Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,304)

Search Parameters:
Keywords = binders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10924 KB  
Article
An Advanced Multi-Analytical Approach to Study Baroque Painted Wood Sculptures from Apulia (Southern Italy)
by Daniela Fico, Giorgia Di Fusco, Maurizio Masieri, Raffaele Casciaro, Daniela Rizzo and Angela Calia
Materials 2026, 19(2), 284; https://doi.org/10.3390/ma19020284 - 9 Jan 2026
Abstract
Three painted valuable wood sculptures from conventual collections in Apulia (Southern Italy), made between the beginning of the 17th century and the first half of the 18th century, were studied to shed light on the pictorial materials and techniques of the Neapolitan Baroque [...] Read more.
Three painted valuable wood sculptures from conventual collections in Apulia (Southern Italy), made between the beginning of the 17th century and the first half of the 18th century, were studied to shed light on the pictorial materials and techniques of the Neapolitan Baroque sculpture in Southern Italy. A multi-analytical approach was implemented using integrated micro-invasive techniques, including polarized light microscopy (PLM) in ultraviolet (UV) and visible (VIS) light, scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), Fourier-Transform Infrared (FTIR) spectroscopy, and pyrolysis–gas chromatography/high-resolution mass spectrometry (Py-GC/HRMS). The stratigraphic sequences were microscopically identified, and the pictorial layers were discriminated on the basis of optical features, elemental compositions, and mapping. Organic components were detected by FTIR as lipids and proteinaceous compounds for binders, while terpenic resins were detected as varnishes. Accordingly, PY-GC/HRMS identified siccative oils, animal glue, egg, and colophony. The results allowed the identification of the painting techniques used for the pictorial films and the ground preparation layers and supported the distinction between original and repainting layers. The results of this multi-analytical approach provide insights into Baroque wooden sculpture in Southern Italy and offers information to support restorers in conservation works. Full article
18 pages, 1585 KB  
Article
Affinity- and Format-Dependent Pharmacokinetics of 89Zr-Labeled Albumin-Binding VHH Constructs
by Simon Leekens, Peter Casteels, Tom Van Bogaert, Pieter Deschaght, Veronique De Brabandere, Christopher Cawthorne, Guy Bormans and Frederik Cleeren
Pharmaceuticals 2026, 19(1), 120; https://doi.org/10.3390/ph19010120 - 9 Jan 2026
Abstract
Background/Objectives: NANOBODY® molecules (VHHs) are attractive vectors for radiopharmaceuticals due to their small size and high target affinity, but rapid clearance and pronounced kidney retention limit their therapeutic applicability. Binding to serum albumin is a widely used strategy to prolong circulation, yet [...] Read more.
Background/Objectives: NANOBODY® molecules (VHHs) are attractive vectors for radiopharmaceuticals due to their small size and high target affinity, but rapid clearance and pronounced kidney retention limit their therapeutic applicability. Binding to serum albumin is a widely used strategy to prolong circulation, yet the respective contributions of albumin-binding affinity and molecular format remain insufficiently defined. This study aimed to systematically evaluate how affinity and valency modulate VHH pharmacokinetics. Methods: Four monovalent albumin-binding VHHs spanning nanomolar to micromolar affinities and two bivalent constructs were engineered, generated by fusing an albumin-binding VHH to an irrelevant non-binding VHH. All constructs incorporated a site-specific cysteine for DFO* conjugation, enabling uniform zirconium-89 labeling with high radiochemical purity. Pharmacokinetics were assessed in healthy mice using serial blood sampling and positron emission tomography. Blood and kidney exposure were quantified by non-compartmental analysis. Results: All albumin-binding constructs showed increased systemic exposure and reduced kidney uptake relative to a non-binding control. Nanomolar-affinity binders reached maximal exposure, and further affinity increases (KD < ~100 nM) did not improve pharmacokinetics, suggesting a threshold. The micromolar binder showed intermediate exposure but still reduced renal retention compared with control. Valency effects were affinity-dependent. They were negligible at high affinity but pronounced at low affinity, where bivalency reduced systemic exposure and increased kidney uptake toward control levels. Conclusions: Albumin binding enables tuning of VHH pharmacokinetics in an affinity-dependent manner. Above an apparent affinity threshold, pharmacokinetics become format independent, whereas below this threshold, molecular format substantially influences systemic and renal disposition. Full article
(This article belongs to the Special Issue Advances in Theranostic Radiopharmaceuticals)
Show Figures

Graphical abstract

24 pages, 2187 KB  
Article
Modeling of the Chemical Re-Alkalization of Concrete by Application of Alkaline Mortars
by Clarissa Glawe, Rebecca Achenbach and Michael Raupach
Materials 2026, 19(2), 278; https://doi.org/10.3390/ma19020278 - 9 Jan 2026
Abstract
Since the number of existing steel-reinforced concrete buildings affected by carbonation-induced corrosion is steadily increasing, there is a high demand for durable repair methods. Chemical re-alkalization (CRA) represents one such approach, relying on the transport of alkaline pore solution from a repair mortar [...] Read more.
Since the number of existing steel-reinforced concrete buildings affected by carbonation-induced corrosion is steadily increasing, there is a high demand for durable repair methods. Chemical re-alkalization (CRA) represents one such approach, relying on the transport of alkaline pore solution from a repair mortar into carbonated concrete. With the introduction of clinker-reduced binder systems such as hybrid alkali-activated binders (HAABs), their suitability for CRA and governing material parameters require further clarification. In this study, material-related chemical and structural influences on CRA were investigated using an adapted form of Fick’s second law of diffusion, incorporating a time-dependent attenuation factor, β(t). The CRA progression was evaluated over 28 days, distinguishing between an initial suction phase and a subsequent diffusion phase. The results show that a high initial alkalinity of the mortar pore solution (pH > 14) significantly enhances re-alkalization during the suction phase, reflected by suction factors a > 1. In contrast, progression during the diffusion phase is primarily governed by the potassium concentration gradient at the mortar–concrete interface, while structural parameters such as capillary porosity show no systematic correlation with the deceleration factor b (−0.46 ≤ b ≤ −0.26). The findings indicate that, within the investigated range, mortar pore solution chemistry has a stronger influence on CRA than structural properties, providing guidance for the targeted design of alkaline repair mortars. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 4391 KB  
Article
Lightweight, Heat-Insulating, Alkali-Activated Slag Composites with Carbon-Based Biochar Additive and Filler
by Gintautas Tamošaitis, Danutė Vaičiukynienė, Aras Kantautas, Ignacio Villalón Fornés, Ruben Paul Borg and Laura Vitola
Materials 2026, 19(2), 277; https://doi.org/10.3390/ma19020277 - 9 Jan 2026
Abstract
An alkali-activated slag binder based on biochar was developed in this research. The biochar was produced from waste wood and is referred to as biochar waste (BW). In the alkali-activated slag system, a small amount of biochar (up to 0.5%) was used as [...] Read more.
An alkali-activated slag binder based on biochar was developed in this research. The biochar was produced from waste wood and is referred to as biochar waste (BW). In the alkali-activated slag system, a small amount of biochar (up to 0.5%) was used as an additive, and a larger amount (from 1% to 25%) was used as a filler. The influence of the biochar powder on compressive strength was determined. The hydrated samples were investigated using X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM), and the thermal, acoustical properties, and hydration temperature were also determined. The compressive strength of the alkali-activated slag composite, especially after 7 days, was found to increase slightly due to the introduction of a small amount (0.05–0.5%) of BW powder. The powder in the alkali-activated slag matrix was distributed homogenously, resulting in a reduction in the crack propagation. A larger amount of BW led to a non-homogeneous distribution, and this resulted in a gradual reduction in compressive strength with increasing BW. The highest values of compressive strength at 28 days of hydration (44.4 MPa) were recorded for samples with 0.25% of BW. According to mathematical analysis methods, the compressive strength is mainly influenced by the specific surface area of the initial mix ingredients and the amount of BW additive. In the alkali-activated slag matrix, BW acted as an inert micro-filler, with the dilution effect possibly being the reason for the decrease in the hydration temperature. SEM analysis demonstrated that the BW had a good adhesion with the alkali-activated slag matrix. The thermal and acoustic insulation performance of samples with BW improved. These investigations suggest that BW can be successfully incorporated in alkali-activated material, resulting in low thermal conductivity and adequate acoustic insulation performance. Full article
Show Figures

Graphical abstract

32 pages, 2273 KB  
Review
Fire Performance of FRP-Composites and Strengthened Concrete Structures: A State-of-the-Art Review
by Junhao Zhou, Yingwu Zhou, Menghuan Guo and Sheng Xiang
Polymers 2026, 18(2), 181; https://doi.org/10.3390/polym18020181 - 9 Jan 2026
Abstract
The structural application of Fiber-Reinforced Polymers (FRP) is significantly hindered by their inherent thermal sensitivity. This paper presents a comprehensive review of the fire performance of FRP materials and FRP-concrete systems, spanning from material-scale degradation to structural-scale response. Distinct from previous studies, this [...] Read more.
The structural application of Fiber-Reinforced Polymers (FRP) is significantly hindered by their inherent thermal sensitivity. This paper presents a comprehensive review of the fire performance of FRP materials and FRP-concrete systems, spanning from material-scale degradation to structural-scale response. Distinct from previous studies, this review explicitly distinguishes between the fire behavior of internally reinforced FRP-reinforced concrete members and externally applied systems, including Externally Bonded Reinforcement (EBR) and Near-Surface Mounted (NSM) techniques. The thermal and mechanical degradation mechanisms of FRP constituents—specifically reinforcing fibers and polymer matrices—are first analyzed, with a focused discussion on the critical role of the glass transition temperature Tg. A detailed comparative analysis of the pros and cons of organic (epoxy-based) and inorganic (cementitious) binders is provided, elaborating on their respective bonding mechanisms and thermal stability under fire conditions. Furthermore, the effectiveness of various fire-protection strategies, such as external insulation systems, is evaluated. Synthesis of existing research indicates that while insulation thickness remains the dominant factor governing the fire survival time of EBR/NSM systems, the irreversible thermal degradation of polymer matrices poses a primary challenge for the post-fire recovery of FRP-reinforced structures. This review identifies critical research gaps and provides practical insights for the fire-safe design of FRP-concrete composite structures. Full article
Show Figures

Figure 1

13 pages, 2799 KB  
Article
Effects of Binder Saturation and Drying Time in Binder Jetting Additive Manufacturing on Dimensional Deviation and Density of SiC Green Parts
by Mostafa Meraj Pasha, Zhijian Pei, Md Shakil Arman and Stephen Kachur
J. Manuf. Mater. Process. 2026, 10(1), 26; https://doi.org/10.3390/jmmp10010026 - 9 Jan 2026
Abstract
Binder jetting additive manufacturing (BJAM) offers an effective approach for fabricating silicon carbide (SiC) parts with complex geometries; however, part quality is strongly influenced by process variables. Binder saturation and drying time are key process variables in BJAM, yet their individual influences on [...] Read more.
Binder jetting additive manufacturing (BJAM) offers an effective approach for fabricating silicon carbide (SiC) parts with complex geometries; however, part quality is strongly influenced by process variables. Binder saturation and drying time are key process variables in BJAM, yet their individual influences on the density and dimensional deviation of SiC green parts remain underexplored. To address this gap, this study systematically investigates the effects of binder saturation and drying time on the dimensional deviation and density of SiC green parts by evaluating four binder saturation levels (60%, 80%, 100%, and 120%) and three drying times (15, 30, and 45 s). The results show that increasing binder saturation reduces green part density and increases dimensional deviation, whereas increasing drying time improves density and reduces dimensional deviation. Excessive drying, however, causes severe warpage, preventing the fabrication of dimensionally accurate parts. These findings highlight the need to optimize binder saturation and drying time to improve the density of printed parts while minimizing dimensional deviation. Full article
Show Figures

Figure 1

31 pages, 5559 KB  
Review
Advances in Fabrication Technologies of Advanced Ceramics and High-Quality Development Trends in Catalytic Applications
by Weitao Xu, Peng Lv, Jiayin Li, Jing Yang, Liyun Cao and Jianfeng Huang
Catalysts 2026, 16(1), 79; https://doi.org/10.3390/catal16010079 - 9 Jan 2026
Abstract
Advanced ceramics are known for their lightweight, high-temperature resistance, corrosion resistance, and biocompatibility. They are crucial in energy conversion, environmental protection, and aerospace fields. This review highlights the recent advancements in ceramic matrix composites, high-entropy ceramics, and polymer-derived ceramics, alongside various fabrication techniques [...] Read more.
Advanced ceramics are known for their lightweight, high-temperature resistance, corrosion resistance, and biocompatibility. They are crucial in energy conversion, environmental protection, and aerospace fields. This review highlights the recent advancements in ceramic matrix composites, high-entropy ceramics, and polymer-derived ceramics, alongside various fabrication techniques such as three-dimensional printing, advanced sintering, and electric-field-assisted joining. Beyond the fabrication process, we emphasize how different processing methods impact microstructure, transport properties, and performance metrics relevant to catalysis. Additive manufacturing routes, such as direct ink writing, digital light processing, and binder jetting, are discussed and normalized based on factors such as relative density, grain size, pore architecture, and shrinkage. Cold and flash sintering methods are also examined, focusing on grain-boundary chemistry, dopant compatibility, and scalability for catalyst supports. Additionally, polymer-derived ceramics (SiOC, SiCN, SiBCN) are reviewed in terms of their catalytic performance in hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and CO2 reduction reaction. CeO2-ZrO2 composites are particularly highlighted for their use in environmental catalysis and high-temperature gas sensing. Furthermore, insights on the future industrialization, cross-disciplinary integration, and performance improvements in catalytic applications are provided. Full article
Show Figures

Graphical abstract

20 pages, 4705 KB  
Article
Dissecting the Interaction Domains of SARS-CoV-2 Nucleocapsid Protein and Human RNA Helicase DDX3X and Search for Potential Inhibitors
by Camilla Lodola, Maria Michela Pallotta, Fabrizio Manetti, Paolo Governa, Emmanuele Crespan, Giovanni Maga and Massimiliano Secchi
Int. J. Mol. Sci. 2026, 27(2), 672; https://doi.org/10.3390/ijms27020672 - 9 Jan 2026
Abstract
The SARS-CoV-2 nucleocapsid protein (Np) plays multifunctional roles in the viral life cycle. By interacting with host cellular proteins, Np regulates viral RNA transcription, replication, and immune evasion. It controls genome packaging and counteracts host RNA interference mediated antiviral responses through its RNA [...] Read more.
The SARS-CoV-2 nucleocapsid protein (Np) plays multifunctional roles in the viral life cycle. By interacting with host cellular proteins, Np regulates viral RNA transcription, replication, and immune evasion. It controls genome packaging and counteracts host RNA interference mediated antiviral responses through its RNA binding activity. Previous studies revealed a physical interaction between Np and DDX3X, a human DEAD-box RNA helicase that facilitates the replication of several viruses. This interaction enhances Np affinity for double-stranded RNA and inhibits DDX3X helicase activity. Since Np-RNA binding activity promotes ribonucleoprotein complex formation, targeting this interaction is a promising antiviral strategy. We generated truncated protein variants to define interaction regions between Np and DDX3X. Using AlphaFold modelling, we identified RecA2 as the key DDX3X domain involved in Np binding. Finally, to disrupt Np-RNA complex formation, we screened a small molecule library of putative binders of Np N-terminal region and identified two candidate inhibitors for further development. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

27 pages, 10782 KB  
Article
Exploring the Root Causes of Wide Thermal Cracks in the Southwestern United States
by Saed N. A. Aker, Awais Zahid, Masih Beheshti and Hasan Ozer
Infrastructures 2026, 11(1), 19; https://doi.org/10.3390/infrastructures11010019 - 8 Jan 2026
Abstract
Wide thermal cracks are a common form of pavement distress affecting primary state and county highways, urban residential streets, and parking lots across the Southwest climatic regions. These cracks are primarily caused by thermal fatigue, driven by diurnal temperature variations despite the lack [...] Read more.
Wide thermal cracks are a common form of pavement distress affecting primary state and county highways, urban residential streets, and parking lots across the Southwest climatic regions. These cracks are primarily caused by thermal fatigue, driven by diurnal temperature variations despite the lack of extremely cold events. This research aims to identify and analyze the local factors contributing to the initiation and propagation of thermal fatigue cracks. Field cores are collected from 12 sites exhibiting wide thermal cracks in the Phoenix metropolitan area in Arizona to evaluate their volumetric properties and the degree of binder aging. Advanced finite element (FE) models were developed to examine the influence of pavement structures and local climatic conditions on the development of tensile stresses due to thermal fatigue. The FE analysis indicated a high magnitude of thermal stresses due to cyclic temperature variations in Arizona compared to colder regions in the United States. Based on the forensic investigation and analysis performed, the initiation of wide cracks was shown to be primarily due to repeated localized damage from frequent thermal fatigue events on severely aged pavements. This damage is exacerbated by low air voids in mineral aggregate, an insufficient effective binder volume. and excessive binder aging, which compromise the structural integrity of the pavement. Full article
Show Figures

Figure 1

13 pages, 2134 KB  
Article
Performance of Repair Mortars Composed of Calcium Sulfoaluminate and Amorphous Calcium Aluminate
by Seungtae Lee and Seho Park
Materials 2026, 19(2), 261; https://doi.org/10.3390/ma19020261 - 8 Jan 2026
Viewed by 17
Abstract
Extensive research has addressed concrete deterioration and its countermeasures; however, studies on responsive repair methods and materials remain comparatively limited and less systematic. In this study, six mixtures of repair mortars (RMs) were formulated using aluminate-based binders, specifically calcium sulfoaluminate (CSA) and amorphous [...] Read more.
Extensive research has addressed concrete deterioration and its countermeasures; however, studies on responsive repair methods and materials remain comparatively limited and less systematic. In this study, six mixtures of repair mortars (RMs) were formulated using aluminate-based binders, specifically calcium sulfoaluminate (CSA) and amorphous calcium aluminate (ACA) cements. The experiment evaluated the mechanical properties and freeze–thaw resistance of these mortars. To accelerate hydration, a controlled amount of anhydrite gypsum was incorporated into each mixture. The fluidity and setting time of fresh RMs were measured, whereas the compressive strength, flexural strength, and ultrasonic pulse velocity (UPV) of hardened RMs were evaluated at 1, 7, and 28 days. In addition, freeze–thaw resistance was assessed as per ASTM C666 by determining the relative dynamic modulus of elasticity. Additionally, the hydration products and microstructural characteristics of paste specimens were qualitatively analyzed. The mechanical performance, including strength and UPV, and freeze–thaw resistance of RMs containing ACA were superior to those of RMs containing CSA. In particular, compared to the CSA-containing specimens exposed to freeze–thaw action were significantly deteriorated, the ACA-containing specimens showed excellent resistance with relatively less cracking and spalling. This may imply that ACA is effective as rapid repair materials for concrete structures in cold regions. Microstructural observations revealed variations in hydration products depending on the aluminate binder employed, which significantly influenced the mechanical and durability properties of the RMs. These results may aid the selection of optimal repair materials for deteriorated concrete structures. Full article
(This article belongs to the Special Issue Eco-Friendly Intelligent Infrastructures Materials)
Show Figures

Figure 1

30 pages, 7707 KB  
Article
A Comparative Study of Utilizing Waste Palm Oil Fuel Ash and Tile Ceramics to Enhance Slag–Fly Ash Geopolymer Property-Based Composite
by Ghasan Fahim Huseien and Akram M. Mhaya
J. Compos. Sci. 2026, 10(1), 33; https://doi.org/10.3390/jcs10010033 - 8 Jan 2026
Viewed by 31
Abstract
Geopolymers are a new breed of construction materials that are environmentally friendly and replace old Portland cement. These materials are produced through the alkaline activation of industrial and agricultural waste rich in aluminosilicates. The growing interest in sustainable building solutions has driven research [...] Read more.
Geopolymers are a new breed of construction materials that are environmentally friendly and replace old Portland cement. These materials are produced through the alkaline activation of industrial and agricultural waste rich in aluminosilicates. The growing interest in sustainable building solutions has driven research into their development. Palm oil fuel ash (POFA) and waste ceramic tile powder (WTCP) are both highly rich in reactive aluminosilicates and widely recommended for the production of sustainable geopolymers. This study aims to evaluate the suitability of POFA and WTCP as sustainable alternatives to conventional binders and to identify the potential advantages of each waste material in developing eco-friendly, high-performance geopolymers. The results indicate that specimens prepared with a high content (50 wt%) of POFA or WTCP, incorporating fly ash and slag, can achieve compressive strengths of up to 50 MPa after 28 days of curing. However, increasing the proportion of POFA or WTCP from 50% to 60% and 70% resulted in a significant reduction in compressive strength. In contrast, specimens containing higher proportions of POFA and WTCP demonstrated superior durability when exposed to aggressive environments. In summary, the findings indicate that WTCP is more suitable than POFA for producing geopolymers as eco-friendly construction materials. Its superior reactivity, workability, early-age strength development, and durability make it a promising precursor for sustainable applications in the construction sector. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

18 pages, 1165 KB  
Article
Comprehensive Toxicological Evaluation of 3D-Printed Hydroxyapatite (3DPHA) for Bone Grafting Applications
by Faungchat Thammarakcharoen, Autcharaporn Srion, Waraporn Suvannapruk, Watchara Chokevivat, Wiroj Limtrakarn and Jintamai Suwanprateeb
Int. J. Mol. Sci. 2026, 27(2), 636; https://doi.org/10.3390/ijms27020636 - 8 Jan 2026
Viewed by 37
Abstract
Binder jet 3D printing combined with a low-temperature phase transformation process has emerged as a promising route for producing 3D-printed hydroxyapatite (3DPHA) scaffolds with controlled architecture for bone grafting applications. However, the toxicological profile of this unique binder jet-derived material has not yet [...] Read more.
Binder jet 3D printing combined with a low-temperature phase transformation process has emerged as a promising route for producing 3D-printed hydroxyapatite (3DPHA) scaffolds with controlled architecture for bone grafting applications. However, the toxicological profile of this unique binder jet-derived material has not yet been established. In this study, we conducted a comprehensive compositional and toxicological assessment of 3DPHA fabricated via the calcium sulfate transformation route. The material exhibited phase-pure hydroxyapatite (HA) with a Ca/P ratio consistent with non-stoichiometric HA and low levels of trace elemental impurities. In vitro assays revealed no cytotoxic, irritant, sensitizing, or mutagenic effects. This work provides a standardized toxicological and compositional safety validation of 3DPHA. By linking compositional purity to biological safety and demonstrating compliance with international benchmarks, this study establishes a regulatory foundation confirming that 3DPHA is chemically pure, biologically safe, and ready for clinical translation as a bone-graft material. Full article
Show Figures

Figure 1

8 pages, 1347 KB  
Proceeding Paper
NIR Spectral Analysis in Twin-Screw Melt Granulation: Effects of Binder Content, Screw Design, and Temperature
by Jacquelina C. Lobos de Ponga, Ivana M. Cotabarren, Juliana Piña, Ana L. Grafia and Mariela F. Razuc
Eng. Proc. 2025, 117(1), 20; https://doi.org/10.3390/engproc2025117020 - 8 Jan 2026
Viewed by 31
Abstract
This study evaluates the feasibility of Near-Infrared (NIR) spectroscopy combined with chemometric modeling for monitoring twin-screw melt granulation. Lactose monohydrate was used as a model excipient and polyethylene glycol (PEG 6000) (Sistemas Analíticos S.A, Buenos Aires, Argentina) as a meltable binder. Granules were [...] Read more.
This study evaluates the feasibility of Near-Infrared (NIR) spectroscopy combined with chemometric modeling for monitoring twin-screw melt granulation. Lactose monohydrate was used as a model excipient and polyethylene glycol (PEG 6000) (Sistemas Analíticos S.A, Buenos Aires, Argentina) as a meltable binder. Granules were produced under different processing conditions by varying binder content, screw configuration (kneading or conveying elements), and measurement temperature. NIR spectra were acquired on-line on a conveyor belt and analyzed using Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression. The regression models showed excellent predictive performance for PEG 6000 content in lactose-based granules, with coefficients of determination higher than 0.998 for both raw and preprocessed spectral data. PCA successfully discriminated between granulated and non-granulated materials, as well as between granules produced with different screw configurations, demonstrating the sensitivity of the technique to processing conditions and granule formation mechanisms. In addition, spectral differences associated with measurement temperature were detected, with derivative-based preprocessing improving the discrimination between warm and cooled granules. Overall, the results demonstrate that NIR spectroscopy, coupled with multivariate analysis, is a robust and non-invasive tool for real-time monitoring of twin-screw melt granulation, with strong potential to enhance process understanding, control, and product consistency in continuous pharmaceutical manufacturing. Full article
Show Figures

Figure 1

15 pages, 1784 KB  
Article
Sulfur Polymer to Develop Low-Carbon Reclaimed Asphalt Pavements
by Mohammad Doroudgar, Mohammadjavad Kazemi, Shadi Saadeh, Mahour Parast and Elham H. Fini
Polymers 2026, 18(2), 168; https://doi.org/10.3390/polym18020168 - 8 Jan 2026
Viewed by 32
Abstract
The incorporation of reclaimed asphalt pavement (RAP) offers significant environmental benefits; however, its use is often limited by an increased susceptibility to cracking due to the insufficient elasticity of the severely aged RAP binder. This limitation is conventionally mitigated using polymers such as [...] Read more.
The incorporation of reclaimed asphalt pavement (RAP) offers significant environmental benefits; however, its use is often limited by an increased susceptibility to cracking due to the insufficient elasticity of the severely aged RAP binder. This limitation is conventionally mitigated using polymers such as styrene–butadiene styrene, which, despite their effectiveness, are costly and carbon intensive. This paper introduces a low-carbon sulfur-based ternary polymer developed through TiO2-catalyzed inverse vulcanization of elemental sulfur to be used as a modifier to address the abovementioned challenge at the asphalt mixture level. The sulfur polymer containing waste cooking oil and metal-rich biochar was incorporated into hot-mix asphalt having 25% RAP. The mixture specimens were evaluated before and after accelerated thermal and ultraviolet aging. Cracking resistance was measured using the Indirect Tensile Asphalt Cracking Test (IDEAL-CT), while resistance to rutting and moisture damage were assessed through the Hamburg Wheel Tracking Test (HWT). IDEAL-CT findings showed improved CTIndex values for the modified mixture under unaged conditions and after three days of thermal aging, with smaller variations noted after prolonged thermal aging and during the combined thermal–ultraviolet aging process. Results from the HWT test revealed that the addition of the sulfur polymer did not negatively impact resistance to rutting or moisture damage; all mixtures remained significantly below rutting failure thresholds. Furthermore, a simplified environmental analysis indicated that substituting 10 wt% of petroleum binder with the sulfur polymer lowered the binder’s cradle-to-gate global warming potential by around 11%. In summary, study results showed that the newly developed sulfur polymer system has the potential to improve cracking resistance even when exposed to select accelerated aging protocols while decreasing embodied carbon, thus endorsing its viability as a sustainable modifier for asphalt mixtures. Full article
Show Figures

Graphical abstract

17 pages, 3258 KB  
Article
Sustainable Carbon–Carbon Composites from Biomass-Derived Pitch: Optimizing Structural, Electrical, and Mechanical Properties via Catalyst Engineering
by Zeban Shah, Muhammad Nisar, Inam Ullah, Muhammad Yaseen, Abiodun Oluwatosin Adeoye, Shaowei Zhang, Sayyar Ali Shah and Habib Ullah
Catalysts 2026, 16(1), 74; https://doi.org/10.3390/catal16010074 - 8 Jan 2026
Viewed by 110
Abstract
This work is based on our previous research on sulfur-assisted graphitization of biopitch by focusing on catalyst-driven optimization of biomass-derived pitch (BDP) composites as sustainable alternatives to coal tar pitch (CTP). Biomass from eucalyptus sawdust was pyrolyzed to produce BDP, which was used [...] Read more.
This work is based on our previous research on sulfur-assisted graphitization of biopitch by focusing on catalyst-driven optimization of biomass-derived pitch (BDP) composites as sustainable alternatives to coal tar pitch (CTP). Biomass from eucalyptus sawdust was pyrolyzed to produce BDP, which was used as a binder for carbon–carbon composites. The properties of BDP/graphite and CTP/graphite composites, including bending strength, electrical conductivity, hardness, density, porosity, mass loss, and shrinkage, were compared. Furthermore, the influence of catalysts (NiSO4, K2SO4, CuSO4, FeSO4, and KOH) on composite performance was systematically investigated. Results show that catalyst selection significantly enhances structural, electrical, and mechanical properties, demonstrating the potential of combining eco-friendly materials with strategic catalyst engineering to develop high-performance, sustainable composites. Full article
Show Figures

Graphical abstract

Back to TopTop