Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = biobased polyols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2944 KiB  
Article
The Development of a Coconut-Oil-Based Derived Polyol in a Polyurethane Matrix: A Potential Sorbent Material for Marine Oil Spill Applications
by John Louie L. Tefora, Tomas Ralph B. Tomon, Joy Ian Dan S. Ungang, Roberto M. Malaluan, Arnold A. Lubguban and Hernando P. Bacosa
J. Mar. Sci. Eng. 2025, 13(6), 1176; https://doi.org/10.3390/jmse13061176 - 16 Jun 2025
Viewed by 1322
Abstract
Marine oil spills have caused significant environmental problems. Among the array of clean-up methods, the utilization of sorbents emerges as promising for removing and recovering oil from spills. Developing cost-effective, reliable, and eco-friendly material that efficiently and sustainably removes oil from water is [...] Read more.
Marine oil spills have caused significant environmental problems. Among the array of clean-up methods, the utilization of sorbents emerges as promising for removing and recovering oil from spills. Developing cost-effective, reliable, and eco-friendly material that efficiently and sustainably removes oil from water is increasingly seen as crucial and pressing. In the present study, we report the development of coco-polyurethane (PU) foam (CCF) through the conventional foaming process using varying amounts of coconut-oil-derived polyol (CODP) in a PU matrix. Characterization of the foams showed an increased ester band with the incorporation of COPD into the polyurethane networks and no direct influence of the cell size distribution on the surface morphology. Furthermore, this study highlighted the increasing CODP in every CCF formulation, showing high oil sorption and low water uptake due to its porous structure. The experimental results revealed that CCF is a potential candidate sorbent for the recovery of spilled oil. This signifies a significant leap towards reducing the dependency on petroleum in developing sorbent materials and advancing sustainable responses to oil spills in marine environments. Full article
(This article belongs to the Section Marine Pollution)
Show Figures

Figure 1

22 pages, 2500 KiB  
Review
A Vegetable-Oil-Based Polyurethane Coating for Controlled Nutrient Release: A Review
by Lyu Yao, Azizah Baharum, Lih Jiun Yu, Zibo Yan and Khairiah Haji Badri
Coatings 2025, 15(6), 665; https://doi.org/10.3390/coatings15060665 - 30 May 2025
Viewed by 666
Abstract
Bio-based polyurethane (PU) is synthesized either via the prepolymerization or addition polymerization of bio-based polyols and isocyanates. PU synthesized from vegetable-oil-based polyols has excellent properties for various application needs. Bio-based PU coatings from renewable vegetable oil show good degradability in soil while controlling [...] Read more.
Bio-based polyurethane (PU) is synthesized either via the prepolymerization or addition polymerization of bio-based polyols and isocyanates. PU synthesized from vegetable-oil-based polyols has excellent properties for various application needs. Bio-based PU coatings from renewable vegetable oil show good degradability in soil while controlling the nutrient release process. Castor oil, soybean oil, palm oil, olive oil, linseed oil, rapeseed oil, cottonseed oil, and recycled oil have been explored in the study of bio-based PU coatings for controlled nutrient release. Castor oil as a natural polyol has been widely studied. Generally, the epoxidation ring opening method is preferred to prepare bio-based polyols. Almost all of these studies used a drum coating machine to complete the coating process. To obtain better controlled release performance, a vegetable-oil-based PU (VPU) coating was modified by increasing the degrees of crosslinking and hydrophobicity and improving the coating uniformity. The nutrient release duration of the modified castor-oil-based PU-coated fertilizer reached 200 days. VPU-coated fertilizers, in contrast to traditional fertilizers, effectively reduce the detrimental impact on the environment. Although the preparation of VPU-coated fertilizers is still at the laboratory scale, application research has been carried out in field crops. Full article
(This article belongs to the Special Issue Preparation and Applications of Bio-Based Polymer Coatings)
Show Figures

Graphical abstract

34 pages, 763 KiB  
Review
Bio-Based Polyurethane Materials: Technical, Environmental, and Economic Insights
by Piumi Jayalath, Kalyani Ananthakrishnan, Soyeon Jeong, Reshma Panackal Shibu, Mairui Zhang, Deepak Kumar, Chang Geun Yoo, Julia L. Shamshina and Obste Therasme
Processes 2025, 13(5), 1591; https://doi.org/10.3390/pr13051591 - 20 May 2025
Cited by 2 | Viewed by 1599
Abstract
Polyurethane (PU) is widely used due to its attractive properties, but the shift to a low-carbon economy necessitates alternative, renewable feedstocks for its production. This review examines the synthesis, properties, and sustainability of bio-based PU materials, focusing on renewable resources such as lignin, [...] Read more.
Polyurethane (PU) is widely used due to its attractive properties, but the shift to a low-carbon economy necessitates alternative, renewable feedstocks for its production. This review examines the synthesis, properties, and sustainability of bio-based PU materials, focusing on renewable resources such as lignin, vegetable oils, and polysaccharides. It discusses recent advances in bio-based polyols, their incorporation into PU formulations, and the use of bio-fillers like chitin and nanocellulose to improve mechanical, thermal, and biocompatibility properties. Despite promising material performance, challenges related to large-scale production, economic feasibility, and recycling technologies are highlighted. The paper also reviews life cycle assessment (LCA) studies, revealing the complex and context-dependent environmental benefits of bio-based PU materials. These studies indicate that while bio-based PU materials generally reduce greenhouse gas emissions and non-renewable energy use, their environmental performance varies depending on feedstock and formulation. The paper identifies key areas for future research, including improving biorefinery processes, optimizing crosslinker performance, and advancing recycling methods to unlock the full environmental and economic potential of bio-based PU in commercial applications. Full article
Show Figures

Figure 1

23 pages, 2272 KiB  
Review
Bio-Based Polyurethane Foams: Feedstocks, Synthesis, and Applications
by Marta Santos, Marcos Mariz, Igor Tiago, Susana Alarico and Paula Ferreira
Biomolecules 2025, 15(5), 680; https://doi.org/10.3390/biom15050680 - 7 May 2025
Viewed by 2038
Abstract
Polyurethanes (PUs) are extremely versatile materials used across different industries. Traditionally, they are synthesized by reacting polyols and isocyanates, both of which are petroleum-derived reagents. In response to the demand for more eco-friendly materials, research has increasingly focused on developing new routes for [...] Read more.
Polyurethanes (PUs) are extremely versatile materials used across different industries. Traditionally, they are synthesized by reacting polyols and isocyanates, both of which are petroleum-derived reagents. In response to the demand for more eco-friendly materials, research has increasingly focused on developing new routes for PU synthesis using renewable feedstocks. While substituting isocyanates remains a greater challenge, replacing fossil-based polyols with bio-based alternatives is now a promising strategy. This review explores the main natural sources and their transformations into bio-polyols, the incorporation of bio-fillers into PU formulations, and the production of non-isocyanate polyurethanes (NIPUs). Additionally, the study summarizes the growing body of research that has reported successful outcomes using bio-polyols in PU foams for distinct applications. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Figure 1

14 pages, 4088 KiB  
Article
Synthesis and Characterization of Soy Hull Biochar-Based Flexible Polyurethane Foam Composites
by Kavya Ganesan, Bethany Guin, Elijah Wilbanks and James Sternberg
Materials 2025, 18(9), 2006; https://doi.org/10.3390/ma18092006 - 29 Apr 2025
Viewed by 624
Abstract
Flexible polyurethane foams are a diverse class of materials encompassing furniture, packaging, automotive, and many other industrial and domestic applications. Polyurethane foams are synthesized by the addition of polyols and isocyanates; however, the petroleum origin and toxic nature of isocyanates have driven many [...] Read more.
Flexible polyurethane foams are a diverse class of materials encompassing furniture, packaging, automotive, and many other industrial and domestic applications. Polyurethane foams are synthesized by the addition of polyols and isocyanates; however, the petroleum origin and toxic nature of isocyanates have driven many to look for more sustainable routes to production. Renewable fillers have emerged as a biobased resource to decrease the carbon footprint of this widely used polymeric material. In this study, soy hulls, as mass-produced, industrial by-products of soybean production, were used to create a biochar beneficial in the synthesis of flexible polyurethane foam composites. The addition of soy hull biochar was found to maintain the compression properties of foams at a decreasing isocyanate index, reducing the amount of isocyanates needed for production. In addition, the addition of biochar decreased the flammability of foams, important for many applications where consumer safety is important. The results point to the ability to create safer, more sustainable, and even more cost-effective polyurethane foams through the reduction in isocyanate use while maintaining the properties of this important class of polymers. Full article
(This article belongs to the Special Issue Advances in Development and Characterization of Polyurethane Foams)
Show Figures

Figure 1

17 pages, 1547 KiB  
Article
Green Biocatalysis of Xylitol Monoferulate: Candida antarctica Lipase B-Mediated Synthesis and Characterization of Novel Bifunctional Prodrug
by Federico Zappaterra, Francesco Presini, Domenico Meola, Chaimae Chaibi, Simona Aprile, Lindomar Alberto Lerin and Pier Paolo Giovannini
BioTech 2025, 14(2), 25; https://doi.org/10.3390/biotech14020025 - 2 Apr 2025
Viewed by 799
Abstract
Natural compounds with significant bioactive properties can be found in abundance within biomasses. Especially prominent for their anti-inflammatory, neuroprotective, antibacterial, and antioxidant activities are cinnamic acid derivatives (CAs). Ferulic acid (FA), a widely studied phenylpropanoid, exhibits a broad range of therapeutic and nutraceutical [...] Read more.
Natural compounds with significant bioactive properties can be found in abundance within biomasses. Especially prominent for their anti-inflammatory, neuroprotective, antibacterial, and antioxidant activities are cinnamic acid derivatives (CAs). Ferulic acid (FA), a widely studied phenylpropanoid, exhibits a broad range of therapeutic and nutraceutical applications, demonstrating antidiabetic, anticancer, antimicrobial, and hepato- and neuroprotective activities. This research investigates the green enzymatic synthesis of innovative and potentially bifunctional prodrug derivatives of FA, designed to enhance solubility and stability profiles. Selective esterification was employed to conjugate FA with xylitol, a biobased polyol recognized for its bioactive antioxidant properties and safety profile. Furthermore, by exploiting t-amyl alcohol as a green solvent, the enzymatic synthesis of the derivative was optimized for reaction parameters including temperature, reaction time, enzyme concentration, and molar ratio. The synthesized derivative, xylitol monoferulate (XMF), represents a novel contribution to the literature. The comprehensive characterization of this compound was achieved using advanced spectroscopic methods, including 1H-NMR, 13C-NMR, COSY, HSQC, and HMBC. This study represents a significant advancement in the enzymatic synthesis of high-value biobased derivatives, demonstrating increased biological activities and setting the stage for future applications in green chemistry and the sustainable production of bioactive compounds. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

16 pages, 3137 KiB  
Article
Functionalization of Phenolic Aldehydes for the Preparation of Sustainable Polyesters and Polyurethanes
by Rachele N. Carafa, Brigida V. Fernandes, Clara Repiquet, Sidrah Rana, Daniel A. Foucher and Guerino G. Sacripante
Polymers 2025, 17(5), 643; https://doi.org/10.3390/polym17050643 - 27 Feb 2025
Cited by 1 | Viewed by 1371
Abstract
Biobased organic diols derived from the phenolic aldehyde by-products in the depolymerization of lignin (4-hydroxybenzaldehyde, vanillin, and syringaldehyde) for the synthesis of polyesters and polyurethanes is described. Methods to prepare lignin-based diols involved a two-step synthetic route using either a hydroxy alkylation and [...] Read more.
Biobased organic diols derived from the phenolic aldehyde by-products in the depolymerization of lignin (4-hydroxybenzaldehyde, vanillin, and syringaldehyde) for the synthesis of polyesters and polyurethanes is described. Methods to prepare lignin-based diols involved a two-step synthetic route using either a hydroxy alkylation and aldehyde reduction or an aldehyde reduction and Williamson–Ether substitution. The preparation of five polyesters (PEs) and ten polyurethanes (PUs) from lignin-based diols was also performed and their physical and thermal properties were analyzed. DSC analysis confirmed the amorphous nature of all synthesized polymers, and GPC analysis revealed broad dispersities and high molecular weights. Two PE polyols were also derived from a vanillin-based diol at concentrations of 10 and 25 wt% for their usage in sustainable PU foams. PU foams were prepared from these polyols, where it was found that only the foam containing the 10 wt% formulation was suitable for mechanical testing. The PU foam samples were found to have good hardness and tensile strengths compared to both control foams, showing potential for the incorporation of biobased polyols for PU foam formation. Full article
Show Figures

Graphical abstract

18 pages, 6206 KiB  
Article
Exploring the Effect of the Polyol Structure and the Incorporation of Lignin on the Properties of Bio-Based Polyurethane
by Bomin Kim, Jihoon Lee, Sunjin Jang, Jaehyeon Park, Jinsil Choi, Seungyeol Lee, Joonhoo Jung and Jaehyung Park
Polymers 2025, 17(5), 604; https://doi.org/10.3390/polym17050604 - 24 Feb 2025
Cited by 3 | Viewed by 1239
Abstract
This study developed bio-based waterborne polyurethane (BWPU) dispersions containing lignin as a sustainable filler with castor oil (CO), polycaprolactone diol (PCL), or poly(trimethylene ether) glycol (PO3G). The effects of the polyol structure and the presence of lignin on the mechanical performance, thermal stability, [...] Read more.
This study developed bio-based waterborne polyurethane (BWPU) dispersions containing lignin as a sustainable filler with castor oil (CO), polycaprolactone diol (PCL), or poly(trimethylene ether) glycol (PO3G). The effects of the polyol structure and the presence of lignin on the mechanical performance, thermal stability, water absorption, ethanol resistance, and UV-blocking capabilities of the resulting BWPU samples were evaluated. The results revealed that lignin affects the molecular packing and interchain interactions of CO-based BWPU, thus improving its tensile strength and thermal stability while reducing its water absorption and ethanol permeability. In the PCL-based BWPU, lignin had a minimal impact on water absorption and ethanol resistance but led to greater UV-blocking ability due to interactions between the semi-crystalline matrix of PCL and the aromatic structure of the lignin. In the PO3G-based BWPU, lignin disrupted the polymer network, increasing its water absorption and reducing its ethanol resistance but significantly improving its elongation and UV-shielding behavior. These results highlight the dual role of lignin as a sustainable reinforcing agent and functional additive in enhancing the properties of BWPU. By tailoring the polyol structure and optimizing lignin use, this study demonstrates a framework for the development of eco-friendly PU composites suitable for use as coatings, barriers, UV-shielding films, and packaging Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

14 pages, 2871 KiB  
Article
Characterization of Vegetable Oils for Direct Use in Polyurethane-Based Adhesives: Physicochemical and Compatibility Assessment
by Żaneta Ciastowicz, Renata Pamuła, Łukasz Bobak and Andrzej Białowiec
Materials 2025, 18(5), 918; https://doi.org/10.3390/ma18050918 - 20 Feb 2025
Cited by 1 | Viewed by 699
Abstract
This study evaluates the compatibility and innovative applications of unmodified vegetable oils, including rapeseed, sunflower, linseed, castor, and used cooking oils, in the production of sustainable polymeric materials, particularly polyurethane adhesives. Fatty acid composition was characterized using GC-MS, functional groups were identified by [...] Read more.
This study evaluates the compatibility and innovative applications of unmodified vegetable oils, including rapeseed, sunflower, linseed, castor, and used cooking oils, in the production of sustainable polymeric materials, particularly polyurethane adhesives. Fatty acid composition was characterized using GC-MS, functional groups were identified by FTIR, and physicochemical properties, such as hydroxyl value, acid value, viscosity, and density, were measured using conventional analytical techniques. The results highlight significant differences in the properties of the oils, influencing their suitability for specific industrial applications. Castor oil, with its high ricinoleic acid content and hydroxyl value, was identified as the most suitable option for bio-based polyols and polyurethane production. Compatibility tests confirmed that unmodified oils can be effectively blended with polyols, ensuring stability and homogeneity without chemical modification. This approach simplifies production, reduces reliance on petrochemical feedstocks, and advances the development of environmentally friendly polyurethane adhesives. Future research will focus on optimizing formulations and assessing the long-term performance of adhesives incorporating unmodified vegetable oils. Full article
Show Figures

Figure 1

15 pages, 12171 KiB  
Article
The Effect of Isosorbide Content on the Thermal and Compressive Properties of Closed-Cell Rigid Polyurethane Foam
by Se-Ra Shin and Dai-Soo Lee
Polymers 2025, 17(4), 495; https://doi.org/10.3390/polym17040495 - 13 Feb 2025
Viewed by 1038
Abstract
In this study, isosorbide (ISB), a bio-based compound derived from the dehydration of D-sorbitol, was used as a sustainable resource to produce various types of rigid polyurethane foams (RPUFs). Featuring a rigid bicyclic structure and two hydroxyl groups, ISB was solubilized in polyether [...] Read more.
In this study, isosorbide (ISB), a bio-based compound derived from the dehydration of D-sorbitol, was used as a sustainable resource to produce various types of rigid polyurethane foams (RPUFs). Featuring a rigid bicyclic structure and two hydroxyl groups, ISB was solubilized in polyether polyol at concentrations up to 10 wt% for RPUF production. ISB-based RPUFs exhibited smaller and more uniform cell sizes, along with a 4% increase in closed-cell content, resulting in improved thermal insulation with a 4.69% reduction in thermal conductivity. Additionally, the compressive strength increased by up to 31%, enhancing the material’s durability. The compatibility of ISB with conventional raw materials and its unique structure contributed to these improvements. The reversible urethane bond formation of ISB was also observed, influencing cell structure during foaming. These results indicate that ISB can effectively improve both the thermal insulation properties and material durability under compression of RPUFs, making it a promising material for sustainable applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 3579 KiB  
Review
Rigid Polyurethane Foam Derived from Renewable Sources: Research Progress, Property Enhancement, and Future Prospects
by Yao Yuan, Qinhe Guo, Lulu Xu and Wei Wang
Molecules 2025, 30(3), 678; https://doi.org/10.3390/molecules30030678 - 4 Feb 2025
Cited by 3 | Viewed by 2127
Abstract
Rigid polyurethane foam (RPUF) is a widely utilized thermosetting polymer across various industrial applications, valued for its exceptional properties. However, the demand for sustainable alternatives to petroleum-based polymers has grown increasingly urgent due to rising environmental concerns. Despite its widespread use, RPUF faces [...] Read more.
Rigid polyurethane foam (RPUF) is a widely utilized thermosetting polymer across various industrial applications, valued for its exceptional properties. However, the demand for sustainable alternatives to petroleum-based polymers has grown increasingly urgent due to rising environmental concerns. Despite its widespread use, RPUF faces challenges such as inadequate mechanical strength, limited thermal stability, and high flammability, all of which are crucial considerations in commercial and household applications. Globally, ongoing efforts are focused on developing innovative technologies that convert renewable sources into new monomers and polymers, some of which could serve as alternatives to traditional RPUFs. Several approaches have been explored to improve the thermal stability, mechanical strength, and flame retardancy of RPUFs, including the modification of bio-based polyols and the incorporation of performance-enhancing fillers. This review emphasizes recent advances in RPUFs derived from natural resources, focusing on their preparation, characterization, and properties, and strategies to enhance the mechanical strength and flame safety of bio-based RPUFs. Additionally, it explores the applications of RPUF materials across various fields, addressing the challenges and potential developments in packaging, household items, construction, and automotive applications. Full article
(This article belongs to the Special Issue Nanomaterials for Catalytic Upcycling/Conversion of Plastics/Biomass)
Show Figures

Figure 1

21 pages, 4102 KiB  
Article
Investigation on Dynamic and Static Modulus and Creep of Bio-Based Polyurethane-Modified Asphalt Mixture
by Biao Han, Yongming Xing and Chao Li
Polymers 2025, 17(3), 359; https://doi.org/10.3390/polym17030359 - 28 Jan 2025
Cited by 1 | Viewed by 928
Abstract
The superior mechanical qualities of polyurethane have garnered increasing attention for its application in modifying asphalt mixtures. However, polyurethane needs to use polyols to cure, and polyols need to be produced by petroleum refining. As we all know, petroleum is a non-renewable energy [...] Read more.
The superior mechanical qualities of polyurethane have garnered increasing attention for its application in modifying asphalt mixtures. However, polyurethane needs to use polyols to cure, and polyols need to be produced by petroleum refining. As we all know, petroleum is a non-renewable energy source. In order to reduce oil consumption and conform to the trend of a green economy, lignin and chitin were used instead of polyols as curing agents. In this paper, a biological polyurethane-modified asphalt mixture (BPA-16) was designed and compared with a polyurethane-modified asphalt mixture (PA-16) and a matrix asphalt mixture (MA-16). The viscoelastic characteristics of the three asphalt mixtures were evaluated using dynamic modulus, static modulus, and creep tests. The interplay between dynamic and static modulus and frequency is examined, along with the variations in the correlation between dynamic and static modulus. The creep behavior of the mixture was ultimately examined by a uniaxial static load creep test. The findings indicate that the dynamic modulus of BPA-16 exceeds those of PA-16 and MA-16 by 8.7% and 30.4% at 25 Hz and −20 °C, respectively. At 25 Hz and 50 °C, the phase angle of BPA-16 decreases by 26.3% relative to that of MA-16. Lignin and chitin, when utilized as curing agents in place of polyol, can enhance the mechanical stability of asphalt mixtures at low temperatures and diminish their temperature sensitivity. A bio-based polyurethane-modified asphalt mixture can also maintain better elastic properties in a wider temperature range. At −20–20 °C, the dynamic and static moduli of BPA-16, PA-16 and MA-16 are linear, and they can be converted by formula at different frequencies. The failure stages of BPA-16, PA-16, and MA-16 are not observed during the 3600 s creep duration, with BPA-16 exhibiting the least creep strain, indicating that lignin and chitin enhance the resistance to permanent deformation in PU-modified asphalt mixes. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 986 KiB  
Review
Advancements and Perspectives in Biodegradable Polyester Elastomers: Toward Sustainable and High-Performance Materials
by Lisheng Tang, Xiaoyan He and Ran Huang
Int. J. Mol. Sci. 2025, 26(2), 727; https://doi.org/10.3390/ijms26020727 - 16 Jan 2025
Cited by 1 | Viewed by 1520
Abstract
While the traditional rubber industry faces the severe pressure of environmental pollution and carbon emissions, bio-based and biodegradable elastomers have become a hot topic in the field and drawn intensive research interest. Inspired by polyester resin, incorporating polyol or polycarboxylic acid as a [...] Read more.
While the traditional rubber industry faces the severe pressure of environmental pollution and carbon emissions, bio-based and biodegradable elastomers have become a hot topic in the field and drawn intensive research interest. Inspired by polyester resin, incorporating polyol or polycarboxylic acid as a branching unit into aliphatic polyester and/or introducing a monomer with a C=C bond to provide open-bond cross-linking in the fashion of common vulcanization to form three-dimensional network structures are two mainstream strategies for designing biodegradable polyester elastomers (BPEs). Both methods encounter more or fewer problems, such as poor mechanical and thermal properties due to the easy hydrolysis of the ester bond and space hinderance, or the potential harm of the remaining degraded small molecules with olefin bonds. This article provides an overview of recent endeavors aimed at addressing these challenges and prospects the probable future advancements in the field. Full article
(This article belongs to the Special Issue Latest Review Papers in Macromolecules 2025)
Show Figures

Figure 1

16 pages, 9183 KiB  
Article
Effects of Polyol Types on Underwater Curing Properties of Polyurethane
by Cheng Zhang, Yixuan Zhang, Yao Liu, Yiming Cui, Ming Zhao, Shuai Peng, Hecong Wang, Zuobao Song, Qunchao Zhang, Dean Shi and Yuxue Zhu
Polymers 2025, 17(1), 5; https://doi.org/10.3390/polym17010005 - 24 Dec 2024
Cited by 1 | Viewed by 1300
Abstract
This study aims to develop castable polyurethane suitable for applications on wet substrates or underwater construction. Polyurethanes were synthesized using various polyols with similar hydroxyl values, including poly(tetrahydrofuran) polyol, polyester polyol, castor oil-modified polyol, soybean oil-modified polyol, and cashew nut shell oil-modified polyol. [...] Read more.
This study aims to develop castable polyurethane suitable for applications on wet substrates or underwater construction. Polyurethanes were synthesized using various polyols with similar hydroxyl values, including poly(tetrahydrofuran) polyol, polyester polyol, castor oil-modified polyol, soybean oil-modified polyol, and cashew nut shell oil-modified polyol. The corresponding polyurethane curing products were evaluated for their underwater curing characteristics by volume expansion ratios and adhesion strength on dry and wet substrates, combined with analyses of reaction exothermic behavior, wetting properties on dry and wet substrates, interfacial tension, and microstructure characterization from the perspectives of reaction activity and water solubility. The results indicate that polyols with higher hydrophobicity and reactivity to isocyanates lead to reduced side reactions during underwater curing, making them more suitable for underwater applications. Soybean oil-based and cashew nut shell oil-based polyurethanes exhibited fast curing (gel times of 1.15 and 1.35 min, respectively), minimal volume change (within 2.5% after 7 days underwater), and strong wet adhesion (1.95 MPa and 2.38 MPa with minimal loss, respectively). The two polyols showed different mechanical properties, providing tailored options for specific underwater engineering applications. Full article
Show Figures

Figure 1

17 pages, 5794 KiB  
Article
Thermally Healable Polyurethane Elastomers Based on Biomass Polyester Polyol from Isosorbide and Dimer Fatty Acid
by Se-Ra Shin and Dai-Soo Lee
Polymers 2024, 16(24), 3571; https://doi.org/10.3390/polym16243571 - 20 Dec 2024
Cited by 1 | Viewed by 1128
Abstract
A fully bio-based polyester polyol based on isosorbide (ISB) and dimer fatty acid (DA) was synthesized through esterification. An ISB-based polyester polyol (DIS) was developed to synthesize a bio-based polyurethane elastomer (PUE) with enhanced mechanical and self-healing properties. The rigid bicyclic structure of [...] Read more.
A fully bio-based polyester polyol based on isosorbide (ISB) and dimer fatty acid (DA) was synthesized through esterification. An ISB-based polyester polyol (DIS) was developed to synthesize a bio-based polyurethane elastomer (PUE) with enhanced mechanical and self-healing properties. The rigid bicyclic structure of ISB improved tensile properties, while the urethane bonds formed between the hydroxyl groups in ISB and isocyanate exhibited reversible characteristics at elevated temperatures, significantly enhancing the self-healing performance of DIS-based PUE compared to the control PUE (self-healing efficiency: 98% for DIS-based PUE vs. 65% for control PUE). The dynamic mechanical and rheological properties of DIS-based PUE were investigated to confirm their relationship with self-healing performance. The DIS-based PUE, featuring reversible urethane bonds, demonstrated rapid stress relaxation and maintained constant normal stress under external stimuli, contributing to its improved self-healing capabilities. Thus, ISB can be regarded as a promising bio-resource for synthesizing bio-based polyester polyols and, consequently, PUE with superior mechanical and self-healing properties. Full article
(This article belongs to the Special Issue Bio-Based Polymer: Design, Property, and Application)
Show Figures

Graphical abstract

Back to TopTop