Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (319)

Search Parameters:
Keywords = bile acid profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3259 KiB  
Article
Lactic Acid Bacteria in Chinese Sauerkraut: Its Isolation and In Vitro Probiotic Properties
by Ming-Yang Han, Wen-Yong Lou and Meng-Fan Li
Foods 2025, 14(15), 2690; https://doi.org/10.3390/foods14152690 - 30 Jul 2025
Viewed by 338
Abstract
Probiotics have been widely explored for their potential in managing hyperuricemia. However, their isolation and identification are fundamental prerequisites for practical application. In this study, 254 lactic acid bacteria (LAB) strains were isolated from Chinese sauerkraut and screened for probiotic potential based on [...] Read more.
Probiotics have been widely explored for their potential in managing hyperuricemia. However, their isolation and identification are fundamental prerequisites for practical application. In this study, 254 lactic acid bacteria (LAB) strains were isolated from Chinese sauerkraut and screened for probiotic potential based on genomic and phenotypic characteristics, as well as nucleoside-degrading activity relevant to decrease serum urate. Among them, Lactiplantibacillus plantarum (L. plantarum) F42 exhibited the highest bile salt tolerance (survivor rate: 19.46 ± 4.33%), strong adhesion to Caco-2 cells (1.89 ± 0.12%), effective nucleoside degradation (inosine: 5.46 ± 0.67 mg∙L−1∙min−1; guanosine: 3.84 ± 0.11 mg∙L−1∙min−1), and notable anti-listeria activity (inhibition zone: 6.9 ± 0.3 mm). Based on its functional profile, L. plantarum F42 was selected as a promising probiotic candidate for further investigation of its urate-lowering effects. This work provides a new insight into anti-hyperuricemia probiotic selection based on in vitro nucleoside-degrading activity. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

22 pages, 2147 KiB  
Article
Streamlining Bacillus Strain Selection Against Listeria monocytogenes Using a Fluorescence-Based Infection Assay Integrated into a Multi-Tiered Validation Pipeline
by Blanca Lorente-Torres, Pablo Castañera, Helena Á. Ferrero, Sergio Fernández-Martínez, Suleiman Adejoh Ocholi, Jesús Llano-Verdeja, Farzaneh Javadimarand, Yaiza Carnicero-Mayo, Amanda Herrero-González, Alba Puente-Sanz, Irene Sainz Machín, Isabel Karola Voigt, Silvia Guerrero Villanueva, Álvaro López García, Eva Martín Gómez, James C. Ogbonna, José M. Gonzalo-Orden, Jesús F. Aparicio, Luis M. Mateos, Álvaro Mourenza and Michal Letekadd Show full author list remove Hide full author list
Antibiotics 2025, 14(8), 765; https://doi.org/10.3390/antibiotics14080765 - 29 Jul 2025
Viewed by 283
Abstract
Background/Objectives: Listeria monocytogenes is a foodborne pathogen of major public health concern due to its ability to invade host cells and cause severe illness. This study aimed to develop and validate a multi-tiered screening pipeline to identify Bacillus strains with probiotic potential [...] Read more.
Background/Objectives: Listeria monocytogenes is a foodborne pathogen of major public health concern due to its ability to invade host cells and cause severe illness. This study aimed to develop and validate a multi-tiered screening pipeline to identify Bacillus strains with probiotic potential against L. monocytogenes. Methods: A total of 26 Bacillus isolates were screened for antimicrobial activity, gastrointestinal resilience, and host cell adhesion. A fluorescence-based infection assay using mCherry-expressing HCT 116 cells was used to assess cytoprotection against L. monocytogenes NCTC 7973. Eight strains significantly improved host cell viability and were validated by quantification of intracellular CFU. Two top candidates were tested in a murine model of listeriosis. The genome of the lead strain was sequenced to evaluate safety and biosynthetic potential. Results: B. subtilis CECT 8266 completely inhibited intracellular replication of L. monocytogenes in HCT 116 cells, reducing bacterial recovery to undetectable levels. In vivo, it decreased splenic bacterial burden by approximately 6-fold. Genomic analysis revealed eight bacteriocin biosynthetic clusters and silent antibiotic resistance genes within predicted genomic islands, as determined by CARD and Alien Hunter analysis. The strain also demonstrated bile and acid tolerance, as well as strong adhesion to epithelial cells. Conclusions: The proposed pipeline enables efficient identification of probiotic Bacillus strains with intracellular protective activity. B. subtilis CECT 8266 is a promising candidate for translational applications in food safety or health due to its efficacy, resilience, and safety profile. Full article
Show Figures

Figure 1

19 pages, 1109 KiB  
Article
Machine Learning Approach to Select Small Compounds in Plasma as Predictors of Alzheimer’s Disease
by Eleonora Stefanini, Alberto Iglesias, Joan Serrano-Marín, Juan Sánchez-Navés, Hanan A. Alkozi, Mercè Pallàs, Christian Griñán-Ferré, David Bernal-Casas and Rafael Franco
Int. J. Mol. Sci. 2025, 26(14), 6991; https://doi.org/10.3390/ijms26146991 - 21 Jul 2025
Viewed by 285
Abstract
This study employs a machine learning approach to identify a small-molecule-based signature capable of predicting Alzheimer’s disease (AD). Utilizing metabolomics data from the plasma of a well-characterized cohort of 94 AD patients and 62 healthy controls; metabolite levels were assessed using the Biocrates [...] Read more.
This study employs a machine learning approach to identify a small-molecule-based signature capable of predicting Alzheimer’s disease (AD). Utilizing metabolomics data from the plasma of a well-characterized cohort of 94 AD patients and 62 healthy controls; metabolite levels were assessed using the Biocrates MxP® Quant 500 platform. Data preprocessing involved removing low-quality samples, selecting relevant biochemical groups, and normalizing metabolite data based on demographic variables such as age, sex, and fasting time. Linear regression models were used to identify concomitant parameters that consisted of the data for a given metabolite within each of the biochemical families that were considered. Detection of these “concomitant” metabolites facilitates normalization and allows sample comparison. Residual analysis revealed distinct metabolite profiles between AD patients and controls across groups, such as amino acid-related compounds, bile acids, biogenic amines, indoles, carboxylic acids, and fatty acids. Correlation heatmaps illustrated significant interdependencies, highlighting specific molecules like carnosine, 5-aminovaleric acid (5-AVA), cholic acid (CA), and indoxyl sulfate (Ind-SO4) as promising indicators. Linear Discriminant Analysis (LDA), validated using Leave-One-Out Cross-Validation, demonstrated that combinations of four or five molecules could classify AD with accuracy exceeding 75%, sensitivity up to 80%, and specificity around 79%. Notably, optimal combinations integrated metabolites with both a tendency to increase and a tendency to decrease in AD. A multivariate strategy consistently identified included 5-AVA, carnosine, CA, and hypoxanthine as having predictive potential. Overall, this study supports the utility of combining data of plasma small molecules as predictors for AD, offering a novel diagnostic tool and paving the way for advancements in personalized medicine. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 1045 KiB  
Article
Metabolomic Profiling of Erector Spinae Plane Block for Breast Cancer Surgery
by Ekin Guran, Ozan Kaplan, Serpil Savlı, Cigdem Sonmez, Lutfi Dogan and Suheyla Unver
Medicina 2025, 61(7), 1294; https://doi.org/10.3390/medicina61071294 - 18 Jul 2025
Viewed by 297
Abstract
Background and Objectives: Regional and systemic analgesic techniques, such as erector spinae plane (ESP) block and opioid administration, implemented during cancer surgery, have been shown to influence immune responses and potentially affect cancer outcomes. Surgical stress and analgesic techniques used in cancer surgery—such [...] Read more.
Background and Objectives: Regional and systemic analgesic techniques, such as erector spinae plane (ESP) block and opioid administration, implemented during cancer surgery, have been shown to influence immune responses and potentially affect cancer outcomes. Surgical stress and analgesic techniques used in cancer surgery—such as regional nerve blocks or systemic opioids—not only affect pain control but also influence immune and inflammatory pathways that may impact cancer progression. To understand the biological consequences of these interventions, metabolomic profiling has emerged as a powerful approach for capturing systemic metabolic and immunological changes, which are particularly relevant in the oncologic perioperative setting. In this study, we examined the impact of the ESP on the metabolomic profile, as well as levels of VEGF, cortisol, and CRP, in addition to its analgesic effects in breast cancer surgery. Materials and Methods: Ninety patients were placed into three different analgesia groups (morphine, ESP, and control groups). Demographic data, ASA classification, comorbidities, surgery types, and pain scores were documented. Blood samples were taken at preoperative hour 0, postoperative hour 1, and postoperative hour 24 (T0, T1, and T24). VEGF, cortisol, and CRP levels were measured, and metabolomic analysis was performed. Results: Study groups were comparable regarding demographic findings, comorbidities, and surgery types (p > 0.05). NRS scores of group ESP were lowest in the first 12 h period (p < 0.01) and ESP block reduced opioid consumption (p < 0.01). VEGF and cortisol levels of group morphine were similar to ESP at T24 (p > 0.05). Group ESP had lower VEGF and cortisol levels than the control at T24 (p = 0.025, p = 0.041, respectively.). The CRP level of group morphine was higher than both ESP and control at T24 (p = 0.022). Metabolites involved in primary bile acid, steroid hormone biosynthesis, amino acid, and glutathione metabolism were changed in group ESP. Conclusions: Metabolites in bile acid biosynthesis and steroid hormone pathways, which play a key role in immune responses, were notably lower in the ESP group. Accordingly, VEGF and cortisol peaks were more moderate in group ESP. In conclusion, we think that ESP block, which provides adequate analgesia, is an acceptable approach in terms of modulating immune responses in breast cancer surgery. Full article
(This article belongs to the Special Issue Insights and Advances in Cancer Biomarkers)
Show Figures

Figure 1

16 pages, 301 KiB  
Article
Dyslipidemia in Anorexia Nervosa Is Associated with Decreased Plasma Tauroursodeoxycholic Acid and a Specific Fatty Acid Pattern
by Aleš Žák, Marek Vecka, Peter Szitanyi, Marcela Floriánková, Barbora Staňková, Petra Uhlíková, Veronika Dostálová and Michal Burda
Nutrients 2025, 17(14), 2347; https://doi.org/10.3390/nu17142347 - 17 Jul 2025
Viewed by 325
Abstract
Background: Dyslipidemia and distorted fatty acid (FA) metabolism are frequent biochemical abnormalities associated with anorexia nervosa (AN). Gut microbiota is supposed to play an important role in the etiopathogenesis of AN. Apart from the digestive function of bile acids (BAs), these compounds have [...] Read more.
Background: Dyslipidemia and distorted fatty acid (FA) metabolism are frequent biochemical abnormalities associated with anorexia nervosa (AN). Gut microbiota is supposed to play an important role in the etiopathogenesis of AN. Apart from the digestive function of bile acids (BAs), these compounds have multiple metabolic functions due to the activation of specific receptors. Objective/aims: The aims of the study were to investigate biochemical measures, including plasma lipids (lipoproteins, respectively), fatty acid (FA) patterns, and the profile of plasma Bas, in AN patients and healthy controls (CON). Methods: Plasma phospholipid FA and BAs profiles were analyzed in 39 women with a restrictive type of AN (AN-R; median age 17 years) and in 35 CON women (median age 20 years). Results: Compared to CON, AN had an increased concentration of HDL-C, increased content of palmitic acid, and decreased proportion of linoleic acid. Moreover, AN had a drop in the level of the sum of PUFAn-6 and increased delta 9 desaturase activity for stearic acid. In AN, we found decreased levels of plasma tauroursodeoxycholic acid (TUDCA). In AN, concentrations of 22:5n-6, 16:0, 20:3n-6 and fat mass index were predic-tors of HDL-C levels (R2 = 0.43). Conclusions: Patients with AN-R had an increased concentration of HDL-C, decreased levels of total PUFA n-6, and increased activity of D9D for stearic acid. Furthermore, AN exerted decreased levels of TUDCA. Therefore, a decreased level of TUDCA could potentially serve as a marker of AN. Full article
(This article belongs to the Special Issue Eating and Mental Health Disorders)
25 pages, 4595 KiB  
Article
Probiotic Potentials and Protective Effects of Ligilactobacillus animalis LA-1 Against High-Fat Diet-Induced Obesity in Mice
by Qingya Wang, Yuyin Huang, Kun Meng, Haiou Zhang, Yunsheng Han, Rui Zhang, Xiling Han, Guohua Liu, Hongying Cai and Peilong Yang
Nutrients 2025, 17(14), 2346; https://doi.org/10.3390/nu17142346 - 17 Jul 2025
Viewed by 550
Abstract
Background/Objectives: Obesity is increasingly recognized as a global health concern due to its association with metabolic disorders and gut microbiota dysbiosis. While probiotics offer promise in regulating gut microbiota and improving host metabolism, strain-specific effects remain underexplored, particularly for canine-derived probiotics. This [...] Read more.
Background/Objectives: Obesity is increasingly recognized as a global health concern due to its association with metabolic disorders and gut microbiota dysbiosis. While probiotics offer promise in regulating gut microbiota and improving host metabolism, strain-specific effects remain underexplored, particularly for canine-derived probiotics. This study aimed to isolate and characterize a novel probiotic strain, Ligilactobacillus animalis LA-1, and evaluate its anti-obesity effects and underlying mechanisms using a high-fat diet (HFD)-induced obese mouse model. Methods: LA-1 was isolated from the feces of a healthy dog and assessed for probiotic potential in vitro, including gastrointestinal tolerance, bile salt hydrolase activity, cholesterol-lowering capacity, and fatty acid absorption. Male C57BL/6J mice were fed either a standard chow diet or an HFD for 16 weeks, with HFD mice receiving oral LA-1 supplementation (2 × 109 CFU/day). Multi-omics analyses, including 16S rRNA gene sequencing, short-chain fatty acid (SCFA) quantification, and untargeted liver metabolomics, were employed to investigate the effects of LA-1 on gut microbiota composition, metabolic pathways, and obesity-related phenotypes. Results: LA-1 supplementation significantly alleviated HFD-induced weight gain, hepatic lipid accumulation, and adipose tissue hypertrophy, without affecting food intake. It improved serum lipid profiles, reduced liver injury markers, and partially restored gut microbiota composition, decreasing the Firmicutes/Bacteroidetes ratio and enriching SCFA-producing genera. Total SCFA levels, particularly acetate, propionate, and butyrate, increased following LA-1 treatment. Liver metabolomics revealed that LA-1 modulated pathways involved in lipid and amino acid metabolism, resulting in decreased levels of acetyl-CoA, triglycerides, and bile acids. Conclusions: L. animalis LA-1 exerts anti-obesity effects via gut microbiota modulation, enhanced SCFA production, and hepatic metabolic reprogramming. These findings highlight its potential as a targeted probiotic intervention for obesity and metabolic disorders. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

22 pages, 12756 KiB  
Article
The Antidiabetic Mechanisms of Cinnamon Extract: Insights from Network Pharmacology, Gut Microbiota, and Metabolites
by Rong Wang, Kuan Yang, Xuefeng Liu, Yiye Zhang, Yunmei Chen, Nana Wang, Lili Yu, Shaojing Liu, Yaqi Hu and Bei Qin
Curr. Issues Mol. Biol. 2025, 47(7), 543; https://doi.org/10.3390/cimb47070543 - 12 Jul 2025
Viewed by 547
Abstract
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management [...] Read more.
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management of glucose and lipid metabolism. However, the anti-diabetic efficacy of cinnamon is not completely understood. The objective of this research was to clarify the anti-diabetic mechanism associated with cinnamon extract through a combination of chemical profiling, network pharmacology, and in vivo investigations. The results indicated that 32 chemical ingredients, including quercetin, were identified through UPLC-Q-TOF-MS. Network pharmacology revealed that 471 targets related to 14 compounds were screened. The analysis of GO enrichment revealed that the primary pathways were notably enhanced in the metabolism of insulin and glucose. In vivo analyses showed that cinnamon could effectively alleviate hyperglycemia, insulin resistance, and lipid metabolism abnormalities via increased relative abundance of Akkermansia and Ligilactobacillus at the genus level and a decreased Firmicutes/Bacteroidetes ratio at the phylum level. Moreover, cinnamon reduced the serum levels of lipopolysaccharide (LPS) and proinflammatory cytokines (IL-6 and TNF-α) and significantly increased the colon Zonula occludens-1 (ZO-1) and occludin protein levels. It was also observed that cinnamon improved the fecal SCFA levels (acetic, propionic, butyric, valeric and caproic acid), while also modifying the bile acid (BA) profile and increasing the conjugated-to-unconjugated BA ratio. The Western blotting analysis further demonstrated that cinnamon activated intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. In summary, the finding confirmed that cinnamon ameliorated glucose and lipid metabolism disorders by safeguarding the intestinal barrier and modulating the gut microbiota and metabolites, thereby activating intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

14 pages, 1006 KiB  
Article
Investigating Systemic Metabolic Effects of Betula alba Leaf Extract in Rats via Urinary Metabolomics
by Gregorio Peron, Alina Yerkassymova, Gokhan Zengin and Stefano Dall’Acqua
Metabolites 2025, 15(7), 471; https://doi.org/10.3390/metabo15070471 - 10 Jul 2025
Viewed by 349
Abstract
Background/Objectives: Herbal extracts from Betula alba (birch) are traditionally used for their purported diuretic effects, but scientific evidence supporting these claims remains limited. In this pilot study, we evaluated the short-term effects of a standardized B. alba leaf extract in healthy adult rats [...] Read more.
Background/Objectives: Herbal extracts from Betula alba (birch) are traditionally used for their purported diuretic effects, but scientific evidence supporting these claims remains limited. In this pilot study, we evaluated the short-term effects of a standardized B. alba leaf extract in healthy adult rats using an untargeted urinary metabolomics approach based on UPLC-QTOF. Methods: Two doses, 25 or 50 mg/kg, of a standardized B. alba extract were orally administered to rats. The extract contains hyperoside (0.53%), quercetin glucuronide (0.36%), myricetin glucoside (0.32%), and chlorogenic acid (0.28%) as its main constituents. After 3 days of treatment, the 24 h urine output was measured. Results: While no statistically significant changes were observed in the 24 h urine volume or the urinary Na+ and K+ excretion, multivariate metabolomic analysis revealed treatment-induced alterations in the urinary metabolic profile. Notably, the levels of two glucocorticoids, i.e., corticosterone and 11-dehydrocorticosterone, were increased in treated animals, suggesting that the extract may influence corticosteroid metabolism or excretion, potentially impacting antidiuretic hormone signaling. Elevated bile-related compounds, including bile acids and bilin, and glucuronidated metabolites were also observed, indicating changes in bile acid metabolism, hepatic detoxification, and possibly gut microbiota activity. Conclusions: Although this study did not confirm a diuretic effect of B. alba extract, the observed metabolic shifts suggest broader systemic bioactivities that warrant further investigation. Overall, the results indicate that the approach based on urinary metabolomics may be valuable in uncovering the mechanisms of action and evaluating the bioactivity of herbal extracts with purported diuretic properties. Full article
Show Figures

Graphical abstract

30 pages, 2043 KiB  
Review
Berberine as a Bioactive Alkaloid: Multi-Omics Perspectives on Its Role in Obesity Management
by Bartłomiej Zieniuk and Magdalena Pawełkowicz
Metabolites 2025, 15(7), 467; https://doi.org/10.3390/metabo15070467 - 9 Jul 2025
Viewed by 888
Abstract
Berberine, a bioactive isoquinoline alkaloid derived from medicinal plants such as Berberis and Coptis species, shows significant promise for managing obesity and associated metabolic disorders. This review synthesizes evidence on its modulation of AMP-activated protein kinase (AMPK) signaling, gut microbiota composition, lipid metabolism, [...] Read more.
Berberine, a bioactive isoquinoline alkaloid derived from medicinal plants such as Berberis and Coptis species, shows significant promise for managing obesity and associated metabolic disorders. This review synthesizes evidence on its modulation of AMP-activated protein kinase (AMPK) signaling, gut microbiota composition, lipid metabolism, and adipokine networks, elucidating how these actions converge to suppress adipogenesis and improve insulin sensitivity. Metabolomic profiling reveals critical shifts in bile acid metabolism, short-chain fatty acid production, and mitochondrial function. Recent studies also highlight berberine’s anti-inflammatory effects and regulatory influence on glucose homeostasis. Despite its promise, challenges in oral bioavailability and drug interactions necessitate the development of advanced delivery strategies. We further discuss nanoformulations and multi-omics approaches, which integrate data from genomics, transcriptomics, proteomics, and metabolomics, provide new insights into berberine’s mechanisms, and may guide personalized therapeutic applications. While promising, further studies are needed to validate these findings in humans and translate them into effective clinical strategies. Full article
Show Figures

Figure 1

23 pages, 6538 KiB  
Article
Cecal Metabolome Profiles of Turkey Poults in Response to Salmonella Heidelberg Challenge with or Without Turkey-Derived Lactobacillus Probiotic and Trans-Cinnamaldehyde
by Grace Dewi, Ranjith Ramanathan and Anup Kollanoor Johny
Animals 2025, 15(14), 2016; https://doi.org/10.3390/ani15142016 - 8 Jul 2025
Viewed by 345
Abstract
Salmonella colonization in the gastrointestinal tract of turkeys presents a risk to the safety of products derived from them. Lactobacillus-based probiotics and a plant-derived compound, trans-cinnamaldehyde, have previously been found to be effective in reducing multidrug-resistant Salmonella enterica subsp. enterica serovar [...] Read more.
Salmonella colonization in the gastrointestinal tract of turkeys presents a risk to the safety of products derived from them. Lactobacillus-based probiotics and a plant-derived compound, trans-cinnamaldehyde, have previously been found to be effective in reducing multidrug-resistant Salmonella enterica subsp. enterica serovar Heidelberg (S. Heidelberg) in turkey poults. However, the effect of the challenge and the application of the treatments on the cecal metabolome has yet to be elucidated. Thus, the objective of the present study was to characterize alterations in the metabolic profiles of cecal contents collected from poults following S. Heidelberg challenge and treatment with Lactobacillus salivarius UMNPBX2 and L. ingluviei UMNPBX19 (LB), trans-cinnamaldehyde (TC), or a combination of both (CO) using untargeted gas chromatography–mass spectrometry (GC-MS). Poults in the challenged control (PC) group had the most distinct and convergent metabolome profiles, with the most pronounced disparity observed compared to the unchallenged control (NC), indicating the effect of the S. Heidelberg challenge. Perturbations in metabolites in the primary bile acid biosynthesis, pentose and glucuronate interconversions, and steroid biosynthesis were the most prominent. The greater abundance of metabolites, such as primary bile acids and sugars, in the PC group may be associated with S. Heidelberg colonization or potential shifts in microbiota. The treatments yielded varying effects on the metabolome profiles, with the TC and CO groups exhibiting the closest similarity, although TC was more similar to NC. The findings revealed alterations to ceca-associated metabolites, which are likely a response to the S. Heidelberg challenge and the application of the TC and LB treatments. Additional studies are needed to validate the possible causal relationship between the observed shifts. Gaining insight into the alterations to the metabolic microenvironment in the avian cecum will help elucidate the mechanisms by which they facilitate Salmonella persistence. Understanding these relationships can aid in designing more effective pre-harvest Salmonella control strategies and enhancing the efficacy of interventions within the flock. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

29 pages, 1939 KiB  
Review
Peroxisomal Alterations in Prostate Cancer: Metabolic Shifts and Clinical Relevance
by Mohamed A. F. Hussein, Celien Lismont, Hongli Li, Ruizhi Chai, Frank Claessens and Marc Fransen
Cancers 2025, 17(13), 2243; https://doi.org/10.3390/cancers17132243 - 4 Jul 2025
Viewed by 819
Abstract
Cancer is hallmarked by uncontrolled cell proliferation and enhanced cell survival, driven by a complex interplay of factors—including genetic and epigenetic changes—that disrupt metabolic and signaling pathways and impair organelle function. While the roles of mitochondria and the endoplasmic reticulum in cancer are [...] Read more.
Cancer is hallmarked by uncontrolled cell proliferation and enhanced cell survival, driven by a complex interplay of factors—including genetic and epigenetic changes—that disrupt metabolic and signaling pathways and impair organelle function. While the roles of mitochondria and the endoplasmic reticulum in cancer are widely recognized, emerging research is now drawing attention to the involvement of peroxisomes in tumor biology. Peroxisomes are essential for lipid metabolism, including fatty acid α- and β-oxidation, the synthesis of docosahexaenoic acid, bile acids, and ether lipids, as well as maintaining redox balance. Despite their critical functions, the role of peroxisomes in oncogenesis remains inadequately explored. Prostate cancer (PCa), the second most common cancer in men worldwide, exhibits a unique metabolic profile compared to other solid tumors. In contrast to the glycolysis-driven Warburg effect, primary PCa relies primarily on lipogenesis and oxidative phosphorylation. Peroxisomes are intricately involved in the metabolic adaptations of PCa, influencing both disease progression and therapy resistance. Key alterations in peroxisomal activity in PCa include the increased oxidation of branched-chain fatty acids, upregulation of α-methylacyl coenzyme A racemase (a prominent PCa biomarker), and downregulation of 1-alkyl-glycerone-3-phosphate synthase and catalase. This review critically examines the role of peroxisomes in PCa metabolism, progression, and therapeutic response, exploring their potential as biomarkers and targets for therapy. We also consider their relationship with androgen receptor signaling. A deeper understanding of peroxisome biology in PCa could pave the way for new therapies to improve patient outcomes. Full article
(This article belongs to the Special Issue Advancements in Molecular Research of Prostate Cancer)
Show Figures

Graphical abstract

21 pages, 10334 KiB  
Article
Gypenosides Alleviate Hyperglycemia by Regulating Gut Microbiota Metabolites and Intestinal Permeability
by Rong Wang, Xue-Feng Liu, Kuan Yang, Li-Li Yu, Shao-Jing Liu, Na-Na Wang, Yun-Mei Chen, Ya-Qi Hu and Bei Qin
Curr. Issues Mol. Biol. 2025, 47(7), 515; https://doi.org/10.3390/cimb47070515 - 3 Jul 2025
Viewed by 376
Abstract
Background/Objectives: Gypenosides (Gps) are the main active compounds of Gynostemma and show promise in managing diabetes; nevertheless, the mechanism by which Gps exert anti-diabetic effects is still not fully understood. The aim of this study is to clarify the molecular mechanisms of [...] Read more.
Background/Objectives: Gypenosides (Gps) are the main active compounds of Gynostemma and show promise in managing diabetes; nevertheless, the mechanism by which Gps exert anti-diabetic effects is still not fully understood. The aim of this study is to clarify the molecular mechanisms of Gps in ameliorating glucose dysregulation. Methods: Qualitative and quantitative analyses on the chemical components of Gps were performed, respectively. Type 2 diabetes mellitus mouse models were established, and the mice were subsequently treated with Gps at doses of 200, 100, or 50 mg/kg for 4 weeks. Biochemical markers were measured. Histopathological assessments of hepatic and colonic tissues were conducted. The compositions of the intestinal microbiota, short-chain fatty acids (SCFAs), and bile acids (BAs) in fecal samples were analyzed. Western blotting was applied to examine the activation of relevant signaling pathways. Results: Gps have potent regulatory effects on metabolic homeostasis by improving glucose and lipid profiles and alleviating hepatic tissue damage. Treatment with Gps significantly reduced serum levels of lipopolysaccharides and key pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α). Moreover, Gps enhanced the integrity of the gut barrier by upregulating the level of tight junction proteins (ZO-1 and occludin). Microbiota profiling revealed that Gps markedly increased microbial diversity and richness, decreased the ratio of Firmicutes/Bacteroidetes, and elevated Bacteroidia abundance from the phylum to the genus level. Targeted metabolomics further demonstrated that Gps modulated gut microbial metabolites by promoting SCFA production and reshaping BA profiles. Specifically, Gps elevated the primary-to-secondary BA ratio while reducing the 12α-hydroxylated to non-12α-hydroxylated BA ratio. Mechanistically, Western blotting demonstrated that Gps triggered the hepatic PI3K/AKT pathway and the intestinal BA/FXR/FGF15 axis, suggesting the coordinated regulation of metabolic and gut–liver axis signaling pathways. Conclusions: Gps significantly ameliorate hyperglycemia and hyperlipidemia through a multifaceted mechanism involving gut microbiota modulation, the restoration of intestinal barrier function, and the regulation of microbial metabolites such as SCFAs and BAs. These findings offer novel insights into their mechanism of action via the gut–liver axis. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

18 pages, 2928 KiB  
Article
Multi-Omics Analysis of Gut Microbiota and Sperm Quality in Tibetan Breeding Boars
by Mingxuan Zhao, Mengjia Han, Hongliang Zhang, Xiangdong Wang, Yikai Yin, Jian Zhang and Peng Shang
Metabolites 2025, 15(7), 447; https://doi.org/10.3390/metabo15070447 - 2 Jul 2025
Viewed by 382
Abstract
Background/Objectives: Reproductive efficiency in breeding boars critically impacts swine industry productivity, with sperm quality being multifactorially regulated by gut microbiota. This study aimed to elucidate the microbiota–metabolite interactions underlying sperm quality differences in Tibetan boars. Methods: Integrated 16S rRNA sequencing and untargeted metabolomics [...] Read more.
Background/Objectives: Reproductive efficiency in breeding boars critically impacts swine industry productivity, with sperm quality being multifactorially regulated by gut microbiota. This study aimed to elucidate the microbiota–metabolite interactions underlying sperm quality differences in Tibetan boars. Methods: Integrated 16S rRNA sequencing and untargeted metabolomics were performed on fecal and semen samples from eight healthy Tibetan boars (31–33 months old), stratified into low-semen (CJ) and high-semen utilization (HJ) groups. Analyses included sperm quality assessment, microbial profiling, and metabolic pathway enrichment. Results: The HJ group exhibited significantly enhanced sperm motility and semen utilization rates (p < 0.05). Gut microbiota composition differed markedly, with Firmicutes and Proteobacteria enriched in HJ boars. Metabolomics identified key metabolites positively correlated with sperm quality (e.g., butyrate, phenyllactic acid), while lithocholic acid showed negative associations. KEGG analysis revealed predominant involvement in butanoate metabolism and bile acid biosynthesis. Core microbiota (e.g., Ruminococcus) modulated sperm quality through short-chain fatty acid networks and bile acid homeostasis. Conclusions: Gut microbiota regulated the sperm microenvironment via a “metabolic-immune” dual pathway mediated by the gut–testis axis. These findings establish a theoretical basis for probiotic or metabolite-targeted strategies to improve boar reproductive performance. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

16 pages, 3888 KiB  
Article
Gut Microbiota-Bile Acid Crosstalk Contributes to Meat Quality and Carcass Traits of Tan and Dorper Sheep
by Lixian Yang, Ran Cui, Zhen Li, Mingming Xue, Shuheng Chan, Pengxiang Xue, Xiaoyang Yang, Longmiao Zhang, Fenghua Lv and Meiying Fang
Int. J. Mol. Sci. 2025, 26(13), 6224; https://doi.org/10.3390/ijms26136224 - 27 Jun 2025
Viewed by 403
Abstract
Tan sheep outperform Dorper sheep in meat-quality traits, including muscle fiber characteristics and fatty acid composition, while Dorper sheep excel in carcass weight. However, the molecular mechanisms underlying these breed-specific traits, especially gut microbiota–bile acid (BA) interactions, remain poorly understood. As host–microbiota co-metabolites, [...] Read more.
Tan sheep outperform Dorper sheep in meat-quality traits, including muscle fiber characteristics and fatty acid composition, while Dorper sheep excel in carcass weight. However, the molecular mechanisms underlying these breed-specific traits, especially gut microbiota–bile acid (BA) interactions, remain poorly understood. As host–microbiota co-metabolites, BAs are converted by colonic microbiota via bile salt hydrolase (BSH) and dehydroxylases into secondary BAs, which activate BA receptors to regulate host lipid and glucose metabolism. This study analyzed colonic BA profiles in 8-month-old Tan and Dorper sheep, integrating microbiome and longissimus dorsi muscle transcriptome data to investigate the gut–muscle axis in meat-quality and carcass trait regulation. Results showed that Tan sheep had 1.6-fold higher secondary BA deoxycholic acid (DHCA) levels than Dorper sheep (p < 0.05), whereas Dorper sheep accumulated conjugated primary BAs glycocholic acid (GCA) and tauro-α-muricholic acid (p < 0.05). Tan sheep exhibited downregulated hepatic BA synthesis genes, including cholesterol 7α-hydroxylase (CYP7A1) and 27-hydroxylase (CYP27A1), alongside upregulated transport genes such as bile salt export pump (BSEP), sodium taurocholate cotransporting polypeptide (NTCP), and ATP-binding cassette subfamily B member 4 (ABCB4), with elevated gut BSH activity (p < 0.05). DHCA was strongly correlated with g_Ruminococcaceae_UCG-014, ENSOARG00000001393, and ENSOARG00000016726, muscle fiber density, diameter, and linoleic acid (C18:2n6t) (|r| > 0.5, p < 0.05). In contrast, GCA was significantly associated with g_Lachnoclostridium_10, g_Rikenellaceae_RC9_gut_group, ENSOARG0000001232, carcass weight, and net meat weight (|r| > 0.5, p < 0.05). In conclusion, breed-specific colonic BA profiles were shaped by host–microbiota interactions, with DHCA potentially promoting meat quality in Tan sheep via regulation of muscle fiber development and fatty acid deposition, and GCA influencing carcass traits in Dorper sheep. This study provides novel insights into the gut microbiota–bile acid axis in modulating ruminant phenotypic traits. Full article
(This article belongs to the Special Issue Molecular Regulation of Animal Fat and Muscle Development)
Show Figures

Figure 1

26 pages, 717 KiB  
Review
Metabolomic Alterations in Patients with Obesity and the Impact of Metabolic Bariatric Surgery: Insights for Future Research
by Ioanna A. Anastasiou, Dimitris Kounatidis, Miikka-Juhani Honka, Natalia G. Vallianou, Eleni Rebelos, Nikolaos Nektarios Karamanolis, Maria Dalamaga, Constantinos Pantos and Iordanis Mourouzis
Metabolites 2025, 15(7), 434; https://doi.org/10.3390/metabo15070434 - 26 Jun 2025
Viewed by 703
Abstract
Metabolomics has emerged as a vital tool for understanding the body’s responses to therapeutic interventions. Metabolic bariatric surgery (MBS) is widely recognized as the most effective treatment modality for severe obesity and its associated comorbidities. This review seeks to analyze the current evidence [...] Read more.
Metabolomics has emerged as a vital tool for understanding the body’s responses to therapeutic interventions. Metabolic bariatric surgery (MBS) is widely recognized as the most effective treatment modality for severe obesity and its associated comorbidities. This review seeks to analyze the current evidence on the metabolomic profiles of patients with obesity and the impact of various bariatric surgical procedures, with the objective of predicting clinical outcomes, including weight loss and remission of type 2 diabetes (T2D). The data gathered from original studies examining metabolomic changes following MBS have been meticulously compiled and summarized. The findings revealed significant alterations in metabolites across various classes, including amino acids, lipids, energy-related compounds, and substances derived from the gut microbiota. Notably, elevated preoperative levels of specific lipids, such as phospholipids, long-chain fatty acids, and bile acids, were correlated with postoperative remission of T2D. In conclusion, metabolite profiling holds great promise for predicting long-term responses to different bariatric surgery procedures. This innovative approach has the potential to facilitate personalized treatment strategies and optimize the allocation of healthcare resources. Full article
(This article belongs to the Special Issue Metabolomics in Human Diseases and Health)
Show Figures

Graphical abstract

Back to TopTop