharmaceutics 2025, 17(7), 882; https://doi.org/10.3390/pharmaceutics17070882 - 4 Jul 2025
Viewed by 682
Abstract
Background/Objectives: Mesoporous silica materials, particularly KIT-6, offer promising features, such as large surface area, tunable pore structures, and biocompatibility, making them ideal candidates for advanced drug delivery systems. The aims of this study were to develop and evaluate an innovative modified-release platform for [...] Read more.
Background/Objectives: Mesoporous silica materials, particularly KIT-6, offer promising features, such as large surface area, tunable pore structures, and biocompatibility, making them ideal candidates for advanced drug delivery systems. The aims of this study were to develop and evaluate an innovative modified-release platform for metformin hydrochloride (MTF), using KIT-6 mesoporous silica as a matrix, to enhance oral antidiabetic therapy. Methods: KIT-6 was synthesized using an ultrasound-assisted sol-gel method and subsequently loaded with MTF via adsorption from alkaline aqueous solutions at two concentrations (1 and 3 mg/mL). The structural and morphological characteristics of the matrices—before and after drug loading—were assessed using SEM-EDX, TEM, and nitrogen adsorption–desorption isotherms (the BET method). In vitro drug release profiles were recorded in simulated gastric and intestinal fluids over 12 h. Kinetic modeling was performed using seven classical models, and a multifractal theoretical framework was used to further interpret the complex release behavior. Results: The loading efficiency increased with increasing drug concentration but nonlinearly, reaching 56.43 mg/g for 1 mg/mL and 131.69 mg/g for 3 mg/mL. BET analysis confirmed significant reductions in the surface area and pore volume upon MTF incorporation. In vitro dissolution showed a biphasic release: a fast initial phase in an acidic medium followed by sustained release at a neutral pH. The Korsmeyer–Peppas and Weibull models best described the release profiles, indicating a predominantly diffusion-controlled mechanism. The multifractal model supported the experimental findings, capturing nonlinear dynamics, memory effects, and soliton-like transport behavior across resolution scales. Conclusions: The study confirms the potential of KIT-6 as a reliable and efficient carrier for the modified oral delivery of metformin. The combination of experimental and multifractal modeling provides a deeper understanding of drug release mechanisms in mesoporous systems and offers a predictive tool for future drug delivery design. This integrated approach can be extended to other active pharmaceutical ingredients with complex release requirements. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

Back to TopTop