‘Kombucha’-like Beverage of Broccoli By-Products: A New Dietary Source of Bioactive Sulforaphane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Plant Material and Beverage Development
2.3. Physical-Chemical Parameters
2.4. Analysis of Glucosinolates via HPLC-PDA-ESI/MSn
2.5. Analysis of Isothiocyanates and Indoles via UHPLC-ESI-QqQ-MS/
2.6. Statistical Analysis
3. Results
3.1. Physical-Chemical Parameters
3.2. Glucosinolate Content of Plant Material
3.3. Bioactive Organosulfur Compounds Content of Broccoli Kombucha
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McGovern, P.E.; Zhang, J.; Tang, J.; Zhang, Z.; Hall, G.R.; Moreau, R.A.; Nuñez, A.; Butrym, E.D.; Richards, M.P.; Wang, C.S.; et al. Fermented Beverages of Pre- and Proto-Historic China. Proc. Natl. Acad. Sci. USA 2004, 101, 17593–17598. [Google Scholar] [CrossRef]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef]
- Tamang, J.P.; Shin, D.H.; Jung, S.J.; Chae, S.W. Functional Properties of Microorganisms in Fermented Foods. Front. Microbiol. 2016, 7, 578. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, D.; Nigam, P.S. Probiotics, Prebiotics, Synbiotics, and Fermented Foods as Potential Biotics in Nutrition Improving Health via Microbiome-Gut-Brain Axis. Fermentation 2022, 8, 303. [Google Scholar] [CrossRef]
- Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Review: Diversity of Microorganisms in Global Fermented Foods and Beverages. Front. Microbiol. 2016, 7, 377. [Google Scholar] [CrossRef]
- Cuamatzin-garcía, L.; Rodríguez-rugarcía, P.; El-Kassis, E.G.; Galicia, G.; Meza-jiménez, M.D.L.; Baños-lara, M.D.R.; Zaragoza-maldonado, D.S.; Pérez-armendáriz, B. Traditional Fermented Foods and Beverages from around the World and Their Health Benefits. Microorganisms 2022, 10, 1151. [Google Scholar] [CrossRef] [PubMed]
- Kitwetcharoen, H.; Phung, L.T.; Klanrit, P.; Thanonkeo, S.; Tippayawat, P.; Yamada, M.; Thanonkeo, P. Kombucha Healthy Drink—Recent Advances in Production, Chemical Composition and Health Benefits. Fermentation 2023, 9, 48. [Google Scholar] [CrossRef]
- Tran, T.; Grandvalet, C.; Verdier, F.; Martin, A.; Alexandre, H.; Tourdot-Maréchal, R. Microbiological and Technological Parameters Impacting the Chemical Composition and Sensory Quality of Kombucha. Compr. Rev. Food Sci. Food Saf. 2020, 4, 2050–2070. [Google Scholar] [CrossRef]
- Kapp, J.M.; Sumner, W. Kombucha: A Systematic Review of the Empirical Evidence of Human Health Benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef]
- Sánchez-Bravo, P.; Abellán, Á.; Zapata, P.J.; García-Viguera, C.; Domínguez-Perles, R.; Giménez, M.J. Broccoli Products Supplemented Beers Provide a Sustainable Source of Dietary Sulforaphane. Food Biosci. 2023, 51, 102259. [Google Scholar] [CrossRef]
- Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Waking Up from Four Decades’ Long Dream of Valorizing Agro-Food Byproducts: Toward Practical Applications of the Gained Knowledge. J. Agric. Food Chem. 2018, 66, 3069–3073. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Perles, R.; Martínez-Ballesta, M.C.; Carvajal, M.; García-Viguera, C.; Moreno, D.A. Broccoli-Derived by-Products—A Promising Source of Bioactive Ingredients. J. Food Sci. 2010, 75, C383–C392. [Google Scholar] [CrossRef] [PubMed]
- Galádová, H.; Polozsányi, Z.; Breier, A.; Šimkovič, M. Sulphoraphane Affinity-Based Chromatography for the Purification of Myrosinase from Lepidium sativum Seeds. Biomolecules 2022, 12, 406. [Google Scholar] [CrossRef] [PubMed]
- Treasure, K.; Harris, J.; Williamson, G. Exploring the Anti-Inflammatory Activity of Sulforaphane. Immunol. Cell Biol. 2023, 101, 805–828. [Google Scholar] [CrossRef]
- Costa-Pérez, A.; Moreno, D.A.; Periago, P.M.; García-Viguera, C.; Domínguez-Perles, R. A New Food Ingredient Rich in Bioaccessible (Poly)Phenols (and Glucosinolates) Obtained from Stabilized Broccoli Stalks. Foods 2022, 11, 1734. [Google Scholar] [CrossRef]
- Emiljanowicz, K.E.; Malinowska-Pańczyk, E. Kombucha from Alternative Raw Materials—The Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3185–3194. [Google Scholar] [CrossRef]
- Baenas, N.; Suárez-Martínez, C.; García-Viguera, C.; Moreno, D.A. Bioavailability and New Biomarkers of Cruciferous Sprouts Consumption. Food Res. Int. 2017, 100, 497–503. [Google Scholar] [CrossRef]
- Abellán, Á.; Domínguez-Perles, R.; García-Viguera, C.; Moreno, D.A. Evidence on the Bioaccessibility of Glucosinolates and Breakdown Products of Cruciferous Sprouts by Simulated In Vitro Gastrointestinal Digestion. Int. J. Mol. Sci. 2021, 22, 11046. [Google Scholar] [CrossRef]
- Artanti, N.; Susilowati, A.; Aspiyanto; Lotulung, P.D.N.; Maryati, Y. Antioxidant Activity of Fermented Broccoli and Spinach by Kombucha Culture. AIP Conf. Proc. 2017, 1904, 020069. [Google Scholar]
- Dominguez-Perles, R.; Medina, S.; Moreno, D.Á.; García-Viguera, C.; Ferreres, F.; Gil-Izquierdo, Á. A New Ultra-Rapid UHPLC/MS/MS Method for Assessing Glucoraphanin and Sulforaphane Bioavailability in Human Urine. Food Chem. 2014, 143, 132–138. [Google Scholar] [CrossRef]
- Para Obtener, Q.; Grado, E.L.; De, A.; Alvarado, D.C.; Codirectora, O.; Anahí, D.; Borrás, J.; Codirector, E.; Campos, J.; Asesor, G.; et al. Resistencia de Microorganismos Aislados de Kombucha a Condiciones Del Tracto Gastrointestinal in Vitro. Tesis LCA Mónica Aidee Guzmán Ortiz 2021, 1, 1–80. [Google Scholar]
- Muhialdin, B.J.; Osman, F.A.; Muhamad, R.; Wan Sapawi, C.W.N.S.C.; Anzian, A.; Voon, W.W.Y.; Meor Hussin, A.S. Effects of Sugar Sources and Fermentation Time on the Properties of Tea Fungus (Kombucha) Beverage. Int. Food Res. J. 2019, 26, 481–487. [Google Scholar]
- Wang, S.; Li, C.; Wang, Y.; Wang, S.; Zou, Y.; Sun, Z.; Yuan, L. Changes on Physiochemical Properties and Volatile Compounds of Chinese Kombucha during Fermentation. Food Biosci. 2023, 55, 103029. [Google Scholar] [CrossRef]
- Wei, L.Y.; Zhang, J.K.; Zheng, L.; Chen, Y. The Functional Role of Sulforaphane in Intestinal Inflammation: A Review. Food Funct. 2022, 13, 514–529. [Google Scholar] [CrossRef] [PubMed]
- Serra Colomer, M.; Funch, B.; Forster, J. The Raise of Brettanomyces Yeast Species for Beer Production. Curr. Opin. Biotechnol. 2019, 56, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Abellán, Á.; Domínguez-Perles, R.; Giménez, M.J.; Zapata, P.J.; Valero, D.; García-Viguera, C. The Development of a Broccoli Supplemented Beer Allows Obtaining a Valuable Dietary Source of Sulforaphane. Food Biosci. 2021, 39, 100814. [Google Scholar] [CrossRef]
- Costa-Pérez, A.; Núñez-Gómez, V.; Baenas, N.; Di Pede, G.; Achour, M.; Manach, C.; Mena, P.; Del Rio, D.; García-Viguera, C.; Moreno, D.A.; et al. Systematic Review on the Metabolic Interest of Glucosinolates and Their Bioactive Derivatives for Human Health. Nutrients 2023, 15, 1424. [Google Scholar] [CrossRef]
- Albaser, A.; Kazana, E.; Bennett, M.H.; Cebeci, F.; Luang-In, V.; Spanu, P.D.; Rossiter, J.T. Discovery of a Bacterial Glycoside Hydrolase Family 3 (GH3) β-Glucosidase with Myrosinase Activity from a Citrobacter Strain Isolated from Soil. J. Agric. Food Chem. 2016, 64, 1520–1527. [Google Scholar] [CrossRef]
- Pei, J.; Pang, Q.; Zhao, L.; Fan, S.; Shi, H. Thermoanaerobacterium Thermosaccharolyticum β-Glucosidase: A Glucose-Tolerant Enzyme with High Specific Activity for Cellobiose. Biotechnol. Biofuels 2012, 5, 31. [Google Scholar] [CrossRef]
- Zheng, Z.; Lin, K.; Hu, Y.; Zhou, Y.; Ding, X.; Wang, Y.; Wu, W. Sulforaphane Metabolites Inhibit Migration and Invasion via Microtubule-Mediated Claudins Dysfunction or Inhibition of Autolysosome Formation in Human Non-Small Cell Lung Cancer Cells. Cell Death Dis. 2019, 10, 259. [Google Scholar] [CrossRef]
- Liu, H.J.; Wang, L.; Kang, L.; Du, J.; Li, S.; Cui, H.X. Sulforaphane-N-Acetyl-Cysteine Induces Autophagy Through Activation of ERK1/2 in U87MG and U373MG Cells. Cell Physiol. Biochem. 2018, 51, 528–542. [Google Scholar] [CrossRef] [PubMed]
Glucosinolate | Retention Time (min) | Parental Ion (m/z [M-H]−) | Ionic Product (m/z MS2[M-H]−) |
---|---|---|---|
Glucoiberin (GI) | 5.3 | 422 | 259, 97 |
Glucoraphanin (GR) | 6.0 | 436 | 372, 259, 97 |
Hydroxyglucobrassicin (HGB) | 16.2 | 463 | 285, 241, 97 |
Glucoerucine (GE) | 18.9 | 420 | 259, 97 |
Glucobrassicin (GB) | 20.5 | 447 | 404, 259, 97 |
Gluconasturtine (PE) | 23.0 | 422 | 259, 97 |
Methoxyglucobrassicin (MGB) | 25.6 | 477 | 259, 97 |
Neoglucobrassicin (NGB) | 27.8 | 477 | 446, 259, 97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cánovas, B.M.; García-Viguera, C.; Medina, S.; Domínguez-Perles, R. ‘Kombucha’-like Beverage of Broccoli By-Products: A New Dietary Source of Bioactive Sulforaphane. Beverages 2023, 9, 88. https://doi.org/10.3390/beverages9040088
Cánovas BM, García-Viguera C, Medina S, Domínguez-Perles R. ‘Kombucha’-like Beverage of Broccoli By-Products: A New Dietary Source of Bioactive Sulforaphane. Beverages. 2023; 9(4):88. https://doi.org/10.3390/beverages9040088
Chicago/Turabian StyleCánovas, Berta María, Cristina García-Viguera, Sonia Medina, and Raúl Domínguez-Perles. 2023. "‘Kombucha’-like Beverage of Broccoli By-Products: A New Dietary Source of Bioactive Sulforaphane" Beverages 9, no. 4: 88. https://doi.org/10.3390/beverages9040088
APA StyleCánovas, B. M., García-Viguera, C., Medina, S., & Domínguez-Perles, R. (2023). ‘Kombucha’-like Beverage of Broccoli By-Products: A New Dietary Source of Bioactive Sulforaphane. Beverages, 9(4), 88. https://doi.org/10.3390/beverages9040088