Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = bilayer TMD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5282 KB  
Article
Bilayer TMDs for Future FETs: Carrier Dynamics and Device Implications
by Shoaib Mansoori, Edward Chen and Massimo Fischetti
Nanomaterials 2025, 15(19), 1526; https://doi.org/10.3390/nano15191526 - 5 Oct 2025
Viewed by 253
Abstract
Bilayer transition metal dichalcogenides (TMDs) are promising materials for next-generation field-effect transistors (FETs) due to their atomically thin structure and favorable transport properties. In this study, we employ density functional theory (DFT) to compute the electronic band structures and phonon dispersions of bilayer [...] Read more.
Bilayer transition metal dichalcogenides (TMDs) are promising materials for next-generation field-effect transistors (FETs) due to their atomically thin structure and favorable transport properties. In this study, we employ density functional theory (DFT) to compute the electronic band structures and phonon dispersions of bilayer WS2, WSe2, and MoS2, and the electron-phonon scattering rates using the EPW (electron-phonon Wannier) method. Carrier transport is then investigated within a semiclassical full-band Monte Carlo framework, explicitly including intrinsic electron-phonon scattering, dielectric screening, scattering with hybrid plasmon–phonon interface excitations (IPPs), and scattering with ionized impurities. Freestanding bilayers exhibit the highest mobilities, with hole mobilities reaching 2300 cm2/V·s in WS2 and 1300 cm2/V·s in WSe2. Using hBN as the top gate dielectric preserves or slightly enhances mobility, whereas HfO2 significantly reduces transport due to stronger IPP and remote phonon scattering. Device-level simulations of double-gate FETs indicate that series resistance strongly limits performance, with optimized WSe2 pFETs achieving ON currents of 820 A/m, and a 10% enhancement when hBN replaces HfO2. These results show the direct impact of first-principles electronic structure and scattering physics on device-level transport, underscoring the importance of material properties and the dielectric environment in bilayer TMDs. Full article
(This article belongs to the Special Issue First Principles Study of Two-Dimensional Materials)
Show Figures

Figure 1

12 pages, 5416 KB  
Article
Tunable Electronic and Magnetic Properties of 3d Transition Metal Atom-Intercalated Transition Metal Dichalcogenides: A Density Functional Theory Study
by Yujie Liu, Guang Yang, Zhiwen He, Yanbiao Wang, Xianghong Niu, Sake Wang, Yongjun Liu and Xiuyun Zhang
Inorganics 2024, 12(9), 237; https://doi.org/10.3390/inorganics12090237 - 29 Aug 2024
Cited by 3 | Viewed by 1797
Abstract
Currently, intercalation has become an effective way to modify the fundamental properties of two-dimensional (2D) van der Waals (vdW) materials. Using density functional theory, we systematically investigated the structures and electronic and magnetic properties of bilayer transition metal dichalcogenides (TMDs) intercalated with 3 [...] Read more.
Currently, intercalation has become an effective way to modify the fundamental properties of two-dimensional (2D) van der Waals (vdW) materials. Using density functional theory, we systematically investigated the structures and electronic and magnetic properties of bilayer transition metal dichalcogenides (TMDs) intercalated with 3d TM atoms (TM = Sc–Ni), TM@BL_MS2 (M = Mo, V). Our results demonstrate that all the studied TM@BL_MS2s are of high stability, with large binding energies and high diffusion barriers of TM atoms. Interestingly, most TM@BL_MoS2s and TM@BL_VS2s are found to be stable ferromagnets. Among them, TM@BL_MoS2s (TM = Sc, Ti, Fe, Co) are ferromagnetic metals, TM@BL_MoS2 (TM = V, Cr) and TM@BL_VS2 (TM = Sc, V) are ferromagnetic half-metals, and the remaining systems are found to be ferromagnetic semiconductors. Exceptions are found for Ni@BL_MoS2 and Cr@BL_VS2, which are nonmagnetic semiconductors and ferrimagnetic half-metals, respectively. Further investigations reveal that the electromagnetic properties of TM@BL_MoS2 are significantly influenced by the concentration of intercalated TM atoms. Our study demonstrates that TM atom intercalation is an effective approach for manipulating the electromagnetic properties of two-dimensional materials, facilitating their potential applications in spintronic devices. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 2nd Edition)
Show Figures

Figure 1

8 pages, 2271 KB  
Article
Spectroscopic Analysis on Different Stacking Configurations of Multilayered MoSe2
by Xiang Hu, Yong Wang, Jiaren Yuan, Xiaxia Liao and Yangbo Zhou
Materials 2024, 17(16), 3998; https://doi.org/10.3390/ma17163998 - 11 Aug 2024
Viewed by 2073
Abstract
Transition metal dichalcogenides (TMDs) are drawing significant attention due to their intriguing photoelectric properties, and these interesting properties are closely related to the number of layers. Obtaining layer-controlled and high-quality TMD is still a challenge. In this context, we use the salt-assisted chemical [...] Read more.
Transition metal dichalcogenides (TMDs) are drawing significant attention due to their intriguing photoelectric properties, and these interesting properties are closely related to the number of layers. Obtaining layer-controlled and high-quality TMD is still a challenge. In this context, we use the salt-assisted chemical vapor deposition to grow multilayered MoSe2 flake and characterize it by Raman spectroscopy, second harmonic generation, and photon luminescence. Spectroscopic analysis is an effective way to characterize the stacking order and optoelectronic properties of two-dimensional materials. Notably, the corresponding mapping reflects the film quality and homogeneity. We found that the grown continuous monolayer, bilayer, and trilayer of MoSe2 sheets with different stacking orders exhibit distinctive features. For bilayer MoSe2, the most stable stacking configurations are the AA’ and AB order. And the uniformity of the spectroscopy maps demonstrates the high quality of the stacked MoSe2 sheets. Full article
Show Figures

Figure 1

23 pages, 9180 KB  
Article
Studying Conformational Properties of Transmembrane Domain of KCNE3 in a Lipid Bilayer Membrane Using Molecular Dynamics Simulations
by Anna Clara Miranda Moura, Isaac K. Asare, Mateo Fernandez Cruz, Antonio Javier Franco Aguado, Kaeleigh Dyan Tuck, Conner C. Campbell, Matthew W. Scheyer, Ikponwmosa Obaseki, Steve Alston, Andrea N. Kravats, Charles R. Sanders, Gary A. Lorigan and Indra D. Sahu
Membranes 2024, 14(2), 45; https://doi.org/10.3390/membranes14020045 - 4 Feb 2024
Cited by 3 | Viewed by 3190
Abstract
KCNE3 is a single-pass integral membrane protein that regulates numerous voltage-gated potassium channel functions such as KCNQ1. Previous solution NMR studies suggested a moderate degree of curved α-helical structure in the transmembrane domain (TMD) of KCNE3 in lyso-myristoylphosphatidylcholine (LMPC) micelles and isotropic bicelles [...] Read more.
KCNE3 is a single-pass integral membrane protein that regulates numerous voltage-gated potassium channel functions such as KCNQ1. Previous solution NMR studies suggested a moderate degree of curved α-helical structure in the transmembrane domain (TMD) of KCNE3 in lyso-myristoylphosphatidylcholine (LMPC) micelles and isotropic bicelles with the residues T71, S74 and G78 situated along the concave face of the curved helix. During the interaction of KCNE3 and KCNQ1, KCNE3 pushes its transmembrane domain against KCNQ1 to lock the voltage sensor in its depolarized conformation. A cryo-EM study of KCNE3 complexed with KCNQ1 in nanodiscs suggested a deviation of the KCNE3 structure from its independent structure in isotropic bicelles. Despite the biological significance of KCNE3 TMD, the conformational properties of KCNE3 are poorly understood. Here, all atom molecular dynamics (MD) simulations were utilized to investigate the conformational dynamics of the transmembrane domain of KCNE3 in a lipid bilayer containing a mixture of POPC and POPG lipids (3:1). Further, the effect of the interaction impairing mutations (V72A, I76A and F68A) on the conformational properties of the KCNE3 TMD in lipid bilayers was investigated. Our MD simulation results suggest that the KCNE3 TMD adopts a nearly linear α helical structural conformation in POPC-POPG lipid bilayers. Additionally, the results showed no significant change in the nearly linear α-helical conformation of KCNE3 TMD in the presence of interaction impairing mutations within the sampled time frame. The KCNE3 TMD is more stable with lower flexibility in comparison to the N-terminal and C-terminal of KCNE3 in lipid bilayers. The overall conformational flexibility of KCNE3 also varies in the presence of the interaction-impairing mutations. The MD simulation data further suggest that the membrane bilayer width is similar for wild-type KCNE3 and KCNE3 containing mutations. The Z-distance measurement data revealed that the TMD residue site A69 is close to the lipid bilayer center, and residue sites S57 and S82 are close to the surfaces of the lipid bilayer membrane for wild-type KCNE3 and KCNE3 containing interaction-impairing mutations. These results agree with earlier KCNE3 biophysical studies. The results of these MD simulations will provide complementary data to the experimental outcomes of KCNE3 to help understand its conformational dynamic properties in a more native lipid bilayer environment. Full article
(This article belongs to the Special Issue Analytical Sciences of/with Bio(mimetic) Membranes (Volume II))
Show Figures

Figure 1

11 pages, 3488 KB  
Article
Controllable Growth of Large-Scale Continuous ReS2 Atomic Layers
by Xingdong Sun, Ezimetjan Alim, Yang Wen, Sumei Wu, Yongqing Cai, Zheng Wei, Yingying Wang, Yao Liang and Zhihua Zhang
Crystals 2023, 13(11), 1548; https://doi.org/10.3390/cryst13111548 - 28 Oct 2023
Cited by 1 | Viewed by 2277
Abstract
In recent years, two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have received significant attention due to their exceptional electrical and optical properties. Among these 2D materials, ReS2 distinguishes itself through its unique optical and conductance anisotropy. Despite concerted efforts to produce high-quality [...] Read more.
In recent years, two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have received significant attention due to their exceptional electrical and optical properties. Among these 2D materials, ReS2 distinguishes itself through its unique optical and conductance anisotropy. Despite concerted efforts to produce high-quality ReS2, the unique interlayer decoupling properties pose substantial challenges in growing large-area ReS2 thin films, with the preparation of single layers proving even more complex. In this work, large-scale continuous monolayer and bilayer ReS2 films were successfully grown on mica substrates using low-pressure chemical vapor deposition (LPCVD). Photodetectors were fabricated using the prepared high-quality ReS2 films, and the devices presented stable photoresponse and enhanced response sensitivity. The production of continuous ReS2 atomic layers heralds promising prospects for large-scale integrated circuits and advances the practical application of optoelectronics based on 2D layered materials. Full article
Show Figures

Figure 1

23 pages, 16129 KB  
Article
A Uniquely Stable Trimeric Model of SARS-CoV-2 Spike Transmembrane Domain
by Elena T. Aliper, Nikolay A. Krylov, Dmitry E. Nolde, Anton A. Polyansky and Roman G. Efremov
Int. J. Mol. Sci. 2022, 23(16), 9221; https://doi.org/10.3390/ijms23169221 - 17 Aug 2022
Cited by 5 | Viewed by 3295
Abstract
Understanding fusion mechanisms employed by SARS-CoV-2 spike protein entails realistic transmembrane domain (TMD) models, while no reliable approaches towards predicting the 3D structure of transmembrane (TM) trimers exist. Here, we propose a comprehensive computational framework to model the spike TMD only based on [...] Read more.
Understanding fusion mechanisms employed by SARS-CoV-2 spike protein entails realistic transmembrane domain (TMD) models, while no reliable approaches towards predicting the 3D structure of transmembrane (TM) trimers exist. Here, we propose a comprehensive computational framework to model the spike TMD only based on its primary structure. We performed amino acid sequence pattern matching and compared the molecular hydrophobicity potential (MHP) distribution on the helix surface against TM homotrimers with known 3D structures and selected an appropriate template for homology modeling. We then iteratively built a model of spike TMD, adjusting “dynamic MHP portraits” and residue variability motifs. The stability of this model, with and without palmitoyl modifications downstream of the TMD, and several alternative configurations (including a recent NMR structure), was tested in all-atom molecular dynamics simulations in a POPC bilayer mimicking the viral envelope. Our model demonstrated unique stability under the conditions applied and conforms to known basic principles of TM helix packing. The original computational framework looks promising and could potentially be employed in the construction of 3D models of TM trimers for a wide range of membrane proteins. Full article
(This article belongs to the Collection Feature Papers in Molecular Informatics)
Show Figures

Figure 1

24 pages, 5774 KB  
Article
How to Recognize the Universal Aspects of Mott Criticality?
by Yuting Tan, Vladimir Dobrosavljević and Louk Rademaker
Crystals 2022, 12(7), 932; https://doi.org/10.3390/cryst12070932 - 30 Jun 2022
Cited by 8 | Viewed by 3144
Abstract
In this paper we critically discuss several examples of two-dimensional electronic systems displaying interaction-driven metal-insulator transitions of the Mott (or Wigner–Mott) type, including dilute two-dimension electron gases (2DEG) in semiconductors, Mott organic materials, as well as the recently discovered transition-metal dichalcogenide (TMD) moiré [...] Read more.
In this paper we critically discuss several examples of two-dimensional electronic systems displaying interaction-driven metal-insulator transitions of the Mott (or Wigner–Mott) type, including dilute two-dimension electron gases (2DEG) in semiconductors, Mott organic materials, as well as the recently discovered transition-metal dichalcogenide (TMD) moiré bilayers. Remarkably similar behavior is found in all these systems, which is starting to paint a robust picture of Mott criticality. Most notable, on the metallic side a resistivity maximum is observed whose temperature scale vanishes at the transition. We compare the available experimental data on these systems to three existing theoretical scenarios: spinon theory, Dynamical Mean Field Theory (DMFT) and percolation theory. We show that the DMFT and percolation pictures for Mott criticality can be distinguished by studying the origins of the resistivity maxima using an analysis of the dielectric response. Full article
(This article belongs to the Special Issue New Spin on Metal-Insulator Transitions)
Show Figures

Figure 1

17 pages, 6898 KB  
Article
Investigating Structural Dynamics of KCNE3 in Different Membrane Environments Using Molecular Dynamics Simulations
by Isaac K. Asare, Alberto Perez Galende, Andres Bastidas Garcia, Mateo Fernandez Cruz, Anna Clara Miranda Moura, Conner C. Campbell, Matthew Scheyer, John Paul Alao, Steve Alston, Andrea N. Kravats, Charles R. Sanders, Gary A. Lorigan and Indra D. Sahu
Membranes 2022, 12(5), 469; https://doi.org/10.3390/membranes12050469 - 27 Apr 2022
Cited by 5 | Viewed by 3281
Abstract
KCNE3 is a potassium channel accessory transmembrane protein that regulates the function of various voltage-gated potassium channels such as KCNQ1. KCNE3 plays an important role in the recycling of potassium ion by binding with KCNQ1. KCNE3 can be found in the small intestine, [...] Read more.
KCNE3 is a potassium channel accessory transmembrane protein that regulates the function of various voltage-gated potassium channels such as KCNQ1. KCNE3 plays an important role in the recycling of potassium ion by binding with KCNQ1. KCNE3 can be found in the small intestine, colon, and in the human heart. Despite its biological significance, there is little information on the structural dynamics of KCNE3 in native-like membrane environments. Molecular dynamics (MD) simulations are a widely used as a tool to study the conformational dynamics and interactions of proteins with lipid membranes. In this study, we have utilized all-atom molecular dynamics simulations to characterize the molecular motions and the interactions of KCNE3 in a bilayer composed of: a mixture of POPC and POPG lipids (3:1), POPC alone, and DMPC alone. Our MD simulation results suggested that the transmembrane domain (TMD) of KCNE3 is less flexible and more stable when compared to the N- and C-termini of KCNE3 in all three membrane environments. The conformational flexibility of N- and C-termini varies across these three lipid environments. The MD simulation results further suggested that the TMD of KCNE3 spans the membrane width, having residue A69 close to the center of the lipid bilayers and residues S57 and S82 close to the lipid bilayer membrane surfaces. These results are consistent with previous biophysical studies of KCNE3. The outcomes of these MD simulations will help design biophysical experiments and complement the experimental data obtained on KCNE3 to obtain a more detailed understanding of its structural dynamics in the native membrane environment. Full article
(This article belongs to the Special Issue Modeling and Simulation of Lipid Membranes)
Show Figures

Figure 1

18 pages, 1996 KB  
Article
Rotational Dynamics of The Transmembrane Domains Play an Important Role in Peptide Dynamics of Viral Fusion and Ion Channel Forming Proteins—A Molecular Dynamics Simulation Study
by Chia-Wen Wang and Wolfgang B. Fischer
Viruses 2022, 14(4), 699; https://doi.org/10.3390/v14040699 - 28 Mar 2022
Cited by 5 | Viewed by 2751
Abstract
Focusing on the transmembrane domains (TMDs) of viral fusion and channel-forming proteins (VCPs), experimentally available and newly generated peptides in an ideal conformation of the S and E proteins of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and SARS-CoV, gp41 and Vpu, [...] Read more.
Focusing on the transmembrane domains (TMDs) of viral fusion and channel-forming proteins (VCPs), experimentally available and newly generated peptides in an ideal conformation of the S and E proteins of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and SARS-CoV, gp41 and Vpu, both of human immunodeficiency virus type 1 (HIV-1), haemagglutinin and M2 of influenza A, as well as gB of herpes simplex virus (HSV), are embedded in a fully hydrated lipid bilayer and used in multi-nanosecond molecular dynamics simulations. It is aimed to identify differences in the dynamics of the individual TMDs of the two types of viral membrane proteins. The assumption is made that the dynamics of the individual TMDs are decoupled from their extra-membrane domains, and that the mechanics of the TMDs are distinct from each other due to the different mechanism of function of the two types of proteins. The diffusivity coefficient (DC) of the translational and rotational diffusion is decreased in the oligomeric state of the TMDs compared to those values when calculated from simulations in their monomeric state. When comparing the calculations for two different lengths of the TMD, a longer full peptide and a shorter purely TMD stretch, (i) the difference of the calculated DCs begins to level out when the difference exceeds approximately 15 amino acids per peptide chain, and (ii) the channel protein rotational DC is the most affected diffusion parameter. The rotational dynamics of the individual amino acids within the middle section of the TMDs of the fusion peptides remain high upon oligomerization, but decrease for the channel peptides, with an increasing number of monomers forming the oligomeric state, suggesting an entropic penalty on oligomerization for the latter. Full article
(This article belongs to the Special Issue Viroporin)
Show Figures

Figure 1

10 pages, 2461 KB  
Article
Ionic-Liquid Gating in Two-Dimensional TMDs: The Operation Principles and Spectroscopic Capabilities
by Daniel Vaquero, Vito Clericò, Juan Salvador-Sánchez, Jorge Quereda, Enrique Diez and Ana M. Pérez-Muñoz
Micromachines 2021, 12(12), 1576; https://doi.org/10.3390/mi12121576 - 17 Dec 2021
Cited by 13 | Viewed by 6248
Abstract
Ionic-liquid gating (ILG) is able to enhance carrier densities well above the achievable values in traditional field-effect transistors (FETs), revealing it to be a promising technique for exploring the electronic phases of materials in extreme doping regimes. Due to their chemical stability, transition [...] Read more.
Ionic-liquid gating (ILG) is able to enhance carrier densities well above the achievable values in traditional field-effect transistors (FETs), revealing it to be a promising technique for exploring the electronic phases of materials in extreme doping regimes. Due to their chemical stability, transition metal dichalcogenides (TMDs) are ideal candidates to produce ionic-liquid-gated FETs. Furthermore, as recently discovered, ILG can be used to obtain the band gap of two-dimensional semiconductors directly from the simple transfer characteristics. In this work, we present an overview of the operation principles of ionic liquid gating in TMD-based transistors, establishing the importance of the reference voltage to obtain hysteresis-free transfer characteristics, and hence, precisely determine the band gap. We produced ILG-based bilayer WSe2 FETs and demonstrated their ambipolar behavior. We estimated the band gap directly from the transfer characteristics, demonstrating the potential of ILG as a spectroscopy technique. Full article
Show Figures

Figure 1

9 pages, 5209 KB  
Article
High-Speed Imaging of Second-Harmonic Generation in MoS2 Bilayer under Femtosecond Laser Ablation
by Young Chul Kim, Hoseong Yoo, Van Tu Nguyen, Soonil Lee, Ji-Yong Park and Yeong Hwan Ahn
Nanomaterials 2021, 11(7), 1786; https://doi.org/10.3390/nano11071786 - 9 Jul 2021
Cited by 8 | Viewed by 5961
Abstract
We report an in situ characterization of transition-metal dichalcogenide (TMD) monolayers and twisted bilayers using a high-speed second-harmonic generation (SHG) imaging technique. High-frequency laser modulation and galvano scanning in the SHG imaging enabled a rapid identification of the crystallinity in the TMD, including [...] Read more.
We report an in situ characterization of transition-metal dichalcogenide (TMD) monolayers and twisted bilayers using a high-speed second-harmonic generation (SHG) imaging technique. High-frequency laser modulation and galvano scanning in the SHG imaging enabled a rapid identification of the crystallinity in the TMD, including the orientation and homogeneity with a speed of 1 frame/s. For a twisted bilayer MoS2, we studied the SHG peak intensity and angles as a function of the twist angle under a strong interlayer coupling. In addition, rapid SHG imaging can be used to visualize laser-induced ablation of monolayer and bilayer MoS2 in situ under illumination by a strong femtosecond laser. Importantly, we observed a characteristic threshold behavior; the ablation process occurred for a very short time duration once the preheating condition was reached. We investigated the laser thinning of the bilayer MoS2 with different twist angles. When the twist angle was 0°, the SHG decreased by approximately one-fourth of the initial intensity when one layer was removed. Conversely, when the twist angle was approximately 60° (the SHG intensity was suppressed), the SHG increased abruptly close to that of the nearby monolayer when one layer was removed. Precise layer-by-layer control was possible because of the unique threshold behavior of the laser-induced ablation. Full article
(This article belongs to the Special Issue Nano-Optics: Novel Research on Theory and Applications)
Show Figures

Figure 1

11 pages, 2551 KB  
Article
Rolling the WSSe Bilayer into Double-Walled Nanotube for the Enhanced Photocatalytic Water-Splitting Performance
by Lin Ju, Jingzhou Qin, Liran Shi, Gui Yang, Jing Zhang and Li Sun
Nanomaterials 2021, 11(3), 705; https://doi.org/10.3390/nano11030705 - 11 Mar 2021
Cited by 21 | Viewed by 2617
Abstract
For the emerging Janus transition metal dichalcogenides (TMD) layered water-splitting photocatalysts, stacking the monolayers to form bilayers has been predicted to be an effective way to improve their photocatalytic performances. To achieve this, the stacking pattern plays an important role. In this work, [...] Read more.
For the emerging Janus transition metal dichalcogenides (TMD) layered water-splitting photocatalysts, stacking the monolayers to form bilayers has been predicted to be an effective way to improve their photocatalytic performances. To achieve this, the stacking pattern plays an important role. In this work, by means of the density functional theory calculations, we comprehensively estimate energetical stability, light absorption and redox capacity of Janus WSSe bilayer with different stacking patterns. Unfortunately, the Janus WSSe bilayer with the most stable configuration recover the out-of-plane symmetry, which is not in favor of the photocatalytic reactions. However, rolling the Janus WSSe bilayer into double-walled nanotube could stabilize the appropriate stacking pattern with an enhanced instinct dipole moment. Moreover, the suitable band edge positions, high visible light absorbance, outstanding solar-to-hydrogen efficiency (up to 28.48%), and superior carrier separation promise the Janus WSSe double-walled nanotube the potential for the photocatalytic water-splitting application. Our studies not only predict an ideal water-splitting photocatalyst, but also propose an effective way to improve the photocatalytic performances of Janus layered materials. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

Back to TopTop