Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = bioactive organosulfur compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1118 KiB  
Article
Identification of Novel Bioactive Molecules in Black Chiloe’s Giant Garlic (Allium ampeloprasum L.) by Green Microwave-Assisted Extraction and Effect-Directed Analysis Using High-Performance Thin Layer Chromatography-Bioassay and Mass Spectrometry
by Joaquín Fernández-Martínez, David Arráez-Román, Darlene Peterssen, Gerald Zapata, Karem Henríquez-Aedo and Mario Aranda
Antioxidants 2025, 14(8), 913; https://doi.org/10.3390/antiox14080913 - 25 Jul 2025
Viewed by 372
Abstract
Black Chiloe’s giant garlic is a functional food produced by a mild Maillard reaction that contains relevant bioactive molecules like organosulfur compounds (OSCs) and (poly)phenols (PPs). Compared with raw garlic, black garlic has a higher content of PPs and S-allyl cysteine (SAC), a [...] Read more.
Black Chiloe’s giant garlic is a functional food produced by a mild Maillard reaction that contains relevant bioactive molecules like organosulfur compounds (OSCs) and (poly)phenols (PPs). Compared with raw garlic, black garlic has a higher content of PPs and S-allyl cysteine (SAC), a key OSC due to its bioactivities. The objective of the present work was to optimize by chemometric tools a green microwave-assisted extraction (MAE) of SAC and PPs present in black Chiloe’s giant garlic to detect and identify novel bioactive molecules with antioxidant and/or inhibitory activities over cyclooxygenase, α-glucosidase, and acetylcholinesterase enzymes. The MAE factors were optimized using a central composite design, establishing optimal PP and SAC yields at 67 °C, 0% ethanol, 12 min and 30 °C, 40% ethanol, 3 min, respectively. PP and SAC values were 9.19 ± 0.18 mg GAE/g DW and 2.55 ± 0.10 mg SAC/g DW. Applying effect-directed analysis using high-performance thin layer chromatography-bioassay and mass spectrometry, the bioactive molecules present in the MAE extract with antioxidant and inhibitory activities over cyclooxygenase, α-glucosidase, and acetylcholinesterase enzymes were identified as N-fructosyl-glutamyl-S-(1-propenyl)cysteine, N-fructosyl-glutamylphenylalanine, and Harmane. Full article
Show Figures

Figure 1

19 pages, 3400 KiB  
Article
Garlic Peel-Derived Phytochemicals Using GC-MS: Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Effects in Ulcerative Colitis Rat Model
by Duaa A. Althumairy, Rasha Abu-Khudir, Afnan I. Alandanoosi and Gehan M. Badr
Pharmaceuticals 2025, 18(7), 969; https://doi.org/10.3390/ph18070969 - 27 Jun 2025
Viewed by 610
Abstract
Background/Objectives: Ulcerative colitis (UC) is a chronic, relapsing inflammatory bowel disease (IBD) that poses a significant gastroenterological challenge. Methods: This study investigates the protective effects of garlic peel extract (GPE) in a rat model of acetic acid (AA)-induced colitis. Rats received [...] Read more.
Background/Objectives: Ulcerative colitis (UC) is a chronic, relapsing inflammatory bowel disease (IBD) that poses a significant gastroenterological challenge. Methods: This study investigates the protective effects of garlic peel extract (GPE) in a rat model of acetic acid (AA)-induced colitis. Rats received oral GPE (100 mg/kg) for 14 days prior to AA administration, and this continued for 14 days post-induction. Results: GC-MS analysis of GPE identified several key phytochemicals, primarily methyl esters of fatty acids (62.47%), fatty acids (10.36%), fatty acid derivatives (6.75%), and vitamins (4.86%) as the major constituents. Other notable compounds included steroids, natural alcohols, organosulfur compounds, fatty aldehydes, carotenoids, sugars, and glucosinolates. GPE treatment significantly improved body weight and colon length. Biochemical analysis showed that GPE downregulated the levels of the pro-inflammatory cytokines interleukin-1 (IL-1), IL-6, IL-17, tumor necrosis factor-alpha (TNF-α), and nuclear factor-kappa B (NF-κB), compared to the colitis (AA) group. Additionally, GPE reduced the oxidative stress (OS) biomarkers, including myeloperoxidase (MPO) and malondialdehyde (MDA), as well as caspase-3, a marker for apoptosis. Furthermore, GPE treatment resulted in enhanced activities of the enzymatic antioxidants catalase (CAT) and superoxide dismutase (SOD), along with increased levels of the anti-inflammatory cytokine IL-10. These findings were supported by histological evidence. Conclusions: Collectively, GPE holds promise as a therapeutic strategy for UC, owing to its natural bioactive compounds and their potential synergistic anti-inflammatory, antioxidant, and anti-apoptotic effects. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

46 pages, 735 KiB  
Review
Plant-Derived Phytobiotics as Emerging Alternatives to Antibiotics Against Foodborne Pathogens
by Kamila Rachwał and Klaudia Gustaw
Appl. Sci. 2025, 15(12), 6774; https://doi.org/10.3390/app15126774 - 16 Jun 2025
Viewed by 978
Abstract
Growing consumer awareness of clean labels is driving demand for preservative-free products yet concerns about foodborne pathogens and microbiological safety remain significant. Plant-derived compounds with bioactive properties—phytobiotics—have emerged as promising alternatives or complements to conventional antimicrobial agents. This review discusses phytobiotics, including essential [...] Read more.
Growing consumer awareness of clean labels is driving demand for preservative-free products yet concerns about foodborne pathogens and microbiological safety remain significant. Plant-derived compounds with bioactive properties—phytobiotics—have emerged as promising alternatives or complements to conventional antimicrobial agents. This review discusses phytobiotics, including essential oils, polyphenols, alkaloids, and organosulfur compounds, highlighting their structural diversity and antimicrobial potential. Phytobiotics combat foodborne pathogens by disrupting cell structures, inhibiting biofilms and quorum sensing, and interfering with genetic and protein synthesis. Importantly, some phytobiotics exhibit synergistic effects when combined with antibiotics or other natural agents, enhancing overall antimicrobial efficacy. The impact of phytobiotics on the microbiota of food products and the gastrointestinal tract is also addressed, with attention to both beneficial modulation and possible unintended effects. Practical applications in food preservation and supplementation are analyzed, as well as challenges related to composition variability, stability, and interactions with food matrices. Nevertheless, modern technologies such as nanoencapsulation, complexation with polysaccharides, and advanced extraction methods are being developed to address these challenges and enhance the stability and bioavailability of phytobiotics. Continued investment in research and innovation is essential to fully harness the potential of phytobiotics in ensuring safe, natural, and sustainable food systems. Full article
(This article belongs to the Special Issue Advances in Food Safety and Microbial Control)
Show Figures

Figure 1

22 pages, 4812 KiB  
Article
Inhibition of Triacylglycerol Accumulation and Oxidized Hydroperoxides in Hepatocytes by Allium cepa (Bulb)
by Dya Fita Dibwe, Saki Oba, Satomi Monde and Shu-Ping Hui
Antioxidants 2025, 14(6), 653; https://doi.org/10.3390/antiox14060653 - 29 May 2025
Viewed by 645
Abstract
Recent studies have demonstrated that dietary plant extracts can inhibit the development of lipid droplets (LDs) and oxidized LDs (oxLDs) in hepatic cells. These findings suggest that such extracts may be beneficial in combating metabolic dysfunction-associated fatty liver disease (MAFLD) and its more [...] Read more.
Recent studies have demonstrated that dietary plant extracts can inhibit the development of lipid droplets (LDs) and oxidized LDs (oxLDs) in hepatic cells. These findings suggest that such extracts may be beneficial in combating metabolic dysfunction-associated fatty liver disease (MAFLD) and its more advanced stage, metabolic dysfunction-associated steatohepatitis (MASH). We examined nine Allium extracts (ALs: AL1–9) to assess their capacity to decrease lipid droplet accumulation (LDA) and oxidative stress by suppressing lipid formation and oxidation in liver cells. Among the Allium extracts tested, AL6 exhibited significant inhibitory effects against LDA. Furthermore, we employed our lipidomic method to assess the accumulation and suppression of intracellular triacylglycerol (TAG) and oxidized TAG hydroperoxide [TG (OOH) n = 3] by AL6 in liver cells under oleic acid (OA) and linoleic acid (LA) loading conditions. These findings indicate that foods derived from Allium species prevent the formation of lipid droplets by decreasing intracellular lipids and lipid hydroperoxides in the hepatocytes. Analysis of the metabolome of bioactive lipid droplet accumulation inhibition (LDAI) AL6 using LC-MS/MS and 1D-NMR [1H, 13C, DEPT 90, and 135] techniques revealed that AL6 is primarily composed of carbohydrates, glucosidic metabolites, and organosulfur compounds, with small amounts of polyols, fatty acyls, small peptides, and amino acids. This implies that AL6 could be a valuable resource for developing functional foods and drug discovery targeting metabolic dysfunction-associated fatty liver disease (MAFLD)/metabolic dysfunction-associated steatohepatitis (MASH) and related disorders. Full article
(This article belongs to the Special Issue Potential Health Benefits of Dietary Antioxidants)
Show Figures

Figure 1

20 pages, 1867 KiB  
Article
Aromatic and Nutritional Composition of Edible Flowers of Garden Garlic and Wild Leek
by Telmo Marcelo Zambrano Núñez, Adriana Margarita Morales Noriega, María Dolores García-Martínez and María Dolores Raigón Jiménez
Horticulturae 2025, 11(3), 323; https://doi.org/10.3390/horticulturae11030323 - 15 Mar 2025
Viewed by 1208
Abstract
Many of the flowers of ornamental and wild plants are edible. Flowers provide colors, flavors and textures to foods and serve as a potential source of bioactive compounds such as polyphenols, flavonoids and pigments, which exert a very high antioxidant activity. The cultivation [...] Read more.
Many of the flowers of ornamental and wild plants are edible. Flowers provide colors, flavors and textures to foods and serve as a potential source of bioactive compounds such as polyphenols, flavonoids and pigments, which exert a very high antioxidant activity. The cultivation of edible flowers is a production alternative that is on the rise. The main objective of this work has been to study the nutritional and aromatic value of garden garlic (Tulbaghia violacea) and wild leek (Allium ampeloprasum). The crops were carried out in the region of L’Horta Nord (Valencia, Spain), using organic production techniques. The proximate composition, antioxidant capacity, metal content and volatile fraction of the flowers were determined. The flowers of ornamental garlic and wild leek have been shown to be a source of fiber and even protein, with very low lipid content. There is no accumulation of heavy metals in these flowers. Organosulfur compounds are the chemical family of volatile components that predominate in these flowers, representing 98% of the volatile fraction of garden garlic flowers and 68.5% in wild leek flowers. The powerful antioxidant activity of the flowers studied and their relationship with a very significant aromatic fraction of sulfur components is well suited to the current trend of searching for natural and healthy foods with nutraceutical properties. It is recommended to continue studying the bioavailability of floral components and understand their effect on health, as well as organosulfur compounds for physiological functions. Full article
Show Figures

Figure 1

23 pages, 2874 KiB  
Article
Phenotypic, Biochemical, and Molecular Diversity Within a Local Emblematic Greek Allium sativum L. Variety
by Anastasia Papadopoulou, Anastasia Boutsika, Francesco Reale, Silvia Carlin, Urska Vrhovsek, Eleftheria Deligiannidou, Aliki Xanthopoulou, Eirini Sarrou, Ioannis Ganopoulos and Ifigeneia Mellidou
Horticulturae 2025, 11(3), 304; https://doi.org/10.3390/horticulturae11030304 - 11 Mar 2025
Viewed by 750
Abstract
Garlic, an asexually propagated crop, exhibits significant variation in its commercial traits and bioactive compounds. Despite its horticultural significance, the genetic pool available for breeding strategies is limited. This study aimed to assess the existing diversity within a popular garlic landrace from the [...] Read more.
Garlic, an asexually propagated crop, exhibits significant variation in its commercial traits and bioactive compounds. Despite its horticultural significance, the genetic pool available for breeding strategies is limited. This study aimed to assess the existing diversity within a popular garlic landrace from the region of “Nea Vissa”, Evros, Greece, focusing on phenotypic, biochemical, and molecular variation. In particular, bulb morphology, nutritional content, and organosulfur profiles were evaluated, along with genetic characterization using simple sequence repeat (SSR) markers to analyze intra-specific genetic variation. Our results revealed three distinct genetic clusters with moderate to low intra-varietal diversity. Morphological and biochemical characterization showed significant intra-specific diversity in both bulb morphology and nutritional content. Solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS) analysis identified key volatile compounds, including allyl methyl disulfide and trisulfide, 1,2-dithiacyclopentene, cis-1-propenyl propyl disulfide, and cis-1-propenyl methyl disulfide in high abundances, suggesting that these were the predominant compounds characterizing the population. Our findings could be implemented to further enhance key phytonutrients in the local garlic population through breeding programs, targeting clones with high nutritional value and improved flavor and supporting germplasm conservation and utilization. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

23 pages, 6533 KiB  
Article
Inhibition of Accumulation of Neutral Lipids and Their Hydroperoxide Species in Hepatocytes by Bioactive Allium sativum Extract
by Dya Fita Dibwe, Saki Oba, Satomi Monde and Shu-Ping Hui
Antioxidants 2024, 13(11), 1310; https://doi.org/10.3390/antiox13111310 - 28 Oct 2024
Cited by 1 | Viewed by 1410
Abstract
Our ongoing research suggests that extracts from plant-based foods inhibit the accumulation of lipid droplets (LDs) and oxidized lipid droplets (oxLDs) in liver cells. These findings suggest their potential use in the alleviation of metabolic dysfunction-associated fatty liver disease (MAFLD) and its most [...] Read more.
Our ongoing research suggests that extracts from plant-based foods inhibit the accumulation of lipid droplets (LDs) and oxidized lipid droplets (oxLDs) in liver cells. These findings suggest their potential use in the alleviation of metabolic dysfunction-associated fatty liver disease (MAFLD) and its most severe manifestation, metabolic dysfunction-associated steatohepatitis (MASH). Allium extracts (ALs: AL1–AL9) were used to assess their ability to reduce lipid droplet accumulation (LDA) and oxidized lipid droplet accumulation (oxLDA) by inhibiting neutral lipid accumulation and oxidation in LD. Among the tested Allium extracts, AL1, AL3, and AL6 demonstrated substantial inhibitory effects on the LDA. Furthermore, AL1 extract showed real-time inhibition of LDA in HepG2 cells in DMEM supplemented with oleic acid (OA) within 12 h of treatment. Our lipidomic approach was used to quantify the accumulation and inhibition of intracellular triacylglycerol (TAG) and oxidized TAG hydroperoxide [TG (OOH) n = 3] species in hepatocytes under OA and linoleic acid loading conditions. These results suggest that Allium-based foods inhibit LD accumulation by decreasing intracellular lipids and lipid hydroperoxides in the hepatocytes. The metabolomic analysis of AL1—the bioactive LDAI extract—using both LC-MS/MS and 1D-NMR [1H, 13C, and Dept (135 and 90)] approaches revealed that AL1 contains mainly carbohydrates and glucoside metabolites, including iridoid glucosides, as well as minor amino acids, organosulfur compounds, and organic acids such as the antioxidant ascorbic acid (KA2 = S13), and their derivatives, suggesting that AL1 could be a potential resource for the development of functional foods and in drug discovery targeting MAFLD/MASH and other related diseases. Full article
(This article belongs to the Special Issue Antioxidant Capacity of Natural Compounds from Vegetable Matrices)
Show Figures

Figure 1

13 pages, 741 KiB  
Article
A Comparative Study of LC-MS and FIA-(ESI)MS for Quantitation of S-Allyl-L-Cysteine in Aged Garlic Supplements
by Ignacio Jiménez-Amezcua, Marina Díez-Municio, Ana Isabel Ruiz-Matute and Ana Cristina Soria
Foods 2024, 13(17), 2645; https://doi.org/10.3390/foods13172645 - 23 Aug 2024
Cited by 1 | Viewed by 2490
Abstract
The increasing consumption of food supplements demands the development of improved analytical methodologies to ensure their quality and authenticity. In this paper, two new approaches, liquid chromatography coupled to mass spectrometry (LC-MS) and flow injection analysis-(electrospray ionization) mass spectrometry (FIA-(ESI)MS), were optimized and [...] Read more.
The increasing consumption of food supplements demands the development of improved analytical methodologies to ensure their quality and authenticity. In this paper, two new approaches, liquid chromatography coupled to mass spectrometry (LC-MS) and flow injection analysis-(electrospray ionization) mass spectrometry (FIA-(ESI)MS), were optimized and validated for their application in the quantitative analysis of bioactive S-allyl-L-cysteine (SAC) in commercial aged garlic supplements (AGS). Although both methodologies were found to be useful for the sensitive and precise quantitation of SAC, the LC-MS approach allowed the differential determination of SAC and its bioactive diastereoisomer, S-1-propenyl-L-cysteine (S1PC), together with the identification of a number of organosulfur compounds typical of garlic. Mass fingerprints by FIA-(ESI)MS were proposed as an advantageous alternative to LC-MS analysis when the fast (4 min/sample) screening of AGS for their SAC content is intended, as in applications aimed at high-throughput quality control or standardization. Finally, the results gathered by the application of these two methodologies evidenced the highly variable composition of commercial AGS, as well as the identification of a number of potential composition frauds affecting their genuineness and benefits on health. Full article
Show Figures

Figure 1

36 pages, 2444 KiB  
Review
Alliums as Potential Antioxidants and Anticancer Agents
by Kanivalan Iwar, Kingsley Ochar, Yun Am Seo, Bo-Keun Ha and Seong-Hoon Kim
Int. J. Mol. Sci. 2024, 25(15), 8079; https://doi.org/10.3390/ijms25158079 - 24 Jul 2024
Cited by 7 | Viewed by 5087
Abstract
The genus Allium plants, including onions, garlic, leeks, chives, and shallots, have long been recognized for their potential health benefits, particularly in oxidative and cancer prevention. Among them, onions and garlic have been extensively studied, unveiling promising biological activities that are indicative of [...] Read more.
The genus Allium plants, including onions, garlic, leeks, chives, and shallots, have long been recognized for their potential health benefits, particularly in oxidative and cancer prevention. Among them, onions and garlic have been extensively studied, unveiling promising biological activities that are indicative of their potential as potent antioxidant and anticancer agents. Research has revealed a rich repository of bioactive compounds in Allium species, highlighting their antioxidative properties and diverse mechanisms that target cancer cells. Compounds such as allicin, flavonoids, and organosulfur compounds (OSCs) exhibit notable antioxidant and anticancer properties, affecting apoptosis induction, cell cycle arrest, and the inhibition of tumor proliferation. Moreover, their antioxidant and anti-inflammatory attributes enhance their potential in cancer therapy. Studies exploring other Allium species beyond onions and garlic have revealed similar biological activities, suggesting a broad spectrum of natural products that could serve as promising candidates for developing novel anticancer treatments. Understanding the multifaceted potential of Allium plants will pave the way for innovative strategies in oxidative and cancer treatment and prevention, offering new avenues for pharmaceutical research and dietary interventions. Therefore, in this review, we compile an extensive analysis of the diversity of various Allium species, emphasizing their remarkable potential as effective agents. Full article
Show Figures

Figure 1

17 pages, 1652 KiB  
Article
Bioaccessible Organosulfur Compounds in Broccoli Stalks Modulate the Inflammatory Mediators Involved in Inflammatory Bowel Disease
by Antonio Costa-Pérez, Paola Sánchez-Bravo, Sonia Medina, Raúl Domínguez-Perles and Cristina García-Viguera
Int. J. Mol. Sci. 2024, 25(2), 800; https://doi.org/10.3390/ijms25020800 - 8 Jan 2024
Cited by 5 | Viewed by 2652
Abstract
Inflammatory diseases are strongly associated with global morbidity and mortality. Several mediators are involved in this process, including proinflammatory interleukins and cytokines produced by damaged tissues that, somehow, act as initiators of the autoreactive immune response. Bioactive compounds present in plant-based foods and [...] Read more.
Inflammatory diseases are strongly associated with global morbidity and mortality. Several mediators are involved in this process, including proinflammatory interleukins and cytokines produced by damaged tissues that, somehow, act as initiators of the autoreactive immune response. Bioactive compounds present in plant-based foods and byproducts have been largely considered active agents with the potential to treat or prevent inflammatory diseases, being a valuable alternative to traditional therapeutic agents used nowadays, which present several side effects. In this regard, the present research uncovers the anti-inflammatory activity of the bioaccessible fraction of broccoli stalks processed, by applying different conditions that render specific concentrations of bioactive sulforaphane (SFN). The raw materials’ extracts exhibited significantly different contents of total glucosinolates (GSLs) that ranged between 3993.29 and 12,296.48 mg/kg dry weight (dw), with glucoraphanin as the most abundant one, followed by GI and GE. The indolic GSLs were represented by hydroxy-glucobrassicin, glucobrassicin, methoxy-glucobrassicin, and neo-glucobrassicin, with the two latter as the most abundant. Additionally, SFN and indole-3-carbinol were found in lower concentrations than the corresponding GSL precursors in the raw materials. When exploring the bioaccessibility of these organosulfur compounds, the GSL of all matrices remained at levels lower than the limit of detection, while SFN was the only breakdown product that remained stable and at quantifiable concentrations. The highest concentration of bioaccessible SFN was provided by the high-ITC materials (~4.00 mg/kg dw). The results retrieved on the cytotoxicity of the referred extracts evidenced that the range of supplementation of growth media tested (0.002–430.400 µg of organosulfur compounds/mL) did not display cytotoxic effects on Caco-2 cells. The obtained extracts were assessed based on their capacity to reduce the production of key proinflammatory cytokines (interleukin 6 (IL-6), IL-8, and TNF-α) by the intestinal epithelium. Most of the tested processing conditions provided plant material with significant anti-inflammatory activity and the absence of cytotoxic effects. These data confirm that SFN from broccoli stalks, processed to optimize the bioaccessible concentration of SFN, may be potential therapeutic leads to treat or prevent human intestinal inflammation. Full article
Show Figures

Figure 1

10 pages, 1605 KiB  
Communication
‘Kombucha’-like Beverage of Broccoli By-Products: A New Dietary Source of Bioactive Sulforaphane
by Berta María Cánovas, Cristina García-Viguera, Sonia Medina and Raúl Domínguez-Perles
Beverages 2023, 9(4), 88; https://doi.org/10.3390/beverages9040088 - 12 Oct 2023
Cited by 3 | Viewed by 2729
Abstract
The objective of this work is the development of a new fermented beverage (‘kombucha’-like), enriched with broccoli by-products as an ingredient, a source of organosulfur compounds, which could be biotransformed into more bioaccessible, bioavailable, and bioactive metabolites. The new beverages have shown variations [...] Read more.
The objective of this work is the development of a new fermented beverage (‘kombucha’-like), enriched with broccoli by-products as an ingredient, a source of organosulfur compounds, which could be biotransformed into more bioaccessible, bioavailable, and bioactive metabolites. The new beverages have shown variations in the physicochemical (pH, 3.6–6.3; acidity, 0.65–1.39 g/L; °Brix, 4.63–8.20). Moreover, the phytochemical characterization has demonstrated different degrees of metabolization of the glucosinolates, leached during the infusion of the plant material into isothiocyanates (sulforaphane in concentrations up to 31.39 µg/100 mL) and its metabolic derivatives (sulforaphane-N-acetylcysteine in concentrations up to 5.37 µg/100 mL). Therefore, these results demonstrate that the increase in the concentration of the bioactive compounds concentration would provide higher bioavailability and health benefits. This is especially relevant with regard to anti-inflammatory activity. Reporting additional proof of enhanced biological benefits will boost the development of new functional beverages. Full article
Show Figures

Graphical abstract

20 pages, 4314 KiB  
Review
Applications and Opportunities in Using Disulfides, Thiosulfinates, and Thiosulfonates as Antibacterials
by Lindsay Blume, Timothy E. Long and Edward Turos
Int. J. Mol. Sci. 2023, 24(10), 8659; https://doi.org/10.3390/ijms24108659 - 12 May 2023
Cited by 9 | Viewed by 3304
Abstract
Sulfur-containing molecules have a long history of bioactivity, especially as antibacterial agents in the fight against infectious pathogens. Organosulfur compounds from natural products have been used to treat infections throughout history. Many commercially available antibiotics also have sulfur-based moieties in their structural backbones. [...] Read more.
Sulfur-containing molecules have a long history of bioactivity, especially as antibacterial agents in the fight against infectious pathogens. Organosulfur compounds from natural products have been used to treat infections throughout history. Many commercially available antibiotics also have sulfur-based moieties in their structural backbones. In the following review, we summarize sulfur-containing antibacterial compounds, focusing on disulfides, thiosulfinates, and thiosulfonates, and opportunities for future developments in the field. Full article
(This article belongs to the Special Issue Latest Review Papers in Biochemistry 2023)
Show Figures

Figure 1

32 pages, 3779 KiB  
Review
Allium Species in the Balkan Region—Major Metabolites, Antioxidant and Antimicrobial Properties
by Sandra Vuković, Jelena B. Popović-Djordjević, Aleksandar Ž. Kostić, Nebojša Dj. Pantelić, Nikola Srećković, Muhammad Akram, Umme Laila and Jelena S. Katanić Stanković
Horticulturae 2023, 9(3), 408; https://doi.org/10.3390/horticulturae9030408 - 22 Mar 2023
Cited by 34 | Viewed by 7069
Abstract
Ever since ancient times, Allium species have played a significant role in the human diet, in traditional medicine for the treatment of many ailments, and in officinal medicine as a supplemental ingredient. The major metabolites of alliums, as well as their antioxidant and [...] Read more.
Ever since ancient times, Allium species have played a significant role in the human diet, in traditional medicine for the treatment of many ailments, and in officinal medicine as a supplemental ingredient. The major metabolites of alliums, as well as their antioxidant and antimicrobial properties, with an emphasis on the species most represented in the Balkan region, are discussed in this review. Due to its richness in endemic species, the Balkan region is considered the genocenter of alliums. There are 56 recorded Allium species in the Balkans, and 17 of them are endemic. The most common and well-studied Allium species in the Balkans are A. cepa (onion), A. sativum (garlic), A. ampeloprasum (leek), A. schoenoprasum (chives), A. fistulosum (Welsh onion), and A. ursinum (wild garlic or bear’s garlic), which are known for their pungent taste and smell, especially noticeable in garlic and onion, and attributed to various organosulfur compounds. These plants are valued for their macronutrients and are used as desirable vegetables and spices. Additionally, phytochemicals such as organosulfur compounds, phenolics, fatty acids, and saponins are associated with the antioxidant and antimicrobial properties of these species, among many other bioactivities. All parts of the plant including the bulb, peel, clove, leaf, pseudostem, root, flower, and seed exhibit antioxidant properties in different in vitro assays. The characteristic phytocompounds that contribute to the antimicrobial activity of alliums include allicin, ajoene, allyl alcohol, and some diallyl sulfides. Nanoparticles synthesized using Allium species are also recognized for their notable antimicrobial properties. Full article
(This article belongs to the Special Issue Phytochemical Composition and Bioactivity of Horticultural Products)
Show Figures

Graphical abstract

15 pages, 1930 KiB  
Article
The Effect of Different Storage Conditions on Phytochemical Composition, Shelf-Life, and Bioactive Compounds of Voghiera Garlic PDO
by Paola Tedeschi, Federica Brugnoli, Stefania Merighi, Silvia Grassilli, Manuela Nigro, Martina Catani, Stefania Gessi, Valeria Bertagnolo, Alessia Travagli, Maria Fiorenza Caboni and Alberto Cavazzini
Antioxidants 2023, 12(2), 499; https://doi.org/10.3390/antiox12020499 - 16 Feb 2023
Cited by 10 | Viewed by 3679
Abstract
Voghiera garlic is an Italian white garlic variety which obtained in 2010 the Protected Designation of Origin. It is widely used for culinary purposes or as an ingredient for supplement production due to its phytochemical compositions. The storage conditions seem to be crucial [...] Read more.
Voghiera garlic is an Italian white garlic variety which obtained in 2010 the Protected Designation of Origin. It is widely used for culinary purposes or as an ingredient for supplement production due to its phytochemical compositions. The storage conditions seem to be crucial to retain the high quality of garlic bulbs and their by-products, taking into account the high importance of organosulfur and phenolic compounds for the bioactive potency of garlic and its shelf-life. This study aims to examine the effect of storage on the phytochemical composition, biological effects, and shelf-life of Voghiera garlic PDO. In detail, we considered (i) −4 °C (industrial storage) for 3, 6, and 9 months; (ii) +4 °C for 3 months (home conservation), and (iii) −4 °C for 3 months, plus +4 °C for another 3 months. We focused our attention on the organosulfur compounds, total condensed tannins, flavonoids, phenolic compounds, and related antioxidant activity changes during the storage period. To evaluate the bioactive effects, the Voghiera garlic extracts at different storage conditions were administered to a breast cancer cell line, while antioxidant and anti-inflammatory activity was detected using macrophage RAW 264.7 cells. We observed a decrease in sulfur compounds after 6 months which correlated to a decrease in bioactive effects, while the number of antioxidant compounds was stable during the storage period, showing the good effect of refrigerated temperature in maintaining garlic bulb shelf-life. Full article
(This article belongs to the Special Issue Biological Potential of Antioxidant Compounds from Vegetable Sources)
Show Figures

Graphical abstract

28 pages, 3451 KiB  
Article
Breynia cernua: Chemical Profiling of Volatile Compounds in the Stem Extract and Its Antioxidant, Antibacterial, Antiplasmodial and Anticancer Activity In Vitro and In Silico
by Hesti Lina Wiraswati, Nisa Fauziah, Gita Widya Pradini, Dikdik Kurnia, Reza Abdul Kodir, Afiat Berbudi, Annisa Retno Arimdayu, Amila Laelalugina, Supandi and Ilma Fauziah Ma'ruf
Metabolites 2023, 13(2), 281; https://doi.org/10.3390/metabo13020281 - 15 Feb 2023
Cited by 17 | Viewed by 4961
Abstract
Breynia cernua has been used as an alternative medicine for wounds, smallpox, cervical cancer, and breast cancer. This plant is a potential source of new plant-derived drugs to cure numerous diseases for its multiple therapeutic functions. An in vitro study revealed that the [...] Read more.
Breynia cernua has been used as an alternative medicine for wounds, smallpox, cervical cancer, and breast cancer. This plant is a potential source of new plant-derived drugs to cure numerous diseases for its multiple therapeutic functions. An in vitro study revealed that the methanol extract of B. cernua (stem) exhibits antioxidant activity according to DPPH and SOD methods, with IC50 values of 33 and 8.13 ppm, respectively. The extract also exerts antibacterial activity against Staphylococcus aureus with minimum bactericidal concentration of 1875 ppm. Further analysis revealed that the extract with a concentration of 1–2 ppm protects erythrocytes from the ring formation stage of Plasmodium falciparum, while the extract with a concentration of 1600 ppm induced apoptosis in the MCF-7 breast cancer cell line. GC–MS analysis showed 45 bioactive compounds consisting of cyclic, alkyl halide, organosulfur, and organoarsenic compounds. Virtual screening via a blind docking approach was conducted to analyze the binding affinity of each metabolite against various target proteins. The results unveiled that two compounds, namely, N-[β-hydroxy-β-[4-[1-adamantyl-6,8-dichloro]quinolyl]ethyl]piperidine and 1,3-phenylene, bis(3-phenylpropenoate), demonstrated the best binding score toward four tested proteins with a binding affinity varying from −8.3 to −10.8 kcal/mol. Site-specific docking analysis showed that the two compounds showed similar binding energy with native ligands. This finding indicated that the two phenolic compounds could be novel antioxidant, antibacterial, antiplasmodial, and anticancer drugs. A thorough analysis by monitoring drug likeness and pharmacokinetics revealed that almost all the identified compounds can be considered as drugs, and they have good solubility, oral bioavailability, and synthetic accessibility. Altogether, the in vitro and in silico analysis suggested that the extract of B. cernua (stem) contains various compounds that might be correlated with its bioactivities. Full article
Show Figures

Figure 1

Back to TopTop