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Abstract: For the emerging Janus transition metal dichalcogenides (TMD) layered water-splitting
photocatalysts, stacking the monolayers to form bilayers has been predicted to be an effective way to
improve their photocatalytic performances. To achieve this, the stacking pattern plays an important
role. In this work, by means of the density functional theory calculations, we comprehensively
estimate energetical stability, light absorption and redox capacity of Janus WSSe bilayer with different
stacking patterns. Unfortunately, the Janus WSSe bilayer with the most stable configuration recover
the out-of-plane symmetry, which is not in favor of the photocatalytic reactions. However, rolling the
Janus WSSe bilayer into double-walled nanotube could stabilize the appropriate stacking pattern with
an enhanced instinct dipole moment. Moreover, the suitable band edge positions, high visible light
absorbance, outstanding solar-to-hydrogen efficiency (up to 28.48%), and superior carrier separation
promise the Janus WSSe double-walled nanotube the potential for the photocatalytic water-splitting
application. Our studies not only predict an ideal water-splitting photocatalyst, but also propose an
effective way to improve the photocatalytic performances of Janus layered materials.

Keywords: photocatalysis; water-splitting; WSSe bilayer; double-walled nanotube

1. Introduction

Since the discovery of “Honda–Fujishima effect” in 1972 [1], overall water-splitting
for hydrogen production with semiconductor-based photocatalysts has attracted extensive
attentions [2–4]. The solar hydrogen generation is considered as a green technology to solve
the growing energy crisis and environmental pollution problems [5–9]. The mechanism of
photocatalytic water-splitting on semiconductor based photocatalysts could be elaborated
as follows [6]. Under solar illumination, the photon absorption in a semiconductor gives
rise to an electronic transition between the conduction and valence bands, which brings
in the photo-excited carriers. After the interior and exterior recombination, the residual
photo-generated electrons at the surface reduce protons in the water to form hydrogen gas
(H+/H2), while the residual photo-generated holes oxidize water molecules to produce
oxygen gas (O2/H2O). Normally, a high-performance water-splitting photocatalyst needs to
fulfill three requirements, namely a high visible photons utilization efficiency, the excellent
capability for carriers separate and transfer, and suitable band edge potentials for sufficient
redox ability of photo-generated carriers. Unfortunately, an irreconcilable contradiction
arises that, the high light utilization rate demands a adequately narrow band gap, however,
the competent redox capability usually calls for a large band gap (≥1.23 eV). The new
fast-developing two dimensional (2D) polar materials bring a new dawn for solving this
problem.
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For 2D polar photocatalysts, Yang et al. presented that, because of the existing
polarization, the top of valence band and the bottom of conduction band will distribute
in the two opposite sides, bringing in a potential difference, which will boost the redox
capacity of photoexcited carriers, lowering the demand of band gap [10]. They predicted
that, with the help of large surface potential energy difference (∆Φ = 10.01 eV), the surface-
functionalized boron nitride bilayers with a tiny band gap (Eg = 0.85 eV) could match
redox levels of water-splitting reactions, making the photocatalysis process sensitive to
infrared light [10]. According to Yang’s findings above, it is believable that, if there are
some method that could increase the surface potential difference and decrease the band
gap for the 2D polar photocatalysts, their redox capacity and light absorption could be
enhanced at the same time. For the recently emerged Janus MoSSe layered materials,
it has been theoretically predicted that, stacking the monolayers to form bilayers could
effectively narrow the band gap [11,12], causing a reinforced optical absorption, which is
similar to the cases of C3N4 and PtSSe [13,14]. In the meantime, the dipole moment of Janus
MoSSe layered materials, which is represented by the plane electrostatic potential difference
between the two surfaces, has been found to almost linearly increase with the growing
thickness [11,12,15]. Furthermore, the observed type-II band alignment in the Janus MoSSe
bilayers could suppress the recombination of photo-excited carriers for the thorough-going
spatial separation [16]. Thereby, compared with the Janus MoSSe monolayers, the bilayer
samples have a more excellent photocatalytic performance. Lately, due to the excellent
optical absorption and high carrier separation, Janus WSSe monolayer has been also
reported to possess a great potential for the application of photocatalytic overall water-
splitting [17]. However, for the Janus WSSe bilayer, the photocatalytic properties is yet
unclear.

Here, through the density functional theory (DFT) calculations, we comprehensively
estimate energetical stability, light absorption and redox capacity of Janus WSSe bilayer
with different stacking patterns. Unluckily, we find the Janus WSSe bilayer with the most
stable configuration (AB2 stacking style, shown in Figure 1) recovers the out-of-plane
symmetry, which is to the disadvantage of the photocatalytic reactions. However, rolling
the Janus WSSe bilayer into double-walled nanotube (DWNT) could stabilize the ideal
stacking pattern (AB1 stacking style, shown in Figure 1), which has a raised polarization.
Moreover, the suitable band edge positions, high visible light absorbance, outstanding
solar-to-hydrogen efficiency (up to 28.48%), and superior carrier separation indicate that,
the Janus WSSe DWNT is potentially an high-efficiency candidate for the photocatalytic
water-splitting application.
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2. Computational Methods

In this work, we employ the Vienna Ab initio Simulation Package (VASP) (version 5.3)
software to carry out the DFT calculations for both geometry relaxations and electronic
structures [18,19]. We use the projector augmented wave (PAW) pseudo potentials to de-
scribe the electron–ion interaction [20,21]. We choose generalized gradient approximations
of Perdew–Burke–Ernzerhof (GGA-PBE) as the exchange-correlation functional [22]. In
order to avoiding the interactions with neighboring mirror images, we set a 20 Å vacuum
space vertical to each Janus WSSe bilayer, and more than 15 Å vacuum spaces along x and
y directions for each Janus WSSe DWNT, whose periodic boundary condition is along the
z axis. We apply the DFT-D3 approach of Grimme to address the van der Waals (vdW)
force [17,23]. The Brillouin zone is regulated with a 9 × 9 × 1 gamma-pack k-mesh for
the Janus WSSe bilayers, and a 1 × 1 × 7 one for the Janus WSSe double-walled nanotube.
The cutoff energy is set to 500 eV, and the convergence criteria for the force and energy
is 10−2 eV/Å and 10−5 eV, respectively. Although tungsten is a heavy element, since the
effect of spin-orbital coupling (SOC) on the band gap of WSSe monolayer has been verified
to be unremarkably [17], here we do not apply the SOC correction in our calculations for
saving the computing resource. More computational details of theoretical STH efficiency
and DWNT surface ∆Φ can be found in the Supplementary Materials.

3. Results and Discussion
3.1. Geometric and Electronic Structures of Janus WSSe Bilayer

In this study, we choose the AB stacking mode (translation symmetry) for the Janus
WSSe bilayers, which has been widely demonstrated to be more stable than the other
stacking modes for transition metal dichalcogenides layered materials [11,12,15,24,25]. In
the AB stacking mode, the S/Se (W) atom of the first layer locate above the W (S/Se) atom
of the second layer. As depicted as in Figure 1, based on the atomic species at the interface,
three kinds of WSSe bilayer stacking configurations are considered, namely S-Se (denoted
as AB1), Se-Se (denoted as AB2), and S-S (denoted as AB3) with the point groups of C3v,
D3d, and D3d, correspondingly. After the full optimization, the lattice constants (a = b) of
AB1, AB2, and AB3 stacking configurations nearly are the same (about 3.25 Å) (listed in
Table 1), which well agrees with the result (3.228 Å) in the previous report [24].

Table 1. Detailed information of Janus WSSe bilayers with different stacking patterns. Calculated
lattice constants (a and b), binding energy (Eb), surface potential energy difference (∆Φ), and band
gap (Eg).

Stacking Patterns a = b (Å) Eb (eV) ∆Φ (eV) Eg (eV)

AB1 3.253 −0.29 1.37 0.90

AB2 3.251 −0.31 0 1.36

AB3 3.254 −0.27 0 1.01

In the beginning, we check the stacking-dependent stability by calculating the binding
energy Eb, which could be obtained with the following equation [13,24]:

Eb = EBL − 2× EML (1)

where EML and EBL are separately the total energies of Janus WSSe monolayer and bilayer.
Under this definition, a more negative Eb value indicates a higher energetical stability.
According to the calculated binding energy listed in the Table 1, the AB2 stacking config-
uration has the most negative Eb among all the three cases, forecasting the most stable
stacking approach for the Janus WSSe monolayer to form its bilayer.
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Next, we study the electronic properties of Janus WSSe bilayer by investigating their
electronic band structures with various stacking models. Here, we choose the results
achieved by PBE functional instead of Heyd−Scuseria−Ernzerhof (HSE06) hybrid func-
tional or G0W0 calculations. This is because that, as shown in Figure 2a, the calculated
band gap of WSSe monolayer at PBE level (1.68 eV) is closer to the experimental optical gap
(1.83 eV) [26] than the one at the HSE06 level (2.13 eV) or at the G0W0 level (2.68 eV) [17].
Our treatment agrees with the one applied in the previous studies on Janus TMD stud-
ies [27–29]. As plotted in Figure 2, all these Janus WSSe bilayers present indirect band
gap, different from the case of its monolayer. Specifically, for the Janus WSSe monolayer,
the conduction band minimum (CBM) and valence band maximum (VBM) are both at
the K point [17]; nevertheless, as to the bilayer cases, all the VBM moves to the Γ point,
meanwhile the CBM of AB1 and AB3 stacking modes still stay at the K point, and the one of
AB2 stacking mode lies on the Γ-K path. The direct−indirect transition of band gap, caused
by the forming bilayer, is able to suppress the photogenerated electron-hole recombination,
hopefully raising the quantity of free carriers. Furthermore, as summarized in the Table
1, all the band gaps of bilayer (0.90, 1.36, and 1.01 eV for AB1, AB2 and AB3 modes, re-
spectively) are obviously smaller than the one of monolayer (1.68 eV). The narrowed band
gap in these bilayers is conducive to improve the light absorption efficiency, which will be
discussed later. Intriguingly, the spatial distribution of CBM and VBM in the Janus WSSe
bilayers depends on the stacking pattern. As illustrated in the inset of Figure 2, for the
AB1 stacking pattern, the CBM distributes at the first layer, while the VBM is dominantly
distributed at the second layer. However, for the AB2 and AB3 stacking patterns, both VBM
and CBM uniformly spread over the both layers. Under illumination, the photo-excited
electron jump to the CBM, at the same time, the photo-excited hole stay at the VBM. Hence,
the locational separation of CBM and VBM normally could lower the carrier recombination.
Consequently, from the perspective of increasing the free photo-generated carrier number,
the AB1 stacking pattern is a better choice. It is also better than the monolayer, where both
the CBM and VBM are located partially at the W atomic layer (see the inset of Figure 2a).
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3.2. Redox Potential of the Photoexcited Carriers in Janus WSSe Bilayer

In order to overall split water, the adequate redox capacities of photo-generated
carriers require that, in photocatalysts, the CBM position should be higher than the
H+/H2 reduction potential (−4.44 eV at pH = 0), while the VBM one lower than the
H2O/O2 oxidation potential (−5.67 eV at pH = 0). For the polar materials, such as Janus
TMD and ferroelectrics, the intrinsic dipole has a strong impact on the CBM and VBM
positions [17,30–32]. Usually, for a given 2D polar material, the intrinsic dipole can be eval-
uated by the ∆Φ [31,32]. By this means, we study the stacking-dependent dipole moment
of the Janus WSSe bilayers. As illustrated in Figure S1, due to the recovery of out-of-plane
symmetry, the ∆Φ is 0 eV in the AB2 and AB3 stacking configurations. However, as to the
case of AB1 stacking configuration, ∆Φ (1.37 eV) is nearly twice the one (0.73 eV) of Janus
WSSe monolayer [17], which indicates an enhanced intrinsic dipole moment.

After taking the ∆Φ in consideration, we evaluate the redox potential of the photoex-
cited carriers in Janus WSSe bilayer through Yang’s method [7,10]. As shown in Figure
S2, since both the oxidation potential of O2/H2O and reduction potential of H+/H2 lie
in the gap, the samples with AB1 and AB2 stacking patterns meet the redox potentials
requirements for overall water-splitting reactions at pH = 0. In order to make the prac-
tical photocatalytic applications low-cost and eco-friendly, these overall water-splitting
reactions would better take place in neutral environment (pH = 7). Because the pH de-
pendence of band edge positions is exactly consistent with that of water redox potentials
(0.059 × pH) [33,34] AB1 and AB2 configurations in theory are capable to catalyze water-
splitting at pH = 7 (see Figure 3) Whereas, for the AB3 configuration, the VBM potential is
higher than the O2/H2O oxidation potential, making it incapable for the oxygen evolution
reaction (OER). For the hydrogen evolution reaction (HER), the CBM location of AB2 and
AB3 configurations is too much close to the H+/H2 reduction level, so that their hydrogen
evolution performances probably cannot be high. However, with the help of enhanced ∆Φ,
the CBM location of AB1 mode is greatly lifted, which is obviously higher than the H+/H2
reduction level, promising a outstanding hydrogen evolution ability.
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Figure 3. The potential of the CBM (blue region) and VBM (red region) of WSSe bilayer with different
stacking patterns (AB1, AB2, and AB3) and WSSe DWNT1, with respect to the vacuum level (labeled
as 0 eV). The dashed lines mark the oxidation potential of O2/H2O and reduction level of H+/H2.
The pH is set to 7.

3.3. Optical Absorption and STH Efficiency of Janus WSSe Bilayer

With regard to an ideal photocatalyst, the solar absorptivity, which could be as-
sessed by the absorption coefficient a(ω), should be good. Hereon, we study the stacking-
dependent a(ω) of Janus WSSe bilayer based on the formula below [32,35]:
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a(ω) =
√

2
ω

c
(

√
ε1(ω)2 + ε2(ω)2 − ε1(ω))

1
2

(2)

where ε1 and ε2 separately stand for the real and imaginary part of dielectric function.
As plotted in Figure 4, among the visible range (380–780 nm), these three kinds of Janus
WSSe bilayers each has several significant absorption peaks (>105 cm−1), indicating that
they are hopeful visible-light-response candidates. Here, we draw the a(ω) of Janus WSSe
monolayer as a contrast (black line). It could be found that, nearly all the visible light
absorption peaks of the bilayers exhibit red-shift, comparing with the ones of monolayer,
which could be explained by the visibly narrower band gaps as noted earlier.
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Normally, for a water-splitting photocatalyst, the strong light absorption capacity in
the visible-light area heralds a high STH efficiency. According to the method proposed
by Yang’s group [36], we estimate the energy conversion efficiency of these Janus WSSe
bilayers with the data of band alignments (see Table S1) discussed above. As shown in
Table 2, because of the ultrahigh light absorption efficiency (ηabs) and carrier utilization
efficiency (ηcu), the STH efficiency (ηSTH) of AB1 mode arrives 31.22%. Even considering the
instinct dipole contribution into the total energy, the corrected solar-to-hydrogen efficiency
(η’STH) of AB1 mode is still up to 19.46%, far over the standard conversion efficiency of
commercial applications for hydrogen production through photocatalytic water splitting
(10%) [37]. It also markedly outstrips the one of Janus WSSe monolayer (11.68%) [17] and
other reported photocatalysts, i.e., AgBiP2Se6 (10.04%) [30], and most M2X3 (M = Al, Ga,
In; X = S, Se, Te) monolayers [36]. Nevertheless, the ηSTH of AB2 and AB3 configurations
are not as high as the one of AB1 configuration, due to the badly low ηcu. As stated
before, in the AB1 mode, the large ∆Φ raises the redox potentials, causing a high ηcu.
Whereas, the out-of-plane symmetry recovery makes the ∆Φ disappear in AB2 and AB3
configurations. Their redox potentials are therefore much lower than the ones in AB1
configuration, so are their ηcu. To sum up, based on the staking-dependent STH efficiency
of Janus WSSe bilayers considered in our study, the AB1 configuration is most suitable for
the photocatalytic water-splitting application.
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Table 2. For Janus WSSe bilayers with different stacking patterns and Janus WSSe nanotubes (DWNT1
and (15, 15) SWNT), the Light Absorption Efficiency ηabs, Carrier Utilization Efficiency ηcu, STH
Conversion Efficiency ηSTH, and Corrected STH Conversion Efficiency η’STH.

Configuration ηabs (%) ηcu (%) ηSTH (%) η’STH (%)

AB1 81.11 38.50 31.22 19.46

AB2 55.59 20.38 11.33 –

AB3 54.69 10.01 5.47 –

DWNT1 76.38 64.44 49.22 28.48

(15, 15) 57.80 47.86 27.66 22.18

3.4. Geometric and Electronic Structures, and Photocatalytic Properties of Janus WSSe
Double-Walled Nanotube

As the previous lines already suggested, due to the most negative bonding energy, the
AB2 configuration is the most stable stacking pattern among these three cases, however,
its photocatalytic performance is far less excellent than the one of AB1 mode. Therefore,
making the stacking pattern of WSSe bilayer uniformly follow the AB1 style is a hopeful way
to improve its photocatalytic performance. Rolling the WSSe bilayer into double-walled
nanotube may realize this. It has been reported that, for a given diameter, the Janus MoSSe
nanotubes with outer shell of selenium atoms and inner shell of sulfur atoms (Se-W-S,
outside→inside) have a lower strain energy than the corresponding ones with the opposite
structures (S-W-Se), which can be explained that, the selenium atom has a larger radius
than the sulfur atom, and the inner atoms with larger radius likely have stronger repulsive
force [28]. Therefore, it can be expected that, for the Janus WSSe DWNT, the stacking
pattern predictably follows the AB1 style, which could be checked through comparing the
strain energy of Janus WSSe DWNTs with different stacking patterns [38–40]. Since the
armchair Janus MoSSe nanotube has been reported to be more energetically stable than the
zigzag one [27,28], here we choose (15, 15) and (8, 8) Janus WSSe armchair nanotubes to
build the Janus WSSe DWNT, where the distance between the inner and outer layers is close
to the one of Janus WSSe bilayer (about 3 Å, see Figure 1). As shown in the Figure 5, four
stacking configurations for the Janus WSSe DWNT are considered, namely Se-W-S-Se-W-S,
Se-W-S-S-W-Se, S-W-Se-Se-W-S, and S-W-Se-S-W-Se (outer layer→inner layer), which are
separately labelled as DWNT1, DWNT2, DWNT3, and DWNT4. In this work, the strain
energy Estr is defined as follows:

Estr =
EDWNT

NDWNT
− EM

NM
(3)

where ENT and NNT are the total energy and the number of unit cells in the Janus WSSe
DWNTs, meanwhile, EM and NM are corresponding value for the WSSe monolayer, respec-
tively. As displayed in Figure 1, the DWNT1 configuration has the lowest strain energy
among these four cases, which is in line with our expectation.

Then we explore the electronic properties of Janus WSSe DWNT1 by investigating its
electronic band structure and density of state (DOS). As shown in Figure 6a, it exhibits an
indirect band gap of 0.65 eV, which is even smaller than the one of WSSe bilayer, ensuring
the intensive light absorption in the visible areas (see Figure 4, red line). Moreover, as
illustrated in Figure 6b–c, similar to the case of AB1 mode, in the Janus WSSe DWNT1, the
CBM mainly scatter on the outer layer, while the VBM generally is located at the inner layer,
which is coincident with the results of DOS (see Figure 6a). To get the ∆Φ between the inner
and outer layers of Janus WSSe DWNT1, we calculate the ∆Φ of its component parts ((8, 8)
and (15, 15) nanotubes) with corresponding building block models first. Then, based on the
fitting line of the relationship between the ∆Φ for Janus MXY (M = Mo, W; X, Y = S, Se, Te)
monolayers and the ones for their own bilayers, we estimate the ∆Φ of Janus WSSe DWNT1.
More calculation details could be found in the Supplementary Materials (see Figures S3–S5).
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Notably, the ∆Φ (1.82 eV) of Janus WSSe DWNT1 is larger than the one (1.37 eV) of AB1
mode, indicating that rolling into DWNT could strengthen the ∆Φ of WSSe bilayer, which
may be related to the strains appeared during the coiling processes [17]. The ∆Φ in the
Janus WSSe DWNT1 will generate a built-in electric field pointing from the outer shell to
the inner one. As depicted in the Figure 6d, this built-in electric field effectively pushes the
photoexcited electrons to run to the outer layer, meanwhile it also forces the photoexcited
holes to stay at the inner layer. Besides, as illustrated in Figure 3, the band edge positions
of DWNT1 broadly straddle the standard water-splitting redox potential, which separately
ensures the competent reduction ability for the HER at the outer surface, and the sufficient
oxidation capacity the OER at the inner surface. What’s more, the η’STH of DWNT1 reach
up to 28.48%, which greatly transcends the ones of corresponding bilayers. Additionally, as
a complement, we also perform a computational study on the energy conversion efficiency
of WSSe (15, 15) single-walled nanotube (SWNT), which is summarized in Table 2. Due to
the narrower band gap (1.56 eV) and larger ∆Φ, the WSSe (15, 15) SWNT has an obviously
higher η’STH (22.18%) than its monolayer (η’STH = 11.68%) [17]. This is consistent with the
situation of DWNT. However, the η’STH of the SWNT is still inferior to the one of DWNT,
indicating that, similar to the case of bilayer, the photocatalytic performance of SWNT
could be improved by forming DWNT as well.
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Figure 6. The electronic properties of WSSe DWNT1 (a), including the projected density of state
(right) and band structure (left). The Fermi level (labeled with the dashed line) is set to 0 eV. The
spatial distributions of (b) CBM (blue areas) and (c) VBM (pink areas) of WSSe DWNT1. We set the
isosurface value to 1 × 10−3 e/Å3. (d) The work mechanism of WSSe DWNT1 for photocatalytic
water-splitting.
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4. Conclusions

From the geometric, electronic, optical and chemical properties, we have presented
comprehensive DFT calculations to investigate stacking-dependent photocatalytic per-
formance of the Janus WSSe bilayer. Though the AB2 stacking sample is energetically
most stable, due to the recovery of the out-of-plane symmetry, its redox capacity is fairly
low, which seriously restricts the STH conversion efficiency. Moreover, the spatial overlap
of CBM and VBM probably causes a high carrier recombination. Fortunately, changing
the stacking pattern into AB1 style could effectively overcome these drawbacks above.
Based on the strain energy, we find that rolling the Janus WSSe bilayer into double-walled
nanotube is a promising path to stably realize the AB1 configuration. Notably, because
of the enhanced intrinsic dipole, the STH conversion efficiency of the WSSe DWNT1 is
even higher than that of the AB1 configuration. Therefore, constructing the double-walled
nanotubes is a promising approach to improve the photocatalytic performances for the
Janus WSSe layered materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/3/705/s1, Figure S1: Planar average electrostatic potential energy of the bilayer WSSe with
(a) AB1, (b) AB2, and (c) AB3 stacking models, respectively, Figure S2: The potential of the CBM
(blue region) and VBM (red region) of WSSe bilayer with different stacking patterns (AB1, AB2, and
AB3) and WSSe DWNT1, with respect to the vacuum level (labeled as 0 eV), Figure S3: Average
electrostatic potentials in the plane normal to the tube axis for the whole structure of Janus WSSe
DWNT1, Figure S4: The fitting line of the relationship between the electrostatic potential difference
for Janus MXY (M = Mo, W; X, Y = S, Se, Te) monolayers (∆Φmonolayer) and the ones for their own
bilayers (∆Φbilayer), Figure S5: Average electrostatic potentials in the plane normal to the tube axis for
the whole structure (left) and building block (right) of (a) (8, 8) and (b) (15, 15) Janus WSSe armchair
nanotubes, Table S1: Over-Potential for Hydrogen Evolution Reaction χ(H2), Over-Potential for
Oxygen Evolution Reaction χ(O2), Direct Band Gaps, and Difference of Electrostatic Potential (∆Φ)
of Janus WSSe A-NTs.
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