Development of an Artificial Neural Network-Based Tool for Predicting Failures in Composite Laminate Structures
Abstract
1. Introduction
2. Description and Validation of the Starting Structural Model
3. Methodology
3.1. Methodology of Applying Machine Learning to Composite Materials
3.2. The Algorithm for Developing a Machine Learning Model for a Predictive Tool
- Geometry design
- 2.
- Database development
- 3.
- Algorithm formation
- -
- Rapid evaluation of individual solutions
- -
- Dataset
- -
- Failure criteria (Tsai–Wu)
4. Machine Learning Model
4.1. Neural Network Performance
4.2. Failure Prediction Tool
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jones, R.M. Mechanics of Composite Materials, 2nd ed.; Taylor & Francis: Abingdon, UK, 1999. [Google Scholar]
- Agarwal, B.D.; Broutman, L.J.; Chandrashekhara, K. Analysis and Performance of Fiber Composites, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Vinson, J.R.; Sierakowski, R.L. The Behavior of Structures Composed of Composite Materials; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Huang, W.-C. Elastoplastic Transverse Properties of a Unidirectional Fibre Reinforced Composite. J. Compos. Mater. 1973, 7, 482–498. [Google Scholar] [CrossRef]
- Yang, C.; Huo, Y.; Meng, K.; Zhou, W.; Yang, J.; Nan, Z. Fatigue failure analysis of platform screen doors under subway aerodynamic loads using finite element modeling. Eng. Fail. Anal. 2025, 174, 109502. [Google Scholar] [CrossRef]
- Cao, Y.; Nakhjiri, A.T.; Ghadiri, M. Different applications of machine learning approaches in materials science and engineering: Comprehensive review. J. Eng. Appl. Artif. Intell. 2024, 135, 108783. [Google Scholar] [CrossRef]
- Monaco, E.; Rautela, M.; Gopalakrishnan, S.; Ricci, F. Machine learning algorithms for delaminations detection on composites panels by wave propagation signals analysis: Review, experiences and results. Prog. Aerosp. Sci. 2024, 146, 100994. [Google Scholar] [CrossRef]
- Liu, X.; Qin, J.; Zhao, K.; Featherston, C.A.; Kennedy, D.; Jing, Y.; Yang, G. Design optimization of laminated composite structures using artificial neural network and genetic algorithm. Compos. Struct. 2023, 305, 116500. [Google Scholar] [CrossRef]
- Bishara, D.; Xie, Y.; Liu, W.K.; Li, S. A State-of-the-Art Review on Machine Learning-Based Multiscale Modeling, Simulation, Homogenization and Design of Materials. Arch. Comput. Methods Eng. 2023, 30, 191–222. [Google Scholar] [CrossRef]
- Maleki, H.; Asadi, P.; Akbari, M.; Peyghami, M.; Salarvand, V.; Bedir, F. Incorporation of machine learning in the design of bio-nanocomposites produced by DLP 3D printer. Results Eng. 2025, 27, 105756. [Google Scholar] [CrossRef]
- Zahoor, A.; Rahman, A.; Mursaleen, M. Accelerating tribological material discovery: A machine learning framework with predictive insights. Tribol. Int. 2025, 211, 110862. [Google Scholar] [CrossRef]
- Zhao, Y.; Zang, J.; Jia, B.; Yang, J.; Wan, X.; Wang, W.; Chen, X. Revealing the interlaminar shear failure behavior of unidirectional laminate under combined compression–shear loads. J. Mater. Sci. Technol. 2023, 157, 110–119. [Google Scholar] [CrossRef]
- Gol, I.I.; Kopnov, V.A. Strength of glass-reinforced plastics in the complex stress state. Polym. Mech. 1965, 1, 54–59. [Google Scholar] [CrossRef]
- Berladir, K.; Antosz, K.; Ivanov, V.; Mitaľová, Z. Machine Learning-Driven Prediction of Composite Materials Properties Based on Experimental Testing Data. Polymers 2025, 17, 694. [Google Scholar] [CrossRef]
- Ford, E.; Maneparambil, K.; Rajan, S.; Neithalath, N. Machine learning-based accelerated property prediction of two-phase materials using microstructural descriptors and finite element analysis. Comput. Mater. Sci. 2021, 191, 110328. [Google Scholar] [CrossRef]
- Milic, M.; Svorcan, J.; Zoric, N.; Atanasovska, I.; Momcilovic, D. Mathematical modeling and experimental investigation of a composite beam failure—Case study. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2023, 238, 654–665. [Google Scholar] [CrossRef]
- Liu, Z. Machine Learning Based Health Monitoring of Composite Structures. Ph.D. Thesis, Université de Lyon, Lyon, France, 2021. [Google Scholar]
- Zhu, P.; Zhou, S.; Zhen, J.; Li, Y. Application of Artificial Neural Network in Composite Research. In Advances in Swarm Intelligence, First International Conference, ICSI 2010, Beijing, China, 12–15 June 2010; Proceedings, Part II, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6146, pp. 558–563. [Google Scholar] [CrossRef]
- Brayek, B.E.B.; Sayed, S.; Mînzu, V.; Tarfaoui, M. Machine Learning Predictions for the Comparative Mechanical Analysis of Composite Laminates with Various Fibers. Processes 2025, 13, 602. [Google Scholar] [CrossRef]
- Li, W. The application of artificial intelligence in aerospace engineering. Appl. Comput. Eng. 2024, 35, 17–20. [Google Scholar] [CrossRef]
- Kibrete, F.; Trzepieciński, T.; Gebremedhen, H.S.; Woldemichael, D.E. Artificial Intelligence in Predicting Mechanical Properties of Composite Materials. J. Compos. Sci. 2023, 7, 364. [Google Scholar] [CrossRef]
- Milić, M.; Svorcan, J.; Ivanov, T.; Atanasovska, I.; Momčilović, D.; Flajs, Ž.; Rašuo, B. Structural Optimization and Experimental Validation of a Composite Engine Mount Designed for VTOL UAV. Aerospace 2025, 12, 178. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Zhang, C. Applications of artificial intelligence/machine learning to high-performance composites. Compos. Part B Eng. 2024, 284, 111740. [Google Scholar] [CrossRef]
- Furtado, C.; Pereira, L.F.; Tavares, R.P.; Salgado, M.; Otero, F.; Catalanotti, G.; Arteiro, A.; Bessa, M.A.; Camanho, P.P. A methodology to generate design allowable of composite laminates using machine learning. Int. J. Solids Struct. 2021, 233, 111095. [Google Scholar] [CrossRef]
- Li, S.; Sitnikova, E.; Liang, Y.; Kaddour, A.S. The Tsai-Wu failure criterion rationalised in the context of UD composites. Compos. Part A Appl. Sci. Manuf. 2017, 102, 207–217. [Google Scholar] [CrossRef]
- Kaddour, A.S.; Hinton, M.; Smith, P.A.; Li, S. Mechanical properties and details of composite laminates for the test cases used in the third world-wide failure exercise. J. Compos. Mater. 2013, 47, 2427–2442. [Google Scholar] [CrossRef]
- Mozaffar, M.; Bostanabad, R.; Chen, W.; Ehmann, K.; Cao, J.; Bessa, M. Deep learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci. USA 2019, 116, 201911815. [Google Scholar] [CrossRef]
- Mohammadzadeh Gonabadi, A.; Fallahtafti, F.; Heselton, J.; Myers, S.A.; Siu, K.C.; Boron, J.B. Modeling Dual-Task Performance: Identifying Key Predictors Using Artificial Neural Networks. Biomimetics 2025, 10, 351. [Google Scholar] [CrossRef]
- Liu, N.; Liu, X.; Jiang, Y.; Liu, P.; Gao, Y.; Ding, H.; Zhao, Y. Bionic Optimization Design and Fatigue Life Prediction of a Honeycomb-Structured Wheel Hub. Biomimetics 2024, 9, 611. [Google Scholar] [CrossRef]
- Kierzkowski, A.; Wróbel, J.; Milewski, M.; Filippatos, A. Sensitivity Analysis of Unmanned Aerial Vehicle Composite Wing Structural Model Regarding Material Properties and Laminate Configuration. Drones 2025, 9, 99. [Google Scholar] [CrossRef]
- Atef, A.K.; Mostafa, T.B.; El-Sherif, H.M. Hemocompatible gelatin-glycidyl methacrylate/graphene oxide composite hydrogels for vascular catheter applications. Sci. Rep. 2025, 15, 10224. [Google Scholar] [CrossRef]
- Ellakwa, D.E.S.; Abu-Khadra, A.S.; Ellakwa, T.E. Insight into bioactive glass and bio-ceramics uses: Unveiling recent advances for biomedical application. Discov. Mater. 2025, 5, 78. [Google Scholar] [CrossRef]
- Odili, C.C.; Gbenebour, O.P.; Olanrewaju, O.A.; Badaru, T.O.; Adeosun, S.O. Physiochemical performance of electrospun PLA-lignin and PVA-lignin. J. Mater. Sci. Mater. Eng. 2025, 20, 10. [Google Scholar] [CrossRef]
- Yaakoubi, K.; Oudadesse, H.; Lefeuvre, B.; Elfeki, H. Investigation of the potential behaviour of bioactive Glass/Geopolymer composites for use as bone biomaterial. Appl. Surf. Sci. 2025, 708, 163721. [Google Scholar] [CrossRef]
- Song, Z.; Fu, Z.; Romano, D.; Dario, P.; Dai, J.S. A Novel Biomimetic Compliant Structural Skin Based on Composite Materials for Biorobotics Applications. Soft Robot. 2022, 9, 440–450. [Google Scholar] [CrossRef]
Carbon Fiber Laminate | |||||
---|---|---|---|---|---|
Layer orientation | 0° | 90° | ±45° | Epoxy resin Araldite LY3505 | |
Young’s modulus (GPa) | E11 | 139.40 | 7.66 | 9.85 | 3.50 |
E22 | 7.66 | 139.40 | 9.85 | ||
E33 | 7.66 | 7.66 | 7.66 | ||
Shear modulus (GPa) | G12 | 3.680 | 3.680 | 7.070 | 1.296 |
G13 | 3.680 | 2.940 | 2.940 | ||
G23 | 2.940 | 3.680 | 2.940 | ||
Poisson’s ratio | ν12 | 0.260 | 0.014 | 0.340 | 0.350 |
ν13 | 0.260 | 0.304 | 0.304 | ||
ν23 | 0.304 | 0.260 | 0.304 | ||
Tensile strength (MPa) | 1500 | 50 | 110 | 85 | |
Shear strength (MPa) | 86 |
Prediction Value | FEM Analysis Value | Relative Differences [%] | |
---|---|---|---|
Mass [g] | 577.32 | 576.81 | 0.09 |
Displacement [mm] | 22.41 | 25.33 | 11.53 |
Stress [MPa] | 317.24 | 311.70 | 1.78 |
Failure coefficient | 0.894 | 0.976 | 8.40 |
Total thickness [mm] | 1.54 | 1.54 | 0.00 |
Strain [%] | 0.19 | 0.21 | 9.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milic Jankovic, M.; Svorcan, J.; Atanasovska, I. Development of an Artificial Neural Network-Based Tool for Predicting Failures in Composite Laminate Structures. Biomimetics 2025, 10, 520. https://doi.org/10.3390/biomimetics10080520
Milic Jankovic M, Svorcan J, Atanasovska I. Development of an Artificial Neural Network-Based Tool for Predicting Failures in Composite Laminate Structures. Biomimetics. 2025; 10(8):520. https://doi.org/10.3390/biomimetics10080520
Chicago/Turabian StyleMilic Jankovic, Milica, Jelena Svorcan, and Ivana Atanasovska. 2025. "Development of an Artificial Neural Network-Based Tool for Predicting Failures in Composite Laminate Structures" Biomimetics 10, no. 8: 520. https://doi.org/10.3390/biomimetics10080520
APA StyleMilic Jankovic, M., Svorcan, J., & Atanasovska, I. (2025). Development of an Artificial Neural Network-Based Tool for Predicting Failures in Composite Laminate Structures. Biomimetics, 10(8), 520. https://doi.org/10.3390/biomimetics10080520