Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,327)

Search Parameters:
Keywords = bioactive food components

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 46712 KB  
Article
Synergistic Mechanistic Insights into Anti-T2DM Benefits of Lentinula edodes: A Peptide- and Polysaccharide-Based Network Pharmacology and Molecular Docking Study
by Hui-Ke Ma, Lei Meng, Liang Shen and Hong-Fang Ji
Foods 2026, 15(3), 453; https://doi.org/10.3390/foods15030453 - 27 Jan 2026
Abstract
In recent years, dietary intervention has garnered significant attention for T2DM prevention and adjunctive treatment. Lentinula edodes (commonly known as shiitake mushroom), a common edible fungus, has been demonstrated to improve T2DM, primarily attributed to its main bioactive components like peptides and polysaccharides, [...] Read more.
In recent years, dietary intervention has garnered significant attention for T2DM prevention and adjunctive treatment. Lentinula edodes (commonly known as shiitake mushroom), a common edible fungus, has been demonstrated to improve T2DM, primarily attributed to its main bioactive components like peptides and polysaccharides, while their synergistic characteristics are still not fully explained. Therefore, this study investigated the anti-T2DM molecular mechanisms of L. edodes peptides and polysaccharides by integrating network pharmacology and molecular docking. First, systematic searches of the PubMed and HERB databases using keywords such as “Lentinula edodes peptides”, “Lentinula edodes polysaccharides” and “T2DM” and “Lentinula edodes/shiitake mushroom” yielded 25 peptides and 14 polysaccharides. Second, network pharmacology analysis revealed 541 common interaction targets between these peptides/polysaccharides and T2DM. Topological analysis further identified nine core targets: ESR1, MAPK1, AKT1, SRC, EGFR, STAT3, JUN, PIK3CA, and PIK3R1. Third, pathway enrichment analysis showed that these core targets were significantly enriched within the PI3K-Akt signaling pathway and the AGE-RAGE signaling pathway in diabetic complications, suggesting potential anti-T2DM effects through regulation of these key pathways. Finally, molecular docking validation ensured strong binding affinities between peptides/polysaccharides and some core targets, with particularly prominent binding capacities observed for peptides VF and LDELEK with EGFR; peptides KIGSRSRFDVT, LDYGKL, and EDLRLP along with polysaccharides D-glucan and β-glucan with PIK3CA; and peptide DVFAHF with PIK3R1. In summary, this study revealed that L. edodes peptides and polysaccharides may exert synergistic anti-T2DM effects via the regulation of key signaling pathways, including the PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, and the AGE-RAGE signaling pathway in diabetic complications, through their actions on critical targets such as ESR1, PIK3CA, and PIK3R1. These results offer a synergistic mechanism for the anti-T2DM effect of L. edodes, which could be helpful for the development of functional foods and drugs derived from L. edodes. Full article
Show Figures

Figure 1

16 pages, 1154 KB  
Article
Bioactive Fiber and Polyphenols: Composition and Association with Fecal Lipid Profiles in Mango Bagasse and Peel Confectionery
by Yuritzi Barbosa, Alejandro Castrejon, Marcela Gaytán-Martínez, Jimena Álvarez-Chávez, Adriana Chico-Peralta, Mar Villamiel, Marcelo Hernández-Salazar and Aurea K. Ramírez-Jiménez
Int. J. Mol. Sci. 2026, 27(3), 1166; https://doi.org/10.3390/ijms27031166 (registering DOI) - 23 Jan 2026
Viewed by 93
Abstract
Dietary fiber and phenolic compounds are key bioactives in gastrointestinal and metabolic health; however, their compositional features and metabolic implications have rarely been studied as an integrated system within realistic food matrices. Mango bagasse confectionery previously demonstrated prebiotic potential, and its reformulation with [...] Read more.
Dietary fiber and phenolic compounds are key bioactives in gastrointestinal and metabolic health; however, their compositional features and metabolic implications have rarely been studied as an integrated system within realistic food matrices. Mango bagasse confectionery previously demonstrated prebiotic potential, and its reformulation with extruded mango peel showed hepatoprotective effects linked to gut microbiota modulation. In this study, mango bagasse and peel confectionery (MBPC) was characterized and its metabolic impact was evaluated in vivo. Wistar rats were fed standard or high-fat diets with or without MBPC supplementation, followed by fecal fatty acid analysis. MBPC exhibited a high dietary fiber content for a confectionery product (25 g total fiber per 100 g), with monomeric profiles indicative of cell wall-derived polysaccharides and pectic components. The fiber fraction showed a low Mw (14.71 ± 0.02 kDa), suggesting a matrix favorable for fiber–phenolic interactions. Phenolic profiling revealed substantial concentrations of free (9.0 mg/mL) and bound (16.7 mg/mL) phenolic compounds. Fecal fatty acid profiles were diet-dependent, with palmitic acid showing the highest relative abundance, followed by stearic, oleic, and linoleic acids, associated with dietary fiber intake. This study elucidates the structural and metabolic relevance of dietary fiber–phenolic interactions within a formulated food matrix. Full article
(This article belongs to the Special Issue New Advances in Bioactive Compounds)
Show Figures

Figure 1

20 pages, 4309 KB  
Article
Characterization and Optimization of the Ultrasound-Assisted Extraction Process of an Unexplored Amazonian Drupe (Chondrodendron tomentosum): A Novel Source of Anthocyanins and Phenolic Compounds
by Disbexy Huaman-Huaman, Segundo G. Chavez, Laydy Mena-Chacon, José Marcelo-Peña, Hans Minchán-Velayarce and Ralph Rivera-Botonares
Processes 2026, 14(2), 357; https://doi.org/10.3390/pr14020357 - 20 Jan 2026
Viewed by 157
Abstract
This study presents the first comprehensive physicochemical and bioactive characterization of the fruit of Chondrodendron tomentosum Ruiz & Pav. (Menispermaceae). Biometric and physicochemical parameters were characterized across three fruit ripening stages (green, turning, ripe). Additionally, proximate composition was determined in ripe fruits, and [...] Read more.
This study presents the first comprehensive physicochemical and bioactive characterization of the fruit of Chondrodendron tomentosum Ruiz & Pav. (Menispermaceae). Biometric and physicochemical parameters were characterized across three fruit ripening stages (green, turning, ripe). Additionally, proximate composition was determined in ripe fruits, and methanol concentration (25–75%), ultrasonic amplitude (30–70%), and time (1–15 min) were optimized using response surface methodology with a Box–Behnken design. During ripening, weight increased by +47.7% (3.89 to 5.74 g; p < 0.0001), TSS by +26.1% (7.00 to 8.83 °Brix), pH decreased by 32.0% (6.28 to 4.27), and acidity increased by 276% (0.25 to 0.94%). The quadratic models demonstrated high predictive accuracy (R2 > 96.5%; p < 0.004). Optimal conditions (57% methanol, 70% amplitude, and 15 min) maximized total anthocyanin content (120.71 ± 1.89 mg cyanidin-3-glucoside/L), total phenols (672.46 ± 5.84 mg GAE/100 g), and DPPH radical scavenging capacity (5857.55 ± 60.20 µmol Trolox/100 g) in ripe fruits. Unripe fruits do not contain anthocyanins, reaching 46.01 mg C3G/L in turning fruits and 120.71 mg/L in ripe fruits (162% higher than turning fruits). Principal component analysis (90.6% variance) revealed synchronized co-accumulation of anthocyanins and phenols, enhanced by vacuolar acidification. These results suggest ripe C. tomentosum fruits as a potential source for natural colorants, nutraceuticals, and functional foods, pending prior development of green, human-safe extraction processes. Full article
(This article belongs to the Special Issue Advances in Green Extraction and Separation Processes)
Show Figures

Graphical abstract

23 pages, 5037 KB  
Article
Experimental Valorization of Recycled Palm Oil in Topical Formulations: Preparation, Characterization, and Antimicrobial Assessment
by Paula Rusu, Andreea Creteanu, Alina-Mirela Ipate, Maricel Danu, Mirela-Fernanda Zaltariov, Daniela Rusu, Cristina Gabriela Tuchilus, Gladiola Tantaru and Gabriela Lisa
Molecules 2026, 31(2), 335; https://doi.org/10.3390/molecules31020335 - 19 Jan 2026
Viewed by 136
Abstract
Sustainable strategies for revalorizing food industry by-products are increasingly relevant in the development of modern experimental dermato-cosmetic formulations. In this study, two semisolid cosmetic creams (R10 and EM-R10) were designed using recycled palm oil—physically purified after intensive frying—as the lipid phase. The recycled [...] Read more.
Sustainable strategies for revalorizing food industry by-products are increasingly relevant in the development of modern experimental dermato-cosmetic formulations. In this study, two semisolid cosmetic creams (R10 and EM-R10) were designed using recycled palm oil—physically purified after intensive frying—as the lipid phase. The recycled oil was incorporated strictly within a controlled experimental framework and does not imply cosmetic-grade regulatory compliance. The formulations incorporated distinct bioactive profiles: R10 combined apricot and pineapple extracts with lime essential oil, while EM-R10 integrated fir bud and green tea extracts alongside the same essential oil. Both preparations contained Fragard as a preservative and niacinamide and panthenol as vitaminic components. The physicochemical properties of the formulations were assessed through rheology, confocal microscopy, ATR-FTIR, SEM, DSC, and contact angle measurements. Antimicrobial activity was evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans using disk diffusion and broth microdilution assays. The results demonstrate that, despite partial thermal degradation, recycled palm oil retains modified structural features that influence formulation-related properties relevant to topical systems. EM-R10 showed superior spreadability, adhesion, stability, and diffusion-related performance, as well as improved antimicrobial activity, within the investigated experimental conditions, highlighting recycled palm oil as a promising sustainable lipid phase for experimental dermato-cosmetic formulations, pending further purification, toxicological evaluation, and regulatory compliance assessment. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

26 pages, 3193 KB  
Article
Application of Brassica juncea and Raphanus sativus Sprout Extracts as Active Agents in Chitosan-Based Edible Coatings: Evaluation of Physicochemical and Biological Properties
by Arash Moeini, Roméo Arago Dougué Kentsop, Aspen Beals, Monica Mattana, Massimiliano Marvasi, Lucie Coquard, Marianna Gregorio, Judyta Cielecka-Piontek, Annamaria Genga, Aleksandra Nesic, Giovanna Lo Vecchio, Sarai Agustin Salazar, Thomas Becker and Pierfrancesco Cerruti
Polymers 2026, 18(2), 252; https://doi.org/10.3390/polym18020252 - 16 Jan 2026
Viewed by 316
Abstract
The use of natural bioactive compounds in edible coatings provides a sustainable approach to reducing food spoilage and meeting consumer demand for safer food preservation. In this study, bioactive extracts from Brassica juncea (green mustard, GM) and Raphanus sativus (radish tango, RT) sprouts [...] Read more.
The use of natural bioactive compounds in edible coatings provides a sustainable approach to reducing food spoilage and meeting consumer demand for safer food preservation. In this study, bioactive extracts from Brassica juncea (green mustard, GM) and Raphanus sativus (radish tango, RT) sprouts were encapsulated into zein/chitosan (Z/CH) microparticles (MPs) using a complex coacervation–based encapsulation approach. The encapsulated microparticles (MPs), characterized by FTIR and UV-Vis spectroscopy, demonstrated a high loading efficiency of up to 90% and maintained their antioxidant activity for up to 168 h. TGA and SEM tests confirmed that the edible films produced by incorporating these microparticles (MPs) into polyvinyl alcohol (PVA) and chitosan (CH) matrices had a more uniform microstructure and enhanced heat stability. The Z/CH/RT6:PVA (1:2) and Z/CH/GM6:CH (1:1) formulations of the films showed significant antioxidant and antibacterial action, with up to 22.4% DPPH inhibition and a 1-log decrease in Salmonella enterica CFU, respectively. Overall, the results underscore the promise of sprout-derived microparticles as components for developing active, biodegradable packaging films with improved functional properties. Full article
Show Figures

Figure 1

18 pages, 1305 KB  
Article
Varietal Discrimination of Purple, Red, and White Rice Bran Oils Based on Physicochemical Properties, Bioactive Compounds, and Lipidomic Profiles
by Peng Zheng, Yuyue Qin, Xiaoyu Yin, Jianxin Cao, Shujie Wang and Guiguang Cheng
Molecules 2026, 31(2), 308; https://doi.org/10.3390/molecules31020308 - 15 Jan 2026
Viewed by 199
Abstract
Rice bran oil (RBO) is increasingly valued for its bioactive constituents and associated health benefits. This study presents a comprehensive comparative analysis of RBOs derived from purple (PRBO), red (RRBO), and white (WRBO) rice bran, focusing on their physicochemical properties, fatty-acid profiles, bioactive [...] Read more.
Rice bran oil (RBO) is increasingly valued for its bioactive constituents and associated health benefits. This study presents a comprehensive comparative analysis of RBOs derived from purple (PRBO), red (RRBO), and white (WRBO) rice bran, focusing on their physicochemical properties, fatty-acid profiles, bioactive components, antioxidant activity, oxidative stability, and lipidomics. Our results demonstrate that PRBO consistently exhibited a more favorable fatty-acid composition, characterized by a higher proportion of unsaturated fatty acids and significantly greater concentrations of bioactive compounds (including tocopherols/tocotrienols, γ-oryzanol, phytosterols, and squalene). Accordingly, PRBO showed the highest radical-scavenging activity and storage oxidative stability, followed by RRBO and WRBO. Additionally, untargeted lipidomics using UPLC–MS–MS identified 2908 lipid species spanning 57 subclasses and revealed distinct variety-specific lipid signatures. PRBO was uniquely enriched in lipid species such as ceramide phosphate (CerP) and monogalactosyldiacylglycerol (MGDG). RRBO was characterized by a distinct abundance of sitosteryl esters (SiE), phosphatidic acid (PA), and cardiolipin (CL), while WRBO was distinguished by phosphatidylethanol (PEt), lysodimethylphosphatidylethanolamine (LdMePE), and sphingomyelin (SM). Overall, PRBO possessed not only a broader repertoire of lipid species but also higher relative abundances of nutritionally significant lipids. These results enable quality evaluation and varietal authentication of colored RBOs and guide their targeted use in health-oriented foods and nutritional interventions. Full article
Show Figures

Graphical abstract

17 pages, 719 KB  
Article
Phenolic Composition and Antioxidant Properties of Bee Bread Collected in Three Consecutive Beekeeping Seasons in Poland
by Teresa Szczęsna, Katarzyna Jaśkiewicz, Natalia Skubij and Jacek Jachuła
Molecules 2026, 31(2), 304; https://doi.org/10.3390/molecules31020304 - 15 Jan 2026
Viewed by 201
Abstract
Bee bread contains numerous bioactive compounds, including phenolic compounds, which have been associated with antioxidant properties. In this study, we determined the phenolic composition of Polish bee bread collected over three consecutive years using HPLC-DAD. We also measured total phenolic content (TPC) and [...] Read more.
Bee bread contains numerous bioactive compounds, including phenolic compounds, which have been associated with antioxidant properties. In this study, we determined the phenolic composition of Polish bee bread collected over three consecutive years using HPLC-DAD. We also measured total phenolic content (TPC) and antioxidant activity, expressed as DPPH radical scavenging activity. The highest concentrations were observed for p-coumaric, trans-ferulic, and caffeic acids, as well as for two flavonoids—rutin and hesperidin. The contents of individual phenolic compounds varied across the years of sample collection, with the exception of p-coumaric and vanillic acids. Despite year-to-year differences in TPC, no significant correlation with antioxidant activity (>90% in all samples) was observed, indicating a substantial contribution of non-phenolic compounds to antioxidant capacity. Principal Component Analysis revealed that almost all samples clustered into three groups according to their year of collection. We conclude that the year-to-year variation in phenolic compound content in bee bread is likely attributable to differences in available pollen sources. Our findings expand the current knowledge of the nutritional value of bee bread produced in Poland and strengthen the premises for its use as a functional food. Full article
(This article belongs to the Special Issue Biological Activity and Chemical Composition of Honeybee Products)
Show Figures

Figure 1

22 pages, 1966 KB  
Article
Germination Triggers Substantial Changes in GABA, Polyphenol, Sugar, and Organic Acid Content of Commonly Consumed Legumes
by Daniela Pencheva, Desislava Teneva, Zornica Todorova, Manol Ognyanov, Ani Petrova, Vasil Georgiev, Mariya Pimpilova and Petko Denev
Plants 2026, 15(2), 242; https://doi.org/10.3390/plants15020242 - 13 Jan 2026
Viewed by 334
Abstract
This study investigated the effects of germination on gamma-aminobutyric acid (GABA), free sugars, organic acids, polyphenols, protein content, and antioxidant activity in six legumes (mung beans, Dobrudzha beans, white beans, brown lentils, red lentils and chickpeas). Seeds were germinated for 5 days at [...] Read more.
This study investigated the effects of germination on gamma-aminobutyric acid (GABA), free sugars, organic acids, polyphenols, protein content, and antioxidant activity in six legumes (mung beans, Dobrudzha beans, white beans, brown lentils, red lentils and chickpeas). Seeds were germinated for 5 days at room temperature, with or without an initial freezing pretreatment at −18 °C for 20 h. Daily analysis revealed significant increases in GABA across all legumes, especially chickpeas, which showed an 18-fold rise to 210.5 mg/100 g dry weight (DW), alongside elevated glutamate decarboxylase activity. Total polyphenols increased 3.4-fold in white beans and chickpeas by day five. Antioxidant activity (ORAC) rose in parallel, reaching 123.8 and 83.3 µmol TE/g DW in germinated white beans and chickpeas, compared to 68.4 and 45.4 µmol TE/g DW in non-germinated controls. While protein content remained stable, levels of free sugars (notably maltose) increased during germination. Organic acids rose across all samples as well, with quinic acid being the most abundant and showing the sharpest increase. Initial freezing had a clear effect on enhancing GABA accumulation compared to non-treated seeds, but generally exerted neutral effects on other bioactive components. Overall, germination triggered biochemical transformations in seeds, enriching them with bioactive compounds and enhancing their nutritional and functional properties, with chickpeas emerging as a particularly rich source of GABA, polyphenols, and organic acids, supporting their potential in functional food development. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

31 pages, 3129 KB  
Review
From Traditional Medicinal Plant to Modern Pharmacotherapy: A Comprehensive Review of the Bioactive Compounds and Health Applications of Eucommia ulmoides
by Wanting Xie, Yubo Xiao, Pan Xu, Hui Zheng, Xianping Zeng, Yuhang Wu, Jiani Jiang, Fan Jia, Jianye Yan, Tao Zheng and Yong Yang
Nutrients 2026, 18(2), 234; https://doi.org/10.3390/nu18020234 - 12 Jan 2026
Viewed by 311
Abstract
Eucommia ulmoides Oliv. (E. ulmoides), an endemic tree species in China, holds significant value in traditional Chinese medicine industry and health food. The plant is rich in diverse bioactive compounds, including lignans, iridoids, flavonoids, polysaccharides, E. ulmoides gum, amino acids, and [...] Read more.
Eucommia ulmoides Oliv. (E. ulmoides), an endemic tree species in China, holds significant value in traditional Chinese medicine industry and health food. The plant is rich in diverse bioactive compounds, including lignans, iridoids, flavonoids, polysaccharides, E. ulmoides gum, amino acids, and minerals. These components contribute to a range of pharmacological activities such as anti-inflammatory, antioxidant, antihypertensive, immunomodulatory, and bone-protective effects, which support its long-standing traditional use and emerging clinical and adjunctive applications. While current research has predominantly focused on the bark and leaves, other parts, such as flowers, seeds, stems and roots, remain underexplored despite their substantial potential for medicinal and edible applications. Based on the recent literature, this paper systematically summarized the chemical composition, health benefits, and comprehensive utilization of different parts of E. ulmoides (bark, leaves, flowers, and seeds), aiming to provide a theoretical foundation for the high-value utilization of the entire plant resources of E. ulmoides. As a health-promoting plant resource, E. ulmoides has extensive development potential in applications such as health foods, natural medicines, and agricultural inputs. Future research should prioritize elucidating the synergistic mechanisms among different active compounds, advancing technologies for multi-part utilization, and establishing standardized quality evaluation systems to facilitate broader applications in functional foods, pharmaceuticals, and related interdisciplinary fields. Full article
(This article belongs to the Special Issue Bioactive Ingredients in Plants Related to Human Health—2nd Edition)
Show Figures

Graphical abstract

11 pages, 1700 KB  
Article
Seed Coat Color-Mediated Differences in Nutritional Composition and Antioxidant Activity of Mung Bean
by Miaomiao Wu, Qianyu Tao, Suhua Wang, Yang Yao and Lixia Wang
Agronomy 2026, 16(2), 180; https://doi.org/10.3390/agronomy16020180 - 11 Jan 2026
Viewed by 315
Abstract
The mung bean (Vigna radiata) is rich in nutrients and bioactive compounds and is valuable for its antioxidant content in functional food development. However, mung bean seed coats are discarded or used as a low-value feed owing to their coarse texture. [...] Read more.
The mung bean (Vigna radiata) is rich in nutrients and bioactive compounds and is valuable for its antioxidant content in functional food development. However, mung bean seed coats are discarded or used as a low-value feed owing to their coarse texture. Here, 12 homozygous mung bean lines with different seed coat colors were selected from six recombinant inbred lines. The seed coats and cotyledons were separated and quantitatively analyzed for protein, starch, dietary fiber, polyphenols, flavonoids, vitexin, isovitexin, and antioxidant activities using standard chemical assays and HPLC, followed by statistical analysis and principal component analysis. The cotyledons contained more protein (26.97–28.34%) and starch (50.40–56.25%), whereas the seed coat contained more dietary fiber (74.17–79.93 g/100 g) and bioactive compounds. Polyphenolic compounds were significantly higher in the seed coat than in the cotyledons (p < 0.05) and were positively correlated with seed coat darkness, indicating that the black mung bean had higher bioactive functions. This study provides evidence for mung bean variety improvement and functional food development. Full article
(This article belongs to the Special Issue Cultivar Development of Pulses Crop—2nd Edition)
Show Figures

Figure 1

22 pages, 1557 KB  
Review
Hawthorn (Crataegus monogyna Jacq.): A Review of Therapeutic Potential and Applications
by Jagoda Kępińska-Pacelik and Wioletta Biel
Molecules 2026, 31(2), 226; https://doi.org/10.3390/molecules31020226 - 9 Jan 2026
Viewed by 491
Abstract
Hawthorn (Crataegus monogyna Jacq.) is a medicinal and nutritional plant widely recognized for its rich phytochemical composition and diverse health-promoting properties. The fruit, leaves, and flowers contain significant amounts of polyphenols, flavonoids, flavonols, phenolic acids and dye compounds with antioxidant properties that [...] Read more.
Hawthorn (Crataegus monogyna Jacq.) is a medicinal and nutritional plant widely recognized for its rich phytochemical composition and diverse health-promoting properties. The fruit, leaves, and flowers contain significant amounts of polyphenols, flavonoids, flavonols, phenolic acids and dye compounds with antioxidant properties that contribute to its strong antioxidant capacity. Numerous studies have demonstrated hawthorn’s beneficial effects on cardiovascular health, including regulation of blood pressure, lipid metabolism, and cardiac function. Additionally, hawthorn exhibits anti-inflammatory, antimicrobial, hypolipidemic, and antidiabetic properties, supporting its role in the prevention and management of chronic diseases. Its potential as a functional food ingredient and natural health supplement is increasingly recognized. However, further clinical trials and standardization of bioactive components are needed to confirm its efficacy, safety, and optimal dosage. Overall, hawthorn represents a valuable natural resource for promoting human health and well-being through diet and phytotherapy. Therefore, the aim of this study is to present—based on the scientific literature—the antioxidant properties of hawthorn and to assess the possibility of using this plant as a functional ingredient. Full article
Show Figures

Figure 1

23 pages, 7764 KB  
Article
Dose- and Time-Dependent Modulation of Cx43 and Cx45 Expression and Gap Junction Conductance by Resveratrol
by Gintarė Jančiukė, Rokas Mickus, Vytautas Raškevičius, Vytenis Arvydas Skeberdis and Ieva Sarapinienė
Antioxidants 2026, 15(1), 88; https://doi.org/10.3390/antiox15010088 - 9 Jan 2026
Viewed by 405
Abstract
Plant extracts are rich in various bioactive compounds, such as polyphenols, flavonoids, tannins, terpenoids, phenolic acids, saponins, alkaloids, and polysaccharides. Antioxidant polyphenols are increasingly attracting attention, not only as dietary components but also as valuable food industry byproducts. Resveratrol, present in a wide [...] Read more.
Plant extracts are rich in various bioactive compounds, such as polyphenols, flavonoids, tannins, terpenoids, phenolic acids, saponins, alkaloids, and polysaccharides. Antioxidant polyphenols are increasingly attracting attention, not only as dietary components but also as valuable food industry byproducts. Resveratrol, present in a wide range of plants, is well recognized for its diverse biological activities, including antioxidant, antitumor, cardioprotective, and neuroprotective effects. Given the importance of intercellular communication in these physiological processes, gap junctions (GJs) composed of connexin (Cx) family proteins are of particular interest because they provide a direct pathway for electrical and metabolic signaling and are key players in maintaining normal organ function and cell development. Aberrations of GJ intercellular communication (GJIC) may result in the progression of cardiovascular and neurological diseases and tumorigenesis. Cx43 and Cx45 play crucial roles in cardiac excitation and contraction, and alterations in their expression are associated with disrupted impulse propagation and the development of arrhythmias. In this study, for the first time, we performed a comparative analysis of the effect of resveratrol on Cx43 and Cx45 GJIC using molecular modeling, a dual whole-cell patch-clamp technique to directly measure GJ conductance (gj), and other approaches. Our results revealed that resveratrol accomplished the following: (1) inhibited GJ gj in Cx43- but enhanced it in Cx45-expressing HeLa cells; (2) exerted dose- and time-dependent changes in Cx expression and plaque size; (3) reduced cell viability and proliferation; (4) and altered Cx43 phosphorylation patterns linked to gating and plaque stability. Overall, resveratrol modulates GJIC in a dose-, time-, and connexin type-specific manner. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

16 pages, 284 KB  
Article
Nutritional Properties of Edible Flowers from Five Pumpkin (Cucurbita sp.) Species
by Małgorzata Stryjecka, Monika Jaroszuk-Sierocińska, Anna Kiełtyka-Dadasiewicz, Barbara Krochmal-Marczak and Tomasz Cebulak
Foods 2026, 15(2), 219; https://doi.org/10.3390/foods15020219 - 8 Jan 2026
Viewed by 215
Abstract
Edible pumpkin flowers represent a promising but still underutilized source of nutrients and bioactive compounds. Despite their traditional culinary use in various regions of the world, comprehensive studies comparing the nutritional and chemical composition of flowers from different Cucurbita species are limited. This [...] Read more.
Edible pumpkin flowers represent a promising but still underutilized source of nutrients and bioactive compounds. Despite their traditional culinary use in various regions of the world, comprehensive studies comparing the nutritional and chemical composition of flowers from different Cucurbita species are limited. This study conducted a detailed chemical analysis of flowers from five pumpkin species: Cucurbita maxima (giant pumpkin), C. pepo (summer squash), C. moschata (butternut squash), C. ficifolia (fig-leaf gourd), and C. argyrosperma (cushaw squash). The analyses included the determination of basic nutritional components, amino acids, minerals, vitamins, and fatty acid profiles using standard analytical methods (AOAC, ISO, and HPLC). Significant interspecific differences were observed. The flowers of butternut squash exhibited the highest protein and fat contents, while the flowers of cushaw squash contained the largest amounts of dietary fiber and total sugars. Flowers of giant pumpkin were distinguished by their elevated contents of vitamin C and β-carotene. Amino acid analysis revealed a rich protein profile, particularly in cushaw squash, characterized by high lysine and cysteine levels, whereas fig-leaf gourd contained the greatest amounts of leucine and isoleucine. The fatty acid composition was dominated by oleic, stearic, and myristic acids, while a considerable proportion of linoleic acid (PUFA) indicated potential health benefits, such as anti-inflammatory effects. Mineral analysis showed that giant pumpkin was richest in potassium, summer squash in zinc, and butternut squash in calcium and sodium. The findings confirm that pumpkin flowers are a valuable source of nutrients and bioactive compounds. Their composition highlights their potential as functional food ingredients and as raw materials for use in the dietary, food, and pharmaceutical industries. Further studies on bioavailability and antioxidant capacity are recommended to better define their nutritional and functional value. Full article
34 pages, 797 KB  
Review
Effect of the Sous-Vide Method on the Quality of Vegetables—A Review
by Artur Głuchowski, Ewa Czarniecka-Skubina and Marlena Pielak
Foods 2026, 15(2), 206; https://doi.org/10.3390/foods15020206 - 7 Jan 2026
Viewed by 356
Abstract
Modern gastronomy strives to combine high-quality food with the preservation of nutritional value, microbiological safety, and the sustainable use of raw materials. With the development of culinary technologies, precise heat treatment methods are gaining increasing importance, enabling better process control and more consistent [...] Read more.
Modern gastronomy strives to combine high-quality food with the preservation of nutritional value, microbiological safety, and the sustainable use of raw materials. With the development of culinary technologies, precise heat treatment methods are gaining increasing importance, enabling better process control and more consistent quality results. This analysis aims to present the effects of the sous-vide (SV) method on the quality of vegetables in comparison with conventional heat treatment methods, such as boiling in water, steaming, cooking under increased pressure, cooking in a microwave oven, baking, grilling, and the cook-vide method. Analysis of the scientific literature has shown that the sous-vide method usually allows for the retention of greater amounts of vitamins (especially vitamin C), phenolic compounds and minerals, resulting in products with higher nutritional value and bioavailability of bioactive ingredients. Maintaining a controlled, low temperature in a vacuum environment reduces the loss of water and volatile components, which has a positive impact on the process yield as well as the color, texture, and aroma of vegetables. SV processing enhances product digestibility, preserves natural appearance, and improves food safety. Due to its hermetic packaging and limited oxygen access, this method ensures good microbiological quality and extends product shelf life. In the food service industry, SV allows for repeatable results, high sensory and technological quality, and reduced food waste. In the context of contemporary nutritional challenges and the experiences of the COVID-19 pandemic, sous-vide technology is gaining importance as a method supporting food safety, sustainability, and efficient resource management in the food service industry. Full article
Show Figures

Figure 1

12 pages, 544 KB  
Article
Influence of Teucrium montanum Hydrolate Integration on the Functional Performance of Chitosan-Based Films
by Ljubica Živković, Kristina Cvetković, Jelena Mitrović, Dani Dordevic, Pero Sailović, Ivana Karabegović and Bojana Danilović
Processes 2026, 14(2), 200; https://doi.org/10.3390/pr14020200 - 6 Jan 2026
Viewed by 226
Abstract
Natural biodegradable polymers such as chitosan are gaining increasing importance due to their favorable mechanical properties. Conversely, their limited antimicrobial and antioxidant activity requires enhancement with bioactive components. This study investigated the effect of Teucrium montanum L. hydrolate on the functional properties of [...] Read more.
Natural biodegradable polymers such as chitosan are gaining increasing importance due to their favorable mechanical properties. Conversely, their limited antimicrobial and antioxidant activity requires enhancement with bioactive components. This study investigated the effect of Teucrium montanum L. hydrolate on the functional properties of chitosan films. The hydrolate was obtained as a by-product of hydrodistillation, and films were prepared with 0.6% (CH-TMh1), 0.8% (CH-TMh2), and 1.2% (CH-TMh3) hydrolate, along with a control film without hydrolate (CH). Hydrolate-enriched films exhibited greater thickness and elongation at break, with the highest values observed in CH-TMh3. The addition of hydrolate reduced moisture content (from 30.09% in CH to 12.25% in CH-TMh3), solubility, and swelling degree. Antioxidant activity increased significantly, with CH-TMh2 showing the highest free radical scavenging activity (92.9%) and total polyphenol content (38.78 mg GAE/g). Films containing hydrolate also displayed pronounced antimicrobial activity, with the largest inhibition zones against S. aureus ATCC 25923 (16.33 mm). Moderate activity was observed against B. subtilis, while there was no activity against C. albicans ATCC 2091. These results confirm that chitosan films enriched with T. montanum L. hydrolate possess improved mechanical, antioxidant, and antimicrobial properties, making them promising for potential application in the packaging of specific food products. Full article
Show Figures

Figure 1

Back to TopTop