Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = bio-composite laminate material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8496 KB  
Review
Progress in Electromagnetic Wave Absorption of Multifunctional Structured Metamaterials
by Zhuo Lu, Luwei Liu, Zhou Chen, Changxian Wang, Xiaolei Zhu, Xiaofeng Lu, Hui Yuan and Hao Huang
Polymers 2025, 17(18), 2559; https://doi.org/10.3390/polym17182559 - 22 Sep 2025
Viewed by 1888
Abstract
This review summarizes recent advances in multifunctional metamaterials (MF-MMs) for electromagnetic (EM) wave absorption. MF-MMs overcome the key limitations of conventional absorbers—such as narrow bandwidth, limited functionality, and poor environmental adaptability—offering enhanced protection against EM security threats in radar, aerospace, and defense applications. [...] Read more.
This review summarizes recent advances in multifunctional metamaterials (MF-MMs) for electromagnetic (EM) wave absorption. MF-MMs overcome the key limitations of conventional absorbers—such as narrow bandwidth, limited functionality, and poor environmental adaptability—offering enhanced protection against EM security threats in radar, aerospace, and defense applications. This review focuses on an integrated structure-material-function co-design strategy, highlighting advances in three-dimensional (3D) lattice architectures, composite laminates, conformal geometries, bio-inspired topologies, and metasurfaces. When synergized with multicomponent composites, these structural innovations enable the co-regulation of impedance matching and EM loss mechanisms (dielectric, magnetic, and resistive dissipation), thereby achieving broadband absorption and enhanced multifunctionality. Key findings demonstrate that 3D lattice structures enhance mechanical load-bearing capacity by up to 935% while enabling low-frequency broadband absorption. Composite laminates achieve breakthroughs in ultra-broadband coverage (1.26–40 GHz), subwavelength thickness (<5 mm), and high flexural strength (>23 MPa). Bio-inspired topologies provide wide-incident-angle absorption with bandwidths up to 31.64 GHz. Metasurfaces facilitate multiphysics functional integration. Despite the significant potential of MF-MMs in resolving broadband stealth and multifunctional synergy challenges via EM wave absorption, their practical application is constrained by several limitations: limited dynamic tunability, incomplete multiphysics coupling mechanisms, insufficient adaptability to extreme environments, and difficulties in scalable manufacturing and reliability assurance. Future research should prioritize intelligent dynamic response, deeper integration of multiphysics functionalities, and performance optimization under extreme conditions. Full article
Show Figures

Figure 1

13 pages, 2951 KB  
Article
Development of Novel Composite Core Using Powdered Macadamia Nutshell and Its Sandwich Structures for Building and Other Engineering Applications
by Md Mainul Islam, Sutirtha Chowdhury and Md Sefat Khan
Materials 2025, 18(18), 4369; https://doi.org/10.3390/ma18184369 - 18 Sep 2025
Viewed by 603
Abstract
Growing environmental concerns and the depletion of fossil-based resources have accelerated the demand for sustainable alternatives in engineering and construction materials. Among these, bio-based composites have gained attention for their use of renewable and eco-friendly resources. Macadamia nutshells, typically treated as agricultural waste, [...] Read more.
Growing environmental concerns and the depletion of fossil-based resources have accelerated the demand for sustainable alternatives in engineering and construction materials. Among these, bio-based composites have gained attention for their use of renewable and eco-friendly resources. Macadamia nutshells, typically treated as agricultural waste, possess high strength, brittleness, heat resistance, and fracture toughness, making them attractive candidates for structural applications. Australia alone contributes nearly 40% of global macadamia production, generating significant shell by-products that could be repurposed into high-value composites. This study investigates the development of novel composite cores and sandwich structures using macadamia nutshell particles reinforced in an epoxy polymer matrix. Two weight ratios (10% and 15%) and two particle sizes (200–600 µm and 1–1.18 mm) were employed, combined with laminating epoxy resin and hardener to fabricate composite cores. These cores were further processed into sandwich specimens with carbon fabric skins. Flexural and short beam shear (SBS) tests were conducted to evaluate the mechanical behaviour of the composites. The results demonstrate that higher filler content with fine particles achieved up to 15% higher flexural strength and 18% higher stiffness compared to coarser particle composites. Sandwich structures exhibited markedly improved interlaminar shear strength (8–15 MPa), confirming superior load transfer and durability. The results demonstrate that higher filler content and finer particles provided the most favourable mechanical performance, showing higher flexural strength, stiffness, and shear resistance compared to coarser particle formulations. Sandwich structures significantly outperformed core-only composites due to improved load transfer and resistance to bending and shear stresses, with the 15% fine-particle configuration emerging as the optimal formulation. By transforming macadamia nutshells into value-added composites, this research highlights an innovative pathway for waste utilisation, reduced environmental impact, and sustainable material development. The findings suggest that such composites hold strong potential for structural applications in construction and related engineering fields, especially in regions with abundant macadamia production. This study reinforces the role of agricultural by-products as practical solutions for advancing green composites and contributing to circular economy principles. Full article
Show Figures

Figure 1

18 pages, 3492 KB  
Article
Wet Compression Molding of Biocomposites for a Transportation Industry Application
by Sharmad Joshi, Daniel Walczyk, Ronald Bucinell and Jaron Kuppers
J. Compos. Sci. 2025, 9(9), 496; https://doi.org/10.3390/jcs9090496 - 12 Sep 2025
Viewed by 1002
Abstract
The transportation and automotive industries are slowly integrating biocomposite materials into products where the economics make sense; this typically means a short manufacturing cycle time, not using expensive prepreg, and with little waste generated from the process. In a previous investigation into the [...] Read more.
The transportation and automotive industries are slowly integrating biocomposite materials into products where the economics make sense; this typically means a short manufacturing cycle time, not using expensive prepreg, and with little waste generated from the process. In a previous investigation into the use of biocomposites for electric bus seats and backs, three different material systems (hemp, flax, and pure cellulosic fibers, each paired with a high-bio-content epoxy) and two manufacturing processes (wet layup followed by compression molding, vacuum-assisted resin transfer molding) were investigated, but neither process proved to be viable. In this paper, a relatively obscure process called Wet Compression Molding (WCM) is considered for economical production of the biocomposite bus seats using the same three material systems. Darcy’s law predictions of full impregnation time for a nominally 3.5 mm thick part using experimentally determined permeability values are all less than 2 s. Furthermore, prepreg is not used, and net-shape parts without excess resin show potential. Important design details of the WCM mold set, used in the manufacturing of flat test panels from each material system, that are generally not discussed in the literature include a high-pressure O-ring seal, and semi-permeable membranes covering injection pins and vacuum vents (evacuates trapped air) to prevent resin ingress. Biocomposite laminate specimens are fabricated using the mold set in a thermal press and a vacuum pump. Part characterization includes fiber volume fraction estimates and measurements of thickness, density, flexural modulus, and outer fiber maximum stress at failure. Due to its rapid impregnation with just enough resin, WCM should be considered for the economical manufacture of parts similar in shape and size to electric bus seats and backs. Full article
Show Figures

Figure 1

28 pages, 5175 KB  
Article
Buckling Characteristics of Bio-Inspired Helicoidal Laminated Composite Spherical Shells Under External Normal and Torsional Loads Subjected to Elastic Support
by Mohammad Javad Bayat, Amin Kalhori, Masoud Babaei and Kamran Asemi
Buildings 2025, 15(17), 3165; https://doi.org/10.3390/buildings15173165 - 3 Sep 2025
Cited by 1 | Viewed by 3646
Abstract
Spherical shells exhibit superior strength-to-geometry efficiency, making them ideal for industrial applications such as fluid storage tanks, architectural domes, naval vehicles, nuclear containment systems, and aeronautical and aerospace components. Given their critical role, careful attention to the design parameters and engineering constraints is [...] Read more.
Spherical shells exhibit superior strength-to-geometry efficiency, making them ideal for industrial applications such as fluid storage tanks, architectural domes, naval vehicles, nuclear containment systems, and aeronautical and aerospace components. Given their critical role, careful attention to the design parameters and engineering constraints is essential. The present paper investigates the buckling responses of bio-inspired helicoidal laminated composite spherical shells under normal and torsional loading, including the effects of a Winkler elastic medium. The pre-buckling equilibrium equations are derived using linear three-dimensional (3D) elasticity theory and the principle of virtual work, solved via the classical finite element method (FEM). The buckling load is computed using a nonlinear Green strain formulation and a generalized geometric stiffness approach. The shell material employed in this study is a T300/5208 graphite/epoxy carbon fiber-reinforced polymer (CFRP) composite. Multiple helicoidal stacking sequences—linear, Fibonacci, recursive, exponential, and semicircular—are analyzed and benchmarked against traditional unidirectional, cross-ply, and quasi-isotropic layups. Parametric studies assess the effects of the normal/torsional loads, lamination schemes, ply counts, polar angles, shell thickness, elastic support, and boundary constraints on the buckling performance. The results indicate that quasi-isotropic (QI) laminate configurations exhibit superior buckling resistance compared to all the other layup arrangements, whereas unidirectional (UD) and cross-ply (CP) laminates show the least structural efficiency under normal- and torsional-loading conditions, respectively. Furthermore, this study underscores the efficacy of bio-inspired helicoidal stacking sequences in improving the mechanical performance of thin-walled composite spherical shells, exhibiting significant advantages over conventional laminate configurations. These benefits make helicoidal architectures particularly well-suited for weight-critical, high-performance applications in aerospace, marine, and biomedical engineering, where structural efficiency, damage tolerance, and reliability are paramount. Full article
(This article belongs to the Special Issue Computational Mechanics Analysis of Composite Structures)
Show Figures

Figure 1

44 pages, 786 KB  
Review
Evolution of Studies on Fracture Behavior of Composite Laminates: A Scoping Review
by C. Bhargavi, K S Sreekeshava and B K Raghu Prasad
Appl. Mech. 2025, 6(3), 63; https://doi.org/10.3390/applmech6030063 - 25 Aug 2025
Viewed by 2984
Abstract
This scoping review paper provides an overview of the evolution, the current stage, and the future prospects of fracture studies on composite laminates. A fundamental understanding of composite materials is presented by highlighting the roles of the fiber and matrix, outlining the applications [...] Read more.
This scoping review paper provides an overview of the evolution, the current stage, and the future prospects of fracture studies on composite laminates. A fundamental understanding of composite materials is presented by highlighting the roles of the fiber and matrix, outlining the applications of various synthetic fibers used in current structural sectors. Challenges posed by interlaminar delamination, one of the critical failure modes, are highlighted. This paper systematically discusses the fracture behavior of these laminates under mixed-mode and complex loading conditions. Standardized fracture toughness testing methods, including Mode I Double Cantilever Beam (DCB), Mode II End-Notched Flexure (ENF) and Mixed-Mode Bending (MMB), are initially discussed, which is followed by a decade-wide chronological analysis of fracture mechanics approaches. Key advancements, including toughening mechanisms, Cohesive Zone Modeling (CZM), Virtual Crack Closure Technique (VCCT), Extended Finite Element Method (XFEM) and Digital Image Correlation (DIC), are analyzed. The review also addresses recent trends in fracture studies, such as bio-inspired architecture, self-healing systems, and artificial intelligence in fracture predictions. By mapping the trajectory of past innovations and identifying unresolved challenges, such as scale integration, dataset standardization for AI, and manufacturability of advanced architectures, this review proposes a strategic research roadmap. The major goal is to enable unified multi-scale modeling frameworks that merge physical insights with data learning, paving the way for next-generation composite laminates optimized for resilience, adaptability, and environmental responsibility. Full article
Show Figures

Figure 1

20 pages, 3022 KB  
Article
Development of an Artificial Neural Network-Based Tool for Predicting Failures in Composite Laminate Structures
by Milica Milic Jankovic, Jelena Svorcan and Ivana Atanasovska
Biomimetics 2025, 10(8), 520; https://doi.org/10.3390/biomimetics10080520 - 8 Aug 2025
Viewed by 790
Abstract
Composite materials are widely used in aerospace, automotive, biomedical, and renewable energy sectors due to their high strength-to-weight ratio and design flexibility. However, their anisotropic and layered nature makes structural analysis and failure prediction challenging. Traditional methods require solving complex interlaminar stress–strain equations, [...] Read more.
Composite materials are widely used in aerospace, automotive, biomedical, and renewable energy sectors due to their high strength-to-weight ratio and design flexibility. However, their anisotropic and layered nature makes structural analysis and failure prediction challenging. Traditional methods require solving complex interlaminar stress–strain equations, demanding significant computational resources. This paper presents a bio-inspired machine learning approach, based on human reasoning, to accelerate predictions and reduce dependence on computationally intensive Finite Element Analysis (FEA). An artificial neural network model was developed to rapidly estimate key parameters—laminate thickness, total weight, maximum stress, displacement, deformation, and failure criteria—based on stacking sequence and geometry for a desired load case. Although validated using a specific composite beam, the methodology demonstrates potential for broader use in rapid structural assessment, with prediction deviations under 15% compared to FEA results. The time savings are particularly significant—while conventional FEA can take several hours or even days, the ANN model delivers accurate predictions within seconds. The approach significantly reduces computational time while maintaining precision. Moreover, with further refinement, this logic-driven model could be effectively applied to aircraft maintenance, enabling faster decision-making and improved structural reliability assessment. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

20 pages, 3941 KB  
Article
Ecological Packaging: Reuse and Recycling of Rosehip Waste to Obtain Biobased Multilayer Starch-Based Material and PLA for Food Trays
by Yuliana Monroy, Florencia Versino, Maria Alejandra García and Sandra Rivero
Foods 2025, 14(11), 1843; https://doi.org/10.3390/foods14111843 - 22 May 2025
Cited by 1 | Viewed by 1313
Abstract
This study investigates the valorization of agri-food residues by repurposing industrial rosehip oil waste for sustainable food packaging development. Market demands for environmentally friendly alternatives to conventional packaging materials prompted the development of laminated multilayer materials for trays through thermo-compression, using modified cassava [...] Read more.
This study investigates the valorization of agri-food residues by repurposing industrial rosehip oil waste for sustainable food packaging development. Market demands for environmentally friendly alternatives to conventional packaging materials prompted the development of laminated multilayer materials for trays through thermo-compression, using modified cassava starch with citric acid as a compatibilizer. Physicochemical characterization revealed appropriate surface roughness (Rz of 31–64 μm) and controlled water absorption capacities of the composite materials (contact angle of 85–95°), properties critical for food quality preservation and safety. The incorporation of polylactic acid (PLA) films in the laminates significantly enhanced the mechanical performance, increasing the stress resistance by 5 to 10 times, and improved moisture resistance, showing a 78–82% reduction in the materials’ water absorption capacity and an almost 50% decrease in water content and solubility, depending on the processing method. Results indicated that these biocomposite laminates represent a viable alternative to conventional polystyrene foam trays for food packaging. Two distinct multilayer manufacturing processes were comparatively evaluated to optimize production efficiency by reducing the energy consumption and processing time. This research contributes to circular economy principles by transforming agricultural waste into value-added laminated materials with commercial potential. Full article
Show Figures

Figure 1

17 pages, 9487 KB  
Article
Polymer Composite Sandwich Panels Composed of Hemp and Plastic Skins and Composite Wood, Recycled Plastic, and Styrofoam Cores
by Ashiqul Islam, Wahid Ferdous, Paulomi (Polly) Burey, Kamrun Nahar, Libo Yan and Allan Manalo
Polymers 2025, 17(10), 1359; https://doi.org/10.3390/polym17101359 - 15 May 2025
Cited by 2 | Viewed by 1735
Abstract
This paper presents an experimental investigation of six different types of composite sandwich panels manufactured from waste-based materials, which are comprised of two different types of skins (made from hemp and recycled PET (Polyethylene terephthalate) fabrics with bio-epoxy resin) and three different cores [...] Read more.
This paper presents an experimental investigation of six different types of composite sandwich panels manufactured from waste-based materials, which are comprised of two different types of skins (made from hemp and recycled PET (Polyethylene terephthalate) fabrics with bio-epoxy resin) and three different cores (composite wood, recycled plastic, and styrofoam) materials. The skins of these sandwich panels were investigated under five different environmental conditions (normal air, water, hygrothermal, saline solution, and 80 °C elevated temperature) over seven months to evaluate their durability performance. In addition, the tensile and dynamic mechanical properties of those sandwich panels were studied. The bending behavior of cores and sandwich panels was also investigated and compared. The results indicated that elevated temperatures are 30% more detrimental to fiber composite laminates than normal water. Composite laminates made of hemp are more sensitive to environmental conditions than composite laminates made of recycled PET. A higher-density core makes panels more rigid and less susceptible to indentation failure. The flexible plastic cores are found to be up to 25% more effective at increasing the strength of sandwich panels than brittle wood cores. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
Show Figures

Figure 1

15 pages, 4070 KB  
Review
Sustainable Bio-Based Epoxy Technology Progress
by Chunfu Chen
Processes 2025, 13(4), 1256; https://doi.org/10.3390/pr13041256 - 21 Apr 2025
Cited by 4 | Viewed by 3287
Abstract
Sustainable bio-based epoxy technology is developed by using bio-based epoxy materials instead of conventional fossil-derived ones. Significant progress in new bio-based epoxy material development on bio-based epoxy resins, curing agents, and additives, as well as bio-based epoxy formulated products, has been achieved recently [...] Read more.
Sustainable bio-based epoxy technology is developed by using bio-based epoxy materials instead of conventional fossil-derived ones. Significant progress in new bio-based epoxy material development on bio-based epoxy resins, curing agents, and additives, as well as bio-based epoxy formulated products, has been achieved recently not only in fundamental academic studies but also in industrial product development. There are mainly two types of bio-based epoxy resins: conventional epoxy resins and novel epoxy resins, depending on the epoxy resin building-block type used. Bio-based conventional epoxy resins are prepared by using the bio-based epichlorohydrin to replace conventional fossil-based epichlorohydrin. Bio-based novel epoxy resins are usually prepared from epoxidation of renewable precursors such as unsaturated vegetable oils, saccharides, tannins, cardanols, terpenes, rosins, and lignin. Typical bio-based curing agents are bio-based polyamines, polyamides, amidoamines, and cardanol-based phenalkamine-type curing agents. Cardanol is a typical bio-based reactive additive available commercially. Certain types of partially bio-based formulated epoxy products have been developed and supplied for use in bonding, coating, casting, composite, and laminating applications. Full article
(This article belongs to the Special Issue Research on Polymer Processing Technology)
Show Figures

Figure 1

19 pages, 10424 KB  
Article
Glass/Polyester Laminates Modified with L-Arginine Phosphate—Effects on the Flammability and Smoke Emission
by Adriana Dowbysz, Mariola Samsonowicz, Bożena Kukfisz and Piotr Koperniak
Materials 2025, 18(2), 286; https://doi.org/10.3390/ma18020286 - 10 Jan 2025
Viewed by 1201
Abstract
Flammability and smoke generation of glass-fiber-reinforced polyester laminates (GFRPs) modified with L-arginine phosphate (ArgPA) have been investigated. The composition, structure, and thermal degradation processes of ArgPA were assessed by the elemental, FTIR, and thermogravimetric analyses. Flammability and smoke emission of GFRPs varying by [...] Read more.
Flammability and smoke generation of glass-fiber-reinforced polyester laminates (GFRPs) modified with L-arginine phosphate (ArgPA) have been investigated. The composition, structure, and thermal degradation processes of ArgPA were assessed by the elemental, FTIR, and thermogravimetric analyses. Flammability and smoke emission of GFRPs varying by different amounts (5–15 wt.%) of bio-based flame retardant (FR) prepared via hand lay-up method were assessed in terms of the limiting oxygen index (LOI) and smoke density tests. It was observed that the addition of ArgPA results in the formation of a charred layer with visible bubbles. The LOI of GFRP with 15 wt.% of ArgPA increased from 20.73 V/V % (non-modified GFRP) to 24.55 V/V %, and the material classification was improved from combustible to self-extinguishing. FRs usually increase the specific optical density of smoke, which was also observed for ArgPA-modified GFRPs. However, the specific optical density of smoke at the 4th minute of measurement (Ds(4)) obtained for ArgPA-modified GFRPs was lower than for GFRPs modified with commercially used APP. TG/FTIR studies of resin modified with ArgPA revealed the presence of phosphorus compounds and non-combustible gases in the decomposition products. Results demonstrate the potential of ArgPA as an effective, bio-based FR for the enhancement of GFRP fire safety. Full article
Show Figures

Figure 1

21 pages, 6246 KB  
Article
Cleavable Bio-Based Epoxy Matrix for More Eco-Sustainable Thermoset Composite Components
by Ilaria Rossitti, Arianna Bolis, Matteo Sambucci, Fabrizio Sarasini, Jacopo Tirillò and Marco Valente
Polymers 2025, 17(1), 88; https://doi.org/10.3390/polym17010088 - 31 Dec 2024
Cited by 4 | Viewed by 2490
Abstract
Cleavable bio-based epoxy resin systems are emerging, eco-friendly, and promising alternatives to the common thermoset ones, providing quite comparable thermo-mechanical properties while enabling a circular and green end-of-life scenario of the composite materials. In addition to being designed to incorporate a bio-based resin [...] Read more.
Cleavable bio-based epoxy resin systems are emerging, eco-friendly, and promising alternatives to the common thermoset ones, providing quite comparable thermo-mechanical properties while enabling a circular and green end-of-life scenario of the composite materials. In addition to being designed to incorporate a bio-based resin greener than the conventional fully fossil-based epoxies, these formulations involve cleaving hardeners that enable, under mild thermo-chemical conditions, the total recycling of the composite material through the recovery of the fiber and matrix as a thermoplastic. This research addressed the characterization, processability, and recyclability of a new commercial cleavable bio-resin formulation (designed by the R-Concept company) that can be used in the fabrication of fully recyclable polymer composites. The resin was first studied to investigate the influence of the different post-curing regimes (room temperature, 100 °C, and 140 °C) on its thermal stability and glass transition temperature. According to the results obtained, the non-post-cured resin displayed the highest Tg (i.e., 76.6 °C). The same post-curing treatments were also probed on the composite laminates (glass and carbon) produced via a lab-scale vacuum-assisted resin transfer molding system, evaluating flexural behavior, microstructure, and dynamic-mechanical characteristics. The post-curing at 100 °C would enhance the crosslinking of polymer chains, improving the mechanical strength of composites. With respect to the non-post-cured laminates, the flexural strength improved by 3% and 12% in carbon and glass-based composites, respectively. The post-curing at 140 °C was instead detrimental to the mechanical performance. Finally, on the laminates produced, a chemical recycling procedure was implemented, demonstrating the feasibility of recovering both thermoplastic-based resin and fibers. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

23 pages, 8761 KB  
Article
Structural Optimization of a High-Performance Green Sandwich Made of Sisal Reinforced Epoxy Facings and Balsa Core
by Bernardo Zuccarello, Francesco Bongiorno and Carmelo Militello
Polymers 2024, 16(23), 3341; https://doi.org/10.3390/polym16233341 - 28 Nov 2024
Cited by 4 | Viewed by 1415
Abstract
Within the range of composite laminates for structural applications, sandwich laminates are a special category intended for applications characterized by high flexural stresses. As it is well known from the technical literature, structural sandwich laminates have a simple configuration consisting of two skins [...] Read more.
Within the range of composite laminates for structural applications, sandwich laminates are a special category intended for applications characterized by high flexural stresses. As it is well known from the technical literature, structural sandwich laminates have a simple configuration consisting of two skins of very strong material, to which the flexural strength is delegated, between which an inner layer (core) of light material with sufficient shear strength is interposed. As an example, a sandwich configuration widely used in civil, naval, and mechanical engineering is that obtained with fiberglass skins and a core of various materials, such as polyurethane foam or another lightweight material, depending on the application. Increasingly stringent regulations aimed at protecting the environment by reducing harmful emissions of carbon dioxide and carbon monoxide have directed recent research towards the development of new composites and new sandwiches characterized by low environmental impact. Among the various green composite solutions proposed in the literature, a very promising category is that of high-performance biocomposites, which use bio-based matrices reinforced by fiber reinforcements. This approach can also be used to develop green sandwiches for structural applications, consisting of biocomposite skins and cores made by low-environmental impact or renewable materials. In order to make a contribution to this field, a structural sandwich consisting of high-performance sisal–epoxy biocomposite skins and an innovative renewable core made of balsa wood laminates with appropriate lay-ups has been developed and then properly characterized in this work. Through a systematic theoretical–experimental analysis of three distinct core configurations, the unidirectional natural core, the cross-ply type, and the angle-ply type, it has been shown how the use of natural balsa gives rise to inefficient sandwiches, whereas performance optimization is fully achieved by considering the angle-ply core type [±45/90]. Finally, the subsequent comparison with literature data of similar sandwiches has shown how the optimal configuration proposed can be advantageously used to replace synthetic glass–resin sandwiches widely used in various industrial sectors (mechanical engineering, shipbuilding, etc.) and in civil engineering. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

15 pages, 3658 KB  
Article
The Effect of Particles from Rotten Spruce Logs and Recycled Wooden Composites on Changes in the Bio-Resistance of Three-Layer Particleboards Against the Decaying Fungus Coniophora puteana and Mixture of Moulds
by Zuzana Vidholdová, Viktória Satinová and Ladislav Reinprecht
Forests 2024, 15(11), 2043; https://doi.org/10.3390/f15112043 - 19 Nov 2024
Viewed by 1294
Abstract
Wood-based particleboards (PBs) are widely used in construction and interior applications, yet their durability, particularly against biological degradation, remains a challenge. Recycling wood and incorporating degraded particles from rotted wood can potentially enhance PB sustainability and align with circular bioeconomy principles. This study [...] Read more.
Wood-based particleboards (PBs) are widely used in construction and interior applications, yet their durability, particularly against biological degradation, remains a challenge. Recycling wood and incorporating degraded particles from rotted wood can potentially enhance PB sustainability and align with circular bioeconomy principles. This study investigates the biological resistance of the three-layer, laboratory-prepared PBs with varied amounts of particles, from sound spruce wood to particles, and from spruce logs attacked by brown- or white rot, respectively, to particles from recycled wooden composites of laminated particleboards (LPBs) or blockboards (BBs), i.e., 100:0, 80:20, 50:50, and 0:100. The bio-resistance of PBs was evaluated against the brown-rot fungus Coniophora puteana, as well as against a mixture of moulds’ “microscopic fungi”, such as Aspergillus versicolor BAM 8, Aspergillus niger BAM 122, Penicillium purpurogenum BAM 24, Stachybotrys chartarum BAM 32, and Rhodotorula mucilaginosa BAM 571. PBs containing particles from brown-rotten wood or from recycled wood composites, particularly LPBs, had a partly enhanced decay resistance, but their mass loss was nevertheless more than 30%. On the other hand, the mould resistance of all variants of PBs, evaluated in the 21st day, was very poor, with the highest mould growth activity (MGA = 4). These findings suggested that some types of rotten and recycled wood particles can improve the biological resistance of PBs; however, their effectiveness is influenced by the type of wood degradation and the source of recycled materials. Further, the results highlight the need for improved biocidal, chemical, or thermal modifications of wood particles to enhance the overall biological durability of PBs for specific uses. Full article
Show Figures

Figure 1

9 pages, 1047 KB  
Proceeding Paper
Tree-Based Machine Learning Approach for Predicting the Impact Behavior of Carbon/Flax Bio-Hybrid Fiber-Reinforced Polymer Composite Laminates
by Manzar Masud, Aamir Mubashar, Shahid Iqbal, Hassan Ejaz and Saad Abdul Raheem
Eng. Proc. 2024, 75(1), 23; https://doi.org/10.3390/engproc2024075023 - 24 Sep 2024
Viewed by 1580
Abstract
In this research, the effect of change in stacking sequences on the impact performance of bio-hybrid fiber-reinforced polymer (bio-HFRP) composite materials was analyzed and evaluated. The methodology was developed, based on the mechanical testing and utilization of tree-based machine learning regression models. Low-velocity [...] Read more.
In this research, the effect of change in stacking sequences on the impact performance of bio-hybrid fiber-reinforced polymer (bio-HFRP) composite materials was analyzed and evaluated. The methodology was developed, based on the mechanical testing and utilization of tree-based machine learning regression models. Low-velocity impact (LVI) testing was performed on five distinct stacking sequences of carbon/flax bio-HFRP at energies ranging from 15 J to 90 J. For all tests, peak impact force was recorded and compared. Symmetric configurations with a uniform distribution of flax layers across the composite laminate exhibited better impact performance. Additionally, two tree-based machine learning (ML) algorithms were used: random forest (RF) and decision tree (DT). The performance metrics used to assess and compare the efficiency were the coefficient of determination (R2), mean square error (MSE), and mean absolute error (MAE). The most accurate model for the prediction of peak impact force was DT with the R2 training and test dataset values of 0.9920 and 0.9045, respectively. Furthermore, lower MSE and MAE values were attained using the DT model as compared to the RF model. The developed methodology and the model serve as powerful tools to predict the damage-induced properties of bio-HFRP composite laminates utilizing minimal resources and saving time as well. Full article
Show Figures

Figure 1

19 pages, 6946 KB  
Article
Fatigue Behaviour of High-Performance Green Epoxy Biocomposite Laminates Reinforced by Optimized Long Sisal Fibers
by B. Zuccarello, C. Militello and F. Bongiorno
Polymers 2024, 16(18), 2630; https://doi.org/10.3390/polym16182630 - 18 Sep 2024
Cited by 9 | Viewed by 2821
Abstract
In recent decades, in order to replace traditional synthetic polymer composites, engineering research has focused on the development of new alternatives such as green biocomposites constituted by an eco-sustainable matrix reinforced by natural fibers. Such innovative biocomposites are divided into two different typologies: [...] Read more.
In recent decades, in order to replace traditional synthetic polymer composites, engineering research has focused on the development of new alternatives such as green biocomposites constituted by an eco-sustainable matrix reinforced by natural fibers. Such innovative biocomposites are divided into two different typologies: random short fiber biocomposites characterized by low mechanical strength, used for non-structural applications such as covering panels, etc., and high-performance biocomposites reinforced by long fibers that can be used for semi-structural and structural applications by replacing traditional materials such as metal (carbon steel and aluminum) or synthetic composites such as fiberglass. The present research work focuses on the high-performance biocomposites reinforced by optimized sisal fibers. In detail, in order to contribute to the extension of their application under fatigue loading, a systematic experimental fatigue test campaign has been accomplished by considering four different lay-up configurations (unidirectional, cross-ply, angle-ply and quasi-isotropic) with volume fraction Vf = 70%. The results analysis found that such laminates exhibit good fatigue performance, with fatigue ratios close to 0.5 for unidirectional and angle-ply (±7.5°) laminates. However, by passing from isotropic to unidirectional lay-up, the fatigue strength increases significantly by about four times; higher increases are revealed in terms of fatigue life. In terms of damage, it has been observed that, thanks to the high quality of the proposed laminates, in any case, the fatigue failure involves the fiber failure, although secondary debonding and delamination can occur, especially in orthotropic and cross-ply lay-up. The comparison with classical synthetic composites and other similar biocomposite has shown that in terms of fatigue ratio, the examined biocomposites exhibit performance comparable with the biocomposites reinforced by the more expensive flax and with common fiberglass. Finally, appropriate models, that can be advantageously used at the design stage, have also been proposed to predict the fatigue behavior of the laminates analyzed. Full article
(This article belongs to the Special Issue Epoxy Polymers and Composites)
Show Figures

Figure 1

Back to TopTop