Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = bio-polyethylene terephthalate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2657 KiB  
Article
Degradation of Biodegradable Mulch-Derived Microplastics and Their Effects on Bacterial Communities and Radish Growth in Three Vegetable-Cultivated Purple Soils
by Ruixue Ao, Zexian Liu, Yue Mu, Jiaxin Chen and Xiulan Zhao
Agriculture 2025, 15(14), 1512; https://doi.org/10.3390/agriculture15141512 - 13 Jul 2025
Viewed by 417
Abstract
Biodegradable mulch films (BDMs) are considered a promising solution for mitigating plastic residue pollution in agroecosystems. However, the degradation behavior and ecological impacts of their residues on soil–plant systems remain unclear. Here, a pot experiment was conducted using an acidic purple soil (AS), [...] Read more.
Biodegradable mulch films (BDMs) are considered a promising solution for mitigating plastic residue pollution in agroecosystems. However, the degradation behavior and ecological impacts of their residues on soil–plant systems remain unclear. Here, a pot experiment was conducted using an acidic purple soil (AS), a neutral purple soil (NS), and a calcareous purple soil (CS) to investigate the degradation of 1% (w/w) microplastics derived from polyethylene mulch film (PE-MPs) and polybutylene adipate terephthalate/polylactic acid (PBAT/PLA) mulch film (Bio-MPs), as well as their effects on soil properties, bacterial communities, and radish growth. PE-MPs degraded slightly, while the degradation of Bio-MPs followed the order of NS > CS > AS. PE-MPs and Bio-MPs enhanced the nitrification and radish growth in AS but had no significant effects on soil properties and radish growth in CS. Bio-MPs notably increased the relative abundance of PBAT/PLA degradation-related bacteria, such as Ramlibacter, Bradyrhizobium, and Microbacterium, across the three soils. In NS, Bio-MPs raised soil pH and enriched nitrogen-fixing and denitrifying bacteria, leading to a decrease in NO3-N content and radish biomass. Overall, the effects of Bio-MPs on soil–plant systems varied with soil properties, which are closely related to their degradation rates. These findings highlight the need to assess the ecological risks of BDM residues before their large-scale use in agriculture. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

45 pages, 4295 KiB  
Review
Recent Trends and Challenges on the Non-Targeted Analysis and Risk Assessment of Migrant Non-Intentionally Added Substances from Plastic Food Contact Materials
by Pablo Miralles, Esther Fuentes-Ferragud, Cristina Socas-Hernández and Clara Coscollà
Toxics 2025, 13(7), 543; https://doi.org/10.3390/toxics13070543 - 28 Jun 2025
Viewed by 651
Abstract
Non-intentionally added substances (NIAS) in plastic food contact materials represent a critical undercharacterized chemical safety concern, caused by their inherent diversity, potential toxicity, and regulatory challenges. This review synthesizes recent advances and persistent gaps in NIAS analysis, with a primary focus on analytical [...] Read more.
Non-intentionally added substances (NIAS) in plastic food contact materials represent a critical undercharacterized chemical safety concern, caused by their inherent diversity, potential toxicity, and regulatory challenges. This review synthesizes recent advances and persistent gaps in NIAS analysis, with a primary focus on analytical workflows for non-targeted analysis, alongside a consideration of risk assessment and toxicological prioritization frameworks. Conventional plastics (e.g., polyethylene, polypropylene, or polyethylene terephthalate) as well as emerging materials (e.g., bioplastics and recycled polymers) exhibit different NIAS profiles, including oligomers, degradation products, additives, and contaminants, requiring specific approaches for migration testing, extraction, and detection. Advanced techniques, such as ultra-high-performance liquid chromatography or two-dimensional gas chromatography coupled with high-resolution mass spectrometry, have enabled non-targeted analysis approaches. However, the field remains constrained by spectral library gaps, limited reference standards, and inconsistent data processing protocols, resulting in heavy reliance on tentative identifications. Risk assessment procedures mainly employ the Threshold of Toxicological Concern and classification by Cramer’s rules. Nevertheless, addressing genotoxicity, mixture effects, and novel hazards from recycled or bio-based polymers remains challenging with these approaches. Future priorities and efforts may include expanding spectral databases, harmonizing analytical protocols, and integrating in vitro bioassays with computational toxicology to refine hazard characterization. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

20 pages, 3803 KiB  
Article
Sustainable Production of 2,5-Furandicarboxylic Acid via Nickel-Based Heterogeneous Catalysis from 5-Hydroxymethylfurfural
by Celso Luiz de Aquino Santos, João Paulo Alves Silva, Solange I. Mussatto and Livia Melo Carneiro
Processes 2025, 13(7), 2026; https://doi.org/10.3390/pr13072026 - 26 Jun 2025
Viewed by 422
Abstract
2,5-Furandicarboxylic acid (FDCA) is a bio-based platform chemical with high potential to replace terephthalic acid in polymer production, particularly for polyethylene furanoate (PEF), a biopolymer with superior thermal and barrier properties. This study investigates the selective oxidation of 5-hydroxymethylfurfural (HMF) into FDCA using [...] Read more.
2,5-Furandicarboxylic acid (FDCA) is a bio-based platform chemical with high potential to replace terephthalic acid in polymer production, particularly for polyethylene furanoate (PEF), a biopolymer with superior thermal and barrier properties. This study investigates the selective oxidation of 5-hydroxymethylfurfural (HMF) into FDCA using nickel-based heterogeneous catalysts, aiming at a cost-effective and sustainable alternative to noble metal catalysts. A series of nickel oxide catalysts were synthesized and screened. The NiOx catalyst synthesized without thermal treatment via Route B showed the best performance, achieving a FDCA yield of 11.77%, selectivity of 27.41%, and concentration of 0.9 g/L under preliminary conditions. Reaction kinetics revealed that the controlled addition of NaClO enhanced FDCA yield by 2.28 times. Optimization using a 23 factorial design identified the optimal conditions as 6% (w/v) catalyst concentration, 25 °C, and a NaClO:HMF molar ratio of 12:1, leading to 34.14% yield and 42.57% selectivity. The NiOx catalyst maintained its activity over five successive cycles, indicating good recyclability. Moreover, NiOx demonstrated catalytic activity with crude HMF derived from glucose dehydration, confirming its practical applicability. These results support the potential of nickel-based catalysts in sustainable FDCA production, contributing to the advancement of bio-based polymer synthesis. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Figure 1

17 pages, 9487 KiB  
Article
Polymer Composite Sandwich Panels Composed of Hemp and Plastic Skins and Composite Wood, Recycled Plastic, and Styrofoam Cores
by Ashiqul Islam, Wahid Ferdous, Paulomi (Polly) Burey, Kamrun Nahar, Libo Yan and Allan Manalo
Polymers 2025, 17(10), 1359; https://doi.org/10.3390/polym17101359 - 15 May 2025
Viewed by 620
Abstract
This paper presents an experimental investigation of six different types of composite sandwich panels manufactured from waste-based materials, which are comprised of two different types of skins (made from hemp and recycled PET (Polyethylene terephthalate) fabrics with bio-epoxy resin) and three different cores [...] Read more.
This paper presents an experimental investigation of six different types of composite sandwich panels manufactured from waste-based materials, which are comprised of two different types of skins (made from hemp and recycled PET (Polyethylene terephthalate) fabrics with bio-epoxy resin) and three different cores (composite wood, recycled plastic, and styrofoam) materials. The skins of these sandwich panels were investigated under five different environmental conditions (normal air, water, hygrothermal, saline solution, and 80 °C elevated temperature) over seven months to evaluate their durability performance. In addition, the tensile and dynamic mechanical properties of those sandwich panels were studied. The bending behavior of cores and sandwich panels was also investigated and compared. The results indicated that elevated temperatures are 30% more detrimental to fiber composite laminates than normal water. Composite laminates made of hemp are more sensitive to environmental conditions than composite laminates made of recycled PET. A higher-density core makes panels more rigid and less susceptible to indentation failure. The flexible plastic cores are found to be up to 25% more effective at increasing the strength of sandwich panels than brittle wood cores. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
Show Figures

Figure 1

13 pages, 1034 KiB  
Article
Diffusion Coefficients and Activation Energies of Diffusion of Organic Molecules in Poly(lactic acid) Films
by Johann Ewender, Rafael Auras, Uruchaya Sonchaeng and Frank Welle
Molecules 2025, 30(9), 2064; https://doi.org/10.3390/molecules30092064 - 6 May 2025
Viewed by 545
Abstract
Poly(lactic acid) (PLA) is one of the most important bio-based and industrial compostable materials in food packaging. Its barrier properties towards oxygen and moisture are well documented. However, data on barrier properties of PLA towards organic molecules are scarce in the literature. This [...] Read more.
Poly(lactic acid) (PLA) is one of the most important bio-based and industrial compostable materials in food packaging. Its barrier properties towards oxygen and moisture are well documented. However, data on barrier properties of PLA towards organic molecules are scarce in the literature. This study investigated the diffusion of various organic molecules, including n-alkanes, 1-alcohols, 2-ketones, ethers, esters, amines, and aromatics, in two commercial PLA films with thicknesses of 20 µm and 30 µm. The diffusion coefficient (DP) values were determined from lag time in permeation tests conducted at temperatures ranging from 20 °C to 90 °C. The films were also characterized in terms of crystallinity, rigid and mobile amorphous fractions, and molecular weight. Activation energies (EA) were calculated based on the temperature dependence of the DP using the Arrhenius approach. In total, 290 DP values for 55 individual substances were determined, and 38 EA values were derived from these data. The EA correlated well with the molecular volume of the investigated substances. Moreover, the pre-exponential factor D0 showed a correlation with EA. These correlations enabled the establishment of diffusion modeling parameters for PLA, allowing the prediction of DP for untested substances. The diffusion behavior of PLA was further compared with the literature data for polyethylene terephthalate and polyethylene naphthalate, providing insights into the relative performance of these materials. Full article
Show Figures

Figure 1

30 pages, 4653 KiB  
Review
Nanoarchitectonics of Sustainable Food Packaging: Materials, Methods, and Environmental Factors
by Tangyu Yang and Andre G. Skirtach
Materials 2025, 18(5), 1167; https://doi.org/10.3390/ma18051167 - 6 Mar 2025
Cited by 3 | Viewed by 1775
Abstract
Nanoarchitectonics influences the properties of objects at micro- and even macro-scales, aiming to develop better structures for protection of product. Although its applications were analyzed in different areas, nanoarchitectonics of food packaging—the focus of this review—has not been discussed, to the best of [...] Read more.
Nanoarchitectonics influences the properties of objects at micro- and even macro-scales, aiming to develop better structures for protection of product. Although its applications were analyzed in different areas, nanoarchitectonics of food packaging—the focus of this review—has not been discussed, to the best of our knowledge. The (A) structural and (B) functional hierarchy of food packaging is discussed here for the enhancement of protection, extending shelf-life, and preserving the nutritional quality of diverse products including meat, fish, dairy, fruits, vegetables, gelled items, and beverages. Interestingly, the structure and design of packaging for these diverse products often possess similar principles and methods including active packaging, gas permeation control, sensor incorporation, UV/pulsed light processing, and thermal/plasma treatment. Here, nanoarchitechtonics serves as the unifying component, enabling protection against oxidation, light, microbial contamination, temperature, and mechanical actions. Finally, materials are an essential consideration in food packaging, particularly beyond commonly used polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC) plastics, with emphasis on biodegradable (polybutylene succinate (PBS), polyvinyl alcohol (PVA), polycaprolactone (PCL), and polybutylene adipate co-terephthalate (PBAT)) as well as green even edible (bio)-materials: polysaccharides (starch, cellulose, pectin, gum, zein, alginate, agar, galactan, ulvan, galactomannan, laccase, chitin, chitosan, hyaluronic acid, etc.). Nanoarchitechnotics design of these materials eventually determines the level of food protection as well as the sustainability of the processes. Marketing, safety, sustainability, and ethics are also discussed in the context of industrial viability and consumer satisfaction. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science, Second Edition)
Show Figures

Graphical abstract

25 pages, 5252 KiB  
Article
Meltblow Processing of Poly (Ethylene Furanoate)–Bio-Based Polyester Nonwovens
by Tim Hiller, Hagen J. Altmann, Iris Elser, Mehdi Azimian and Michael R. Buchmeiser
Materials 2025, 18(3), 544; https://doi.org/10.3390/ma18030544 - 24 Jan 2025
Viewed by 1593
Abstract
Poly(ethylene furanoate) (PEF) has been identified as a bio-based alternative or supplement to poly(ethylene terephthalate) (PET) for various applications such as food packaging and bottles as well as technical- and high-performance fibers and yarns. In this study, the processing of PEF nonwovens in [...] Read more.
Poly(ethylene furanoate) (PEF) has been identified as a bio-based alternative or supplement to poly(ethylene terephthalate) (PET) for various applications such as food packaging and bottles as well as technical- and high-performance fibers and yarns. In this study, the processing of PEF nonwovens in the meltblow process is successfully demonstrated and reported for the first time, according to our best knowledge The resulting fabrics achieved median fiber diameters of 2.04 µm, comparable to PET. The filtration efficiency of 25 g m−2 fabrics exceeded 50% comparable to PET and PBT of the same grammage and was raised to over 90% with post-process electrostatic charging, maintaining stability. As for other aromatic polymers, applying infrared heating modules into the process indicated the potential to minimize heat shrinkage. However, the suppressed ring rotation and slower crystallization kinetics of PEF showed the need for longer post-treatment times as the heat shrinkage remained between 20% and 40% at 10 °C. Overcoming this, PEF can be a viable, bio-based alternative to PET, particularly for such high-temperature nonwoven applications that require thin layers. Full article
(This article belongs to the Special Issue Polymers, Processing and Sustainability)
Show Figures

Graphical abstract

36 pages, 1986 KiB  
Review
Exploring Innovative Approaches for the Analysis of Micro- and Nanoplastics: Breakthroughs in (Bio)Sensing Techniques
by Denise Margarita Rivera-Rivera, Gabriela Elizabeth Quintanilla-Villanueva, Donato Luna-Moreno, Araceli Sánchez-Álvarez, José Manuel Rodríguez-Delgado, Erika Iveth Cedillo-González, Garima Kaushik, Juan Francisco Villarreal-Chiu and Melissa Marlene Rodríguez-Delgado
Biosensors 2025, 15(1), 44; https://doi.org/10.3390/bios15010044 - 13 Jan 2025
Cited by 10 | Viewed by 3985
Abstract
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation [...] Read more.
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks. Effective detection and quantification of MPs and NPs are essential for understanding and mitigating their impacts. Current analytical methods include physical and chemical techniques. Physical methods, such as optical and electron microscopy, provide morphological details but often lack specificity and are time-intensive. Chemical analyses, such as Fourier transform infrared (FTIR) and Raman spectroscopy, offer molecular specificity but face challenges with smaller particle sizes and complex matrices. Thermal analytical methods, including pyrolysis gas chromatography–mass spectrometry (Py-GC-MS), provide compositional insights but are destructive and limited in morphological analysis. Emerging (bio)sensing technologies show promise in addressing these challenges. Electrochemical biosensors offer cost-effective, portable, and sensitive platforms, leveraging principles such as voltammetry and impedance to detect MPs and their adsorbed pollutants. Plasmonic techniques, including surface plasmon resonance (SPR) and surface-enhanced Raman spectroscopy (SERS), provide high sensitivity and specificity through nanostructure-enhanced detection. Fluorescent biosensors utilizing microbial or enzymatic elements enable the real-time monitoring of plastic degradation products, such as terephthalic acid from polyethylene terephthalate (PET). Advancements in these innovative approaches pave the way for more accurate, scalable, and environmentally compatible detection solutions, contributing to improved monitoring and remediation strategies. This review highlights the potential of biosensors as advanced analytical methods, including a section on prospects that address the challenges that could lead to significant advancements in environmental monitoring, highlighting the necessity of testing the new sensing developments under real conditions (composition/matrix of the samples), which are often overlooked, as well as the study of peptides as a novel recognition element in microplastic sensing. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

21 pages, 4146 KiB  
Article
How Reducing Fossil-Based Plastic Use Can Help the Overall Sustainability of Oyster Farming: The Case of the Gulf of La Spezia
by Daniela Summa, Elena Tamisari, Mattia Lanzoni, Giuseppe Castaldelli and Elena Tamburini
Resources 2025, 14(1), 10; https://doi.org/10.3390/resources14010010 - 8 Jan 2025
Cited by 1 | Viewed by 1427
Abstract
Oyster farming plays a crucial role in sustainable food production due to its high nutritional value and relatively low environmental impact. However, in a scenario of increasing production, it is necessary to consider the issue of plastic use as a limitation to be [...] Read more.
Oyster farming plays a crucial role in sustainable food production due to its high nutritional value and relatively low environmental impact. However, in a scenario of increasing production, it is necessary to consider the issue of plastic use as a limitation to be addressed. A life cycle assessment (LCA) was conducted on oyster farming in La Spezia (Italy) as a case study, utilizing 1 kg of packaged oysters as the functional unit. Fossil-based plastics and wooden packaging were identified as the primary environmental concerns. To analyze potential strategies for reducing the environmental impact of oyster farming, alternative scenarios were considered wherein fossil-based materials were replaced with bio-based materials. Specifically, this study examined the substitution of the current packaging, consisting of a wooden box and a polypropylene (PP) film, with a fully recyclable PP net. Additionally, polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and bio-based polyethylene terephthalate (Bio-PET) were proposed as alternatives to virgin high-density polyethylene (HDPE) and PP for buoys, oyster bags, and boxes. Among the scenarios analyzed, the sole effective strategy to reduce the impact of plastics on the process is to replace them with PHA. In the other cases, the high energy consumption of their non-optimized production renders them disadvantageous options. However, the assessment must include the effects of degradation that traditional plastics can have in the marine environment, an aspect that potentially renders natural fibers more advantageous. The use of PP net packaging has demonstrated high efficacy in reducing impacts and provides a foundation for considering the need to combine sustainability and marketing with current legislation regarding food packaging. Full article
Show Figures

Figure 1

19 pages, 6682 KiB  
Article
Sequestration of Methylene Blue Dye in a Fixed-Bed Column Using Activated Carbon-Infused Polyurethane Composite Adsorbent Derived from Coconut Oil
by Renz John R. Estrada, Tomas Ralph B. Tomon, Rubie Mae D. Fernandez, Christine Joy M. Omisol, Gerard G. Dumancas, Arnold C. Alguno, Maria Sheila K. Ramos, Roberto M. Malaluan and Arnold A. Lubguban
Sustainability 2024, 16(23), 10757; https://doi.org/10.3390/su162310757 - 8 Dec 2024
Viewed by 1821
Abstract
In this research, a new method of treating wastewater is introduced using a highly recyclable and sustainable material derived from coconut oil. This material aims to address the issues commonly faced by conventional sorbents, such as limited performance and costly production. These challenges [...] Read more.
In this research, a new method of treating wastewater is introduced using a highly recyclable and sustainable material derived from coconut oil. This material aims to address the issues commonly faced by conventional sorbents, such as limited performance and costly production. These challenges impede a sorbent material from unlocking its full utility in treating wastewater. An exceptional sorbent material was synthesized by incorporating coconut shell-based activated carbon (AC) into a coconut oil-based polyurethane matrix to produce an activated carbon-infused polyurethane (ACIP). The effective adsorption was elucidated by the synergistic interaction between the ACIP material and methylene blue (MB) through electrostatic attraction, π-π interactions, and hydrogen bonding. To provide an exhaustive analysis of the ACIP material, several analytical techniques were employed, including Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) analysis, X-ray diffraction (XRD) analysis, and thermogravimetric analysis (TGA). A detailed assessment using a fixed-bed column setup investigated its adsorption behavior by encompassing various factors such as inlet concentration, adsorbent bed height, feed flow rate, and solution pH. Results revealed that the ACIP composite exhibited a maximum adsorption capacity of 28.25 mg g−1. Empirical evidence with a high correlation coefficient (R2 > 0.93) obtained from the Thomas and Yoon–Nelson model suggests the suitability of the composite material to operate efficiently under these diverse circumstances. Notably, after five consecutive adsorption–desorption cycles, ACIP demonstrated its remarkable reusability by maintaining 86% of its regeneration efficiency. Given its outstanding performance and potential for scalability, this innovative ACIP composite presents a more sustainable approach to addressing wastewater issues within industrial environments. Full article
(This article belongs to the Special Issue Emerging Technologies for Sustainable Water Treatment)
Show Figures

Figure 1

15 pages, 3001 KiB  
Article
Development of Polymer Composites Using Surface-Modified Olive Pit Powder for Fused Granular Fabrication
by Pedro Burgos Pintos, Mirko Maturi, Alberto Sanz de León and Sergio I. Molina
Polymers 2024, 16(21), 2981; https://doi.org/10.3390/polym16212981 - 24 Oct 2024
Cited by 2 | Viewed by 1694
Abstract
In this study, olive pit agro-waste from the olive oil industry is valorized by incorporating it as an additive in a polyethylene terephthalate glycol (PETG) matrix to develop bio-based composite materials for large format additive manufacturing (LFAM). The olive pits were first ground [...] Read more.
In this study, olive pit agro-waste from the olive oil industry is valorized by incorporating it as an additive in a polyethylene terephthalate glycol (PETG) matrix to develop bio-based composite materials for large format additive manufacturing (LFAM). The olive pits were first ground into olive pit powder (OPP) and then functionalized by polymerizing poly(butylene adipate-co-terephthalate) PBAT on their surface, resulting in a hydrophobic, modified olive pit powder (MOPP) with enhanced compatibility with the PETG matrix. OPP and MOPP composites were compounded and 3D-printed via Fused Granular Fabrication (FGF) using 5, 10, and 15 wt.% concentrations. The PBAT coating increased the degradation temperature and specific heat capacity of the material, contributing to a lower melt viscosity during printing, as confirmed by MFR, MDSC, and TGA analyses. Tensile testing revealed that MOPP composites generally exhibited superior mechanical properties compared to OPP composites, likely due to the improved compatibility between PBAT on the MOPP surface and the PETG matrix. SEM analysis further validated these findings, showing a highly irregular and porous fracture surface in OPP composites, while MOPP composites displayed a smooth surface with well-integrated MOPP in the PETG matrix. Full article
Show Figures

Figure 1

19 pages, 4889 KiB  
Article
Insights on Microplastic Contamination from Municipal and Textile Industry Effluents and Their Removal Using a Cellulose-Based Approach
by Solange Magalhães, Daniel Paciência, João M. M. Rodrigues, Björn Lindman, Luís Alves, Bruno Medronho and Maria da Graça Rasteiro
Polymers 2024, 16(19), 2803; https://doi.org/10.3390/polym16192803 - 3 Oct 2024
Cited by 4 | Viewed by 1945
Abstract
The rampant use of plastics, with the potential to degrade into insidious microplastics (MPs), poses a significant threat by contaminating aquatic environments. In the present study, we delved into the analysis of effluents from textile industries, a recognized major source of MPs contamination. [...] Read more.
The rampant use of plastics, with the potential to degrade into insidious microplastics (MPs), poses a significant threat by contaminating aquatic environments. In the present study, we delved into the analysis of effluents from textile industries, a recognized major source of MPs contamination. Data were further discussed and compared with a municipal wastewater treatment plant (WWTP) effluent. All effluent samples were collected at the final stage of treatment in their respective WWTP. Laser diffraction spectroscopy was used to evaluate MP dimensions, while optical and fluorescence microscopies were used for morphology analysis and the identification of predominant plastic types, respectively. Electrophoresis was employed to unravel the prevalence of negative surface charge on these plastic microparticles. The analysis revealed that polyethylene terephthalate (PET) and polyamide were the dominant compounds in textile effluents, with PET being predominant in municipal WWTP effluents. Surprisingly, despite the municipal WWTP exhibiting higher efficiency in MP removal (ca. 71% compared to ca. 55% in textile industries), it contributed more to overall pollution. A novel bio-based flocculant, a cationic cellulose derivative derived from wood wastes, was developed as a proof-of-concept for MP flocculation. The novel derivatives were found to efficiently flocculate PET MPs, thus allowing their facile removal from aqueous media, and reducing the threat of MP contamination from effluents discharged from WWTPs. Full article
(This article belongs to the Special Issue Micro- and Nanoplastics Engineering and Design for Research)
Show Figures

Figure 1

15 pages, 4997 KiB  
Article
Development of Vertical Farming Systems from Waste Polymers Using Additive Manufacturing Techniques
by Sunilkarthik Ezhilarasu, Carlos Bañón and Arlindo Silva
Recycling 2024, 9(5), 90; https://doi.org/10.3390/recycling9050090 - 1 Oct 2024
Cited by 1 | Viewed by 3320
Abstract
Driven by population growth, rising living costs, and the urgent need to address climate change, sustainable food production and circular economy principles are becoming increasingly important. Conventional agriculture faces significant challenges, including land scarcity, water shortages, and disrupted supply chains. As a solution, [...] Read more.
Driven by population growth, rising living costs, and the urgent need to address climate change, sustainable food production and circular economy principles are becoming increasingly important. Conventional agriculture faces significant challenges, including land scarcity, water shortages, and disrupted supply chains. As a solution, cities are adopting vertical farming to enhance urban food security and promote circularity. This research introduces FLOAT (Farming Lab on a Trough), an innovative vertical farming system made from bio-polymers and recycled polyethylene terephthalate glyco (rPETG) pellets from plastic bottles. FLOAT’s design emphasizes sustainability and closed-loop material usage. The study showcases the versatility of additive manufacturing (AM) in creating complex geometries with fully functional 1:1 prototypes. These prototypes highlight FLOAT’s potential as a scalable and adaptable solution for sustainable food production in urban settings, contributing to improved food security and environmental sustainability. By integrating FLOAT with conventional practices, we aim to exceed Singapore’s 2030 food security targets and achieve lasting urban food resilience. FLOAT aims to scale sustainable food production, fostering community ties with food, and nurturing future responsibility. Full article
Show Figures

Figure 1

10 pages, 4120 KiB  
Article
The Influence of Filler Particle Size on the Strength Properties and Mechanical Energy Dissipation Capacity of Biopoly(Ethylene Terephthalate) BioPET/Eggshell Biocomposites
by Stanisław Kuciel, Karina Rusin-Żurek and Maria Kurańska
Recycling 2024, 9(5), 88; https://doi.org/10.3390/recycling9050088 - 1 Oct 2024
Cited by 4 | Viewed by 2208
Abstract
This work aims to evaluate how the particle size of a waste filler in the form of eggshells changes the mechanical properties of biopoly(ethylene terephthalate) (bioPET). BioPET was modified with three different waste fractions: 1.60–3 mm—large particles; 1.60–1 mm—medium particles; 1 mm–200 μm—small [...] Read more.
This work aims to evaluate how the particle size of a waste filler in the form of eggshells changes the mechanical properties of biopoly(ethylene terephthalate) (bioPET). BioPET was modified with three different waste fractions: 1.60–3 mm—large particles; 1.60–1 mm—medium particles; 1 mm–200 μm—small particles. Waste filler was added to the biopolymer matrix in the amount of 10 wt.%. Static tensile tests, as well as bending and impact tests, were carried out to assess the strength properties of the waste-enriched materials. Dissipation energy changes and relaxation processes were observed and evaluated by means of a low-cycle dynamic test. Waste particles were shown to be an effective modifier of bioPET by increasing its stiffness (all particle sizes) and strength (the smallest ones). Studies of the wetting angle and mechanical energy dissipation in the first hysteresis loops indicate the better adhesion of small particles to the biopolymer and their greater ability to dissipate mechanical energy. Full article
Show Figures

Figure 1

19 pages, 4949 KiB  
Article
Upcycling PVC and PET as Volume-Enhancing Functional Fillers for the Development of High-Performance Bio-Based Rigid Polyurethane Foams
by Princess Claire D. Ochigue, Roger G. Dingcong, John Christian S. Bondaug, Brian Christian G. Magalong, Gerard G. Dumancas, Carlo S. Gutierrez, Arnold C. Alguno, Roberto M. Malaluan, Arnold A. Lubguban and Hernando P. Bacosa
Sustainability 2024, 16(19), 8540; https://doi.org/10.3390/su16198540 - 30 Sep 2024
Cited by 4 | Viewed by 2787
Abstract
Polyvinyl chloride (PVC) and polyethylene terephthalate (PET) contribute significantly to global plastic waste, with only 9% recycled in recent years. In this work, these plastic wastes were upcycled as functional fillers to improve the rigid polyurethane foam (RPUF) properties. To attain this target, [...] Read more.
Polyvinyl chloride (PVC) and polyethylene terephthalate (PET) contribute significantly to global plastic waste, with only 9% recycled in recent years. In this work, these plastic wastes were upcycled as functional fillers to improve the rigid polyurethane foam (RPUF) properties. To attain this target, we leveraged the intrinsic polarity of the C=O and C-Cl groups of PVC and PET to induce intermolecular attractions with the N-H groups of the polyurethane matrix, evidenced by the observed IR peak shifts. This enhanced the nucleating effect during foaming, increasing the foams’ compressive strengths by 77% and 22% with the addition of 10% PVC and 5% PET filler, respectively. Furthermore, the addition of PVC and PET fillers increased the foam volume. Thus, the collective utilization of PPW and its corresponding impact on the CO-based RPUF’s properties signifies a reduction in carbon dioxide emissions by 14.15% and 17.52% for PVC and PET, respectively. Moreover, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) revealed improved thermal stability and degradation profiles of the produced RPUFs. Overall, this work highlights potential advancement in environmentally responsible upcycling strategies for common end-of-life plastic wastes, while enhancing rigid foam properties. Full article
Show Figures

Figure 1

Back to TopTop