Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (148)

Search Parameters:
Keywords = bifacial

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2222 KB  
Article
Solar-Tracker Diffuse-Response Algorithm for Balancing Energy Gain and Mechanical Wear in Photovoltaic Systems
by Riccardo Adinolfi Borea, Silvana Ovaitt, Vincenzo Cirimele, Mattia Ricco and Giosuè Maugeri
Electronics 2026, 15(3), 597; https://doi.org/10.3390/electronics15030597 - 29 Jan 2026
Viewed by 99
Abstract
Single-axis solar tracking maximizes photovoltaic energy production under clear-sky conditions; however, its effectiveness decreases under cloudy and overcast skies, where diffuse irradiance dominates and the optimal module orientation changes. Conventional tracking algorithms either neglect sky conditions or rely on simplified diffuse-response strategies that [...] Read more.
Single-axis solar tracking maximizes photovoltaic energy production under clear-sky conditions; however, its effectiveness decreases under cloudy and overcast skies, where diffuse irradiance dominates and the optimal module orientation changes. Conventional tracking algorithms either neglect sky conditions or rely on simplified diffuse-response strategies that may trigger frequent tracker repositioning under variable cloud cover, leading to increased mechanical wear with marginal energy gains. This work proposes an enhanced diffuse-response tracking algorithm that explicitly accounts for both the intensity and temporal persistence of cloudiness. By requiring overcast conditions to persist for a minimum duration before reorienting the tracker to a diffuse-stow position, the proposed approach reduces unnecessary movements while preserving the benefits of diffuse-response operation. The algorithm is evaluated through numerical simulations based on historical meteorological data and validated using field measurements on monofacial and bifacial photovoltaic strings. The results show that the proposed strategy reduces excess tracker movement from 114% to 0.16% while maintaining nearly the same energy yield. Compared to a conventional diffuse-response algorithm, the associated energy reduction is minimal (≈0.17%) relative to the ≈0.37% yield gain observed at the studied location. These findings demonstrate that incorporating cloudiness duration enables a practical compromise between energy performance and tracker durability, particularly for monofacial photovoltaic systems. Full article
8 pages, 1453 KB  
Communication
Double-Sided Illuminated Electrospun PAN TiO2-Cu2O Membranes for Enhanced CO2 Photoreduction to Methanol
by Mathieu Grandcolas
Catalysts 2026, 16(1), 107; https://doi.org/10.3390/catal16010107 - 22 Jan 2026
Viewed by 189
Abstract
Photocatalytic reduction of CO2 into value-added chemicals offers a sustainable route to mitigate greenhouse gas emissions while producing renewable fuels. However, conventional TiO2-based systems suffer from limited visible-light activity and inefficient reactor configurations. Here, we developed electrospun polyacrylonitrile (PAN) membranes [...] Read more.
Photocatalytic reduction of CO2 into value-added chemicals offers a sustainable route to mitigate greenhouse gas emissions while producing renewable fuels. However, conventional TiO2-based systems suffer from limited visible-light activity and inefficient reactor configurations. Here, we developed electrospun polyacrylonitrile (PAN) membranes embedded with TiO2-Cu2O heterojunction nanoparticles and integrated them into a custom crossflow photocatalytic membrane reactor. The reactor employed bifacial illumination using a solar simulator (front) and a xenon/mercury lamp (back), each calibrated to 1 Sun (100 mW·cm−2). Membrane morphology was characterized by SEM, and chemical composition was confirmed by XPS. Photocatalytic performance was evaluated in CO2-saturated 0.5 M potassium bicarbonate solution under continuous flow. The PAN/ TiO2-Cu2O membrane exhibited a methanol production rate of approximately 300 μmol·g−1·h−1 under dual-light illumination, outperforming single illumination, PAN-TiO2, and PAN controls. Enhanced activity is attributed to extended visible-light absorption, improved charge separation at the TiO2-Cu2O heterojunction, and optimized photon flux through bifacial illumination. The electrospun architecture provided high surface area and porosity, facilitating CO2 adsorption and catalyst dispersion. Combining heterojunction engineering with bifacial reactor design significantly improves solar-driven CO2 conversion. This approach offers a scalable pathway for integrating photocatalysis and membrane technology into sustainable fuel synthesis. Full article
(This article belongs to the Special Issue Advanced Semiconductor Photocatalysts)
Show Figures

Graphical abstract

35 pages, 1210 KB  
Systematic Review
Agrivoltaics Across Crops and Technologies: A Systematic Review of Experimental Tests on Yield, Microclimate, and Energy Performance
by Carlo Renno and Olga Di Marino
Energies 2026, 19(2), 539; https://doi.org/10.3390/en19020539 - 21 Jan 2026
Viewed by 216
Abstract
Agrivoltaics is a rapidly expanding technology thanks to its energy, agronomic, and microclimatic benefits, which have been demonstrated in a variety of climatic contexts around the world. This study presents the first systematic review exclusively focused on experimental agrivoltaics field studies, based on [...] Read more.
Agrivoltaics is a rapidly expanding technology thanks to its energy, agronomic, and microclimatic benefits, which have been demonstrated in a variety of climatic contexts around the world. This study presents the first systematic review exclusively focused on experimental agrivoltaics field studies, based on the analysis of 82 peer-reviewed articles. The aim is to provide a cross-study comparable synthesis of how shading from different photovoltaic (PV) technologies affects microclimate, crop yield, and crop quality. The reviewed systems include four main categories of PV modules: conventional, bifacial, semi-transparent/transparent, including spectrally selectivity modules and concentrating photovoltaic systems (CPV). To handle heterogeneity and improve comparability, results were normalised against open-field controls as relative percentage variations. The analysis reveals a high variability in results, strongly influenced by crop type, climate, level of shading, and reduction in PAR (Photosynthetically Active Radiation). Studies conducted with the same shade intensity but under different climatic conditions show contrasting results, suggesting that there is no universally optimal agrivoltaics configuration. Nevertheless, the review allows us to identify recurring patterns of compatibility between crops and photovoltaic technologies, providing useful guidance for choosing the most suitable technology based on climate, crop physiology, and production objectives. Full article
Show Figures

Figure 1

16 pages, 8073 KB  
Article
Bifaciality Optimization of TBC Silicon Solar Cells Based on Quokka3 Simulation
by Fen Yang, Zhibin Jiang, Yi Xie, Taihong Xie, Jingquan Zhang, Xia Hao, Guanggen Zeng, Zhengguo Yuan and Lili Wu
Materials 2026, 19(2), 405; https://doi.org/10.3390/ma19020405 - 20 Jan 2026
Viewed by 220
Abstract
Tunnel Oxide-Passivated Back Contact solar cells represent a next-generation photovoltaic technology with significant potential for achieving both high efficiency and low cost. This study addresses the challenge of low bifaciality inherent to the rear-side structure of TBC cells. Using the Quokka3 simulation and [...] Read more.
Tunnel Oxide-Passivated Back Contact solar cells represent a next-generation photovoltaic technology with significant potential for achieving both high efficiency and low cost. This study addresses the challenge of low bifaciality inherent to the rear-side structure of TBC cells. Using the Quokka3 simulation and assuming high-quality surface passivation and fine-line printing accuracy, a systematic optimization was conducted. The optimization encompassed surface morphology, optical coatings, bulk material parameters (carrier lifetime and resistivity), and rear-side geometry (emitter fraction, metallization pattern and gap width). Through a multi-parameter co-optimization process aimed at enhancing conversion efficiency, a simulated conversion efficiency of 27.26% and a bifaciality ratio of 92.96% were achieved. The simulation analysis quantified the trade-off relationships between FF, bifaciality, and efficiency under different parameter combinations. This enables accurate prediction of final performance outcomes when prioritizing different metrics, thereby providing scientific decision-making support for addressing the core design challenges in the industrialization of TBC cells. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

21 pages, 8455 KB  
Article
Comparative Experimental Performance Assessment of Tilted and Vertical Bifacial Photovoltaic Configurations for Agrivoltaic Applications
by Osama Ayadi, Reem Shadid, Mohammad A. Hamdan, Qasim Aburumman, Abdullah Bani Abdullah, Mohammed E. B. Abdalla, Haneen Sa’deh and Ahmad Sakhrieh
Sustainability 2026, 18(2), 931; https://doi.org/10.3390/su18020931 - 16 Jan 2026
Viewed by 222
Abstract
Agrivoltaics—the co-location of photovoltaic energy production with agriculture—offers a promising pathway to address growing pressures on land, food, and clean energy resources. This study evaluates the first agrivoltaic pilot installation in Jordan, located in Amman (935 m above sea level; hot-summer Mediterranean climate), [...] Read more.
Agrivoltaics—the co-location of photovoltaic energy production with agriculture—offers a promising pathway to address growing pressures on land, food, and clean energy resources. This study evaluates the first agrivoltaic pilot installation in Jordan, located in Amman (935 m above sea level; hot-summer Mediterranean climate), during its first operational year. Two 11.1 kWp bifacial photovoltaic (PV) systems were compared: (i) a south-facing array tilted at 10°, and (ii) a vertical east–west “fence” configuration. The tilted system achieved an annual specific yield of 1962 kWh/kWp, approximately 35% higher than the 1288 kWh/kWp obtained from the vertical array. Seasonal variation was observed, with the performance gap widening to ~45% during winter and narrowing to ~22% in June. As expected, the vertical system exhibited more uniform diurnal output, enhanced early-morning and late-afternoon generation, and lower soiling losses. The light profiles measured for the year indicate that vertical systems barely impede the light requirements of crops, while the tilted system splits into distinct profiles for the intra-row area (akin to the vertical system) and sub-panel area, which is likely to support only low-light requirement crops. This configuration increases the levelized cost of electricity (LCOE) by roughly 88% compared to a conventional ground-mounted system due to elevated structural costs. In contrast, the vertical east–west system provides an energy yield equivalent to about 33% of the land area at the tested configuration but achieves this without increasing the LCOE. These results highlight a fundamental trade-off: elevated tilted systems offer greater land-use efficiency but at higher cost, whereas vertical systems preserve cost parity at the expense of lower energy density. Full article
(This article belongs to the Special Issue Energy Economics and Sustainable Environment)
Show Figures

Figure 1

13 pages, 4195 KB  
Article
Impact of Rear-Hanging String-Cable-Bundle Shading on Performance Parameters of Bifacial Photovoltaic Modules
by Dan Smith, Scott Rand, Peter Hruby, Ben De Fresart, Paul Subzak, Sai Tatapudi, Nijanth Kothandapani and GovindaSamy TamizhMani
Energies 2026, 19(1), 126; https://doi.org/10.3390/en19010126 - 25 Dec 2025
Viewed by 331
Abstract
The 2025 International Technology Roadmap for Photovoltaics (ITRPV) projects that bifacial modules will dominate the photovoltaic (PV) market, reaching roughly 60–80% global share between 2024 and 2035, while monofacial PV modules will steadily decline. Current industry practice is to route the cable bundles [...] Read more.
The 2025 International Technology Roadmap for Photovoltaics (ITRPV) projects that bifacial modules will dominate the photovoltaic (PV) market, reaching roughly 60–80% global share between 2024 and 2035, while monofacial PV modules will steadily decline. Current industry practice is to route the cable bundles along structural members such as main beams or torque tubes, thereby preventing rear-side shading but resulting in two key drawbacks: increased cable length and decreased system reliability due to cable proximity with rotating members and pinch points. Both effects contribute to higher system costs and reduced cable reliability. An alternative method involves suspending cable bundles directly behind the modules using hangers. While this approach mitigates excess length and risk of cable snags, it introduces the possibility of partial rear-side shading, which could possibly cause performance loss and hot-spot formation due to shade-induced electrical mismatch. Experimental evidence indicates that this risk is minimal, as albedo irradiance typically represents only 10–30% of front-side irradiance as reported in the literature and is largely diffuse, thereby limiting the likelihood of significant directional shading. This study evaluates the performance and reliability impacts of hanger-supported cable bundles under varying experimental conditions. Performance metrics assessed include maximum power output (Pmax), short-circuit current (Isc), open-circuit voltage (Voc), and fill factor (FF), while hot-spot risk was evaluated through measurements of module temperature uniformity using infrared imaging. Each cable (1X) was 6 AWG with a total outer diameter of approximately 9 mm. Experiments covered different cable bundle counts/sizes (2X, 6X, 16X), mounting configurations (fixed-tilt and single-axis tracker), and albedo conditions (snow-covered and snow-free ground). Measurements were conducted hourly on clear days between 8:00 and 16:00 from June to September 2025. The results consistently show that hanger-supported cable bundles have a negligible shading impact across all hours of the day and throughout the measurement period. This indicates that rear-side cable shading can be safely and practically disregarded in performance modeling and energy-yield assessments for the tested configurations, including fixed-tilt systems and single-axis trackers with or without torque tube shading and with various hanger sizes and cable-bundle counts. Therefore, hanging cables behind modules is a cost- and reliability-friendly, safe and recommended practice. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

24 pages, 3838 KB  
Article
Fire Behaviour of Building-Integrated Photovoltaic Claddings Under Different Cavity Conditions: Glass Failure to Ignition
by Yoon Ko, Dana Duong, Reidar Stølen and Janne Siren Fjærestad
Solar 2026, 6(1), 1; https://doi.org/10.3390/solar6010001 - 19 Dec 2025
Viewed by 315
Abstract
This study investigates the fire behaviour of building-integrated photovoltaic (PV) claddings, focusing on the progression from glass failure to ignition under different cavity conditions. Experimental tests were conducted on two common PV cladding types: bifacial dual-glass (GG) and monofacial glass–plastic (GP) modules. Results [...] Read more.
This study investigates the fire behaviour of building-integrated photovoltaic (PV) claddings, focusing on the progression from glass failure to ignition under different cavity conditions. Experimental tests were conducted on two common PV cladding types: bifacial dual-glass (GG) and monofacial glass–plastic (GP) modules. Results revealed that GP modules exhibited faster burning and higher peak heat release rates (HRR), reaching up to 600 kW, while GG modules burned more slowly with peak HRR between 50 and 100 kW. Cavity conditions, including depth, ventilation, and operational energization, were found to be vital in determining glass breakage, occurring between 400 and 550 °C, and cavity ignition and subsequent flame spread. The relationship between cavity fire dynamics and glass breakage suggests the importance of system design, particularly regarding cavity ventilation and flame barriers, for mitigating upward fire propagation. These results establish a basis for advancing numerical fire models through integration of critical parameters such as material properties, glass breakage, cavity ignition, and cavity configuration. This approach supports comprehensive real-scale analysis to guide the development of effective design recommendations, ultimately improving fire safety in PV-integrated construction. Full article
Show Figures

Figure 1

24 pages, 6756 KB  
Article
Integrated Assessment Framework for Rice Yield and Energy Yield in Bifacial Agrivoltaic Systems
by Seokhun Yoo and Kyungsoo Lee
Energies 2025, 18(23), 6359; https://doi.org/10.3390/en18236359 - 4 Dec 2025
Viewed by 404
Abstract
Agrivoltaic (APV) systems co-locate agricultural production and photovoltaic (PV) electricity generation on the same land to maximize land use efficiency. This study proposes an integrated assessment framework that jointly evaluates crop yield and electricity generation in APV systems. Unlike many previous APV studies [...] Read more.
Agrivoltaic (APV) systems co-locate agricultural production and photovoltaic (PV) electricity generation on the same land to maximize land use efficiency. This study proposes an integrated assessment framework that jointly evaluates crop yield and electricity generation in APV systems. Unlike many previous APV studies that estimated crop responses from empirical PAR–photosynthesis relationships, this framework explicitly couples a process-based rice growth model (DSSAT-CERES-Rice) with irradiance and PV performance simulations (Honeybee-Radiance and PVlib) in a single workflow. The five-stage framework comprises (i) meteorological data acquisition and processing; (ii) 3D modeling in Rhinoceros; (iii) calculation of module front and rear irradiance and crop height irradiance using Honeybee; (iv) crop yield calculation with DSSAT; and (v) electricity generation calculation with PVlib. Using bifacial PV modules under rice cultivation in Gochang, Jeollabuk-do (Republic of Korea), simulations were performed with ground coverage ratio (GCR) and PV array azimuth as key design variables. As GCR increased from 20% to 50%, crop yield reduction (CYR) rose from 12% to 33%, while land equivalent ratio (LER) increased from 128% to 158%. To keep CYR within the domestic guideline of 20% while maximizing land use, designs with GCR ≤ 30% were found to be appropriate. At GCR 30%, CYR of 17–18% and LER of 139–140% were achieved, securing a balance between agricultural productivity and electricity generation. Although PV array azimuth had a limited impact on crop yield and electricity generation, southeast or southwest orientations showed more uniform irradiance distributions over the field than due south. A simple economic assessment was also conducted for the study site to compare total annual net income from rice and PV across GCR scenarios. The proposed framework can be applied to other crops and sites and supports design-stage decisions that jointly consider crop yield, electricity generation, and economic viability. Full article
(This article belongs to the Special Issue Renewable Energy Integration into Agricultural and Food Engineering)
Show Figures

Figure 1

20 pages, 6206 KB  
Article
PV-Scope Test System: Photovoltaic Module Characterization with Maximum Power, Efficiency, and Environmental Sensing
by Christi K. Madsen and Bitian Jiang
Electronics 2025, 14(21), 4305; https://doi.org/10.3390/electronics14214305 - 31 Oct 2025
Viewed by 867
Abstract
An integrated ESP32-based measurement system called PV-Scope is presented for real-time photovoltaic (PV) module efficiency characterization and small off-grid system testing under field conditions. The system includes pyranometer-calibrated irradiance sensors using a solar simulator, maximum power point tracking, and comprehensive environmental monitoring to [...] Read more.
An integrated ESP32-based measurement system called PV-Scope is presented for real-time photovoltaic (PV) module efficiency characterization and small off-grid system testing under field conditions. The system includes pyranometer-calibrated irradiance sensors using a solar simulator, maximum power point tracking, and comprehensive environmental monitoring to enable accurate performance assessment of PV modules across diverse technologies, manufacturers and installation conditions. Unlike standard test condition (STC) measurements at cell temperatures of 25 °C, this system captures the interactions between efficiency and environmental variables that significantly impact real-world efficiency. In particular, measurement of temperature-dependent efficiency under local conditions and validation of temperature-dependent models for extending the results to other environmental conditions are enabled with cell temperature monitoring in addition to ambient temperature, humidity, and wind speed. PV-Scope is designed for integrated sensing versatility, portable outdoor testing, and order-of-magnitude cost savings compared to commercial equipment to meet measurement needs across research, education, and practical PV innovation, including bifacial module testing, assessment of cooling techniques, tandem and multi-junction testing, and agrivoltaics. Full article
Show Figures

Figure 1

13 pages, 11106 KB  
Article
Quantification of Yield Gain from Bifacial PV Modules in Multi-Megawatt Plants with Sun-Tracking Systems
by Gabriele Malgaroli, Fabiana Matturro, Andrea Cagnetti, Aleandro Vivino, Ludovico Terzi, Alessandro Ciocia and Filippo Spertino
Solar 2025, 5(4), 49; https://doi.org/10.3390/solar5040049 - 21 Oct 2025
Viewed by 1194
Abstract
Nowadays, bifacial photovoltaic (PV) technology has emerged as a key solution to enhance the energy yield of large-scale PV plants, especially when integrated with sun-tracking systems. This study investigates the quantification of bifaciality productivity for two multi-MW PV plants in southern Italy (Sicily) [...] Read more.
Nowadays, bifacial photovoltaic (PV) technology has emerged as a key solution to enhance the energy yield of large-scale PV plants, especially when integrated with sun-tracking systems. This study investigates the quantification of bifaciality productivity for two multi-MW PV plants in southern Italy (Sicily) equipped with monocrystalline silicon bifacial modules installed on single-axis east–west tracking systems and aligned in the north–south direction. An optimized energy model was developed at the stringbox level, employing a dedicated procedure including data filtering, clear-sky condition selection, and numerical estimation of bifaciality factors. The model was calibrated using on-field measurements acquired during the first operational months to minimize uncertainties related to degradation phenomena. The application of the model demonstrated that the rear-side contribution to the total energy output is non-negligible, resulting in additional energy gains of approximately 5.3% and 3% for the two plants, respectively. Full article
Show Figures

Figure 1

22 pages, 2506 KB  
Article
Could Agrivoltaics Be Part of the Solution to Decarbonization in the Outermost Regions? Case Study: Gran Canaria
by Antonio Pulido-Alonso, José C. Quintana-Suárez, Enrique Rosales-Asencio, José Feo-García and Néstor R. Florido-Suárez
Electronics 2025, 14(19), 3848; https://doi.org/10.3390/electronics14193848 - 28 Sep 2025
Viewed by 859
Abstract
Today, on the island of Gran Canaria, conventional photovoltaic installations are being implemented on the ground, with the excuse that electricity production must be decarbonized. This is located on a highly populated island, with a shortage of flat land, and a high dependence [...] Read more.
Today, on the island of Gran Canaria, conventional photovoltaic installations are being implemented on the ground, with the excuse that electricity production must be decarbonized. This is located on a highly populated island, with a shortage of flat land, and a high dependence on food, in a biodiversity hot spot on the planet. We would like to point out that agrivoltaics could provide a double solution and allow the carbon footprint of this human settlement to be further reduced. In addition, it provides greater resilience to climate change, and by reducing dependence on the outside, it would minimize the effects suffered by pandemics such as SARS-CoV-2. It would also help mitigate water stress in one area facing serious water shortage problems. The reduction of local CO2 emissions would be achieved in four ways: production of clean electricity, reduction of the transport of fuel for electricity generation, reduction of the transport of food goods from abroad, and the absorption of CO2 together with the emission of O2 by the planted crops. It would also lead to greater job creation, a remedy against great soil desertification, stopping agricultural abandonment, and life in rural inland areas. This study analyzes two possible agrivoltaic installation configurations of equal power in a potato field: one with a vertical bifacial (VB) configuration and another with an optimum angle (OA). The monthly production is examined and, specifically, the economic income in the event of pouring all the production into the grid. All this takes into account the reality of the chosen place, the island of Gran Canaria (Spain). Full article
(This article belongs to the Special Issue New Horizons and Recent Advances of Power Electronics)
Show Figures

Figure 1

34 pages, 4459 KB  
Article
Productivity Modeling and Analysis of Mono- and Bifacial PV Panels Under Different Weather Conditions and Reflection Surfaces for Application in the Agriculture Sector
by Ludmil Stoyanov, Ivan Bachev, Valentin Milenov, Zahari Zarkov and Vladimir Lazarov
AgriEngineering 2025, 7(10), 319; https://doi.org/10.3390/agriengineering7100319 - 24 Sep 2025
Cited by 2 | Viewed by 1211
Abstract
The production of electricity from photovoltaics (PV) in the agricultural sector is expanding considerably, driven by ecological concerns and continuous technological development. Additionally, growing constraints on the use of arable land for PV energy production requires increased energy production per unit area of [...] Read more.
The production of electricity from photovoltaics (PV) in the agricultural sector is expanding considerably, driven by ecological concerns and continuous technological development. Additionally, growing constraints on the use of arable land for PV energy production requires increased energy production per unit area of panels. Bifacial panels are one of the highest performing PV solutions currently available. The subject of this paper is the productivity modeling of mono- and bifacial PV panels. The aim is to develop a physically based model for PV productivity without the use of commercial software. For this purpose, Durisch’s model is modified and adapted for bifacial panels and the necessary empirical parameters are determined. The developed model was validated experimentally. A comparison of the performance of the front and rear side of a bifacial panel is presented. The influence of the type of reflective surface is also investigated. The productivity and efficiency of monocrystalline monofacial and bifacial panels are also compared. The experiments were carried out in real conditions typical of a temperate continental climate for the latitude of Sofia, Bulgaria under different meteorological conditions. Full article
Show Figures

Figure 1

35 pages, 13854 KB  
Article
Middle Paleolithic Neanderthal Open-Air Camp and Hyena Den Westeregeln (D)—Competition for Prey in a Mammoth Steppe Environment of Northern Germany (Central Europe)
by Cajus G. Diedrich
Quaternary 2025, 8(4), 52; https://doi.org/10.3390/quat8040052 - 24 Sep 2025
Viewed by 1336
Abstract
A gypsum karst sinkhole at Westeregeln (north-central Germany) was filled during the Late Pleistocene, first by fluvial flooding, then by solifluctation, and finally with wind-transported loess. Pleistocene mollusks and bones of snakes, birds, micro- and macromammals, and hyena coprolites were accumulated, often mixed [...] Read more.
A gypsum karst sinkhole at Westeregeln (north-central Germany) was filled during the Late Pleistocene, first by fluvial flooding, then by solifluctation, and finally with wind-transported loess. Pleistocene mollusks and bones of snakes, birds, micro- and macromammals, and hyena coprolites were accumulated, often mixed in gravel or sand layers with Middle Paleolithic artifacts, whereas ice wedges reach deep into the sinkhole. The high amount of small flint debris prove on-site tool production by using 99% local Saalian transported brownish-to-dark Upper Cretaceous flint, which could have been collected from the Bode River gravels near-site. Only a single quartzite and one jasper flake prove other local gravel sources or importation. A large bifacial flaked knife of layer 4 dates to the early/middle Weichselian/Wuermian (MIS 5-4), similar to two triangular handaxes in the MTA tradition and an absolutely dated woolly rhinoceros bone (50,310 + 1580/−1320 BP). A cold period of Late Pleistocene glacial mammoth steppe megafauna is represented, but the material is mostly strongly fragmented and smashed by humans. Neanderthal camp use on the gypsum hill is indicated also by small charcoal pieces, burned bone fragments, and fire-dehydrated flint fragments. Crocuta crocuta spelaea (Goldfuss) hyenas are well known from Westeregeln, with an open-air commuting den site, which was marked with feces. Full article
Show Figures

Figure 1

1 pages, 110 KB  
Correction
Correction: Kshatri et al. Reliability Analysis of Bifacial PV Panel-Based Inverters Considering the Effect of Geographical Location. Energies 2022, 15, 170
by Energies Editorial Office
Energies 2025, 18(19), 5070; https://doi.org/10.3390/en18195070 - 24 Sep 2025
Viewed by 459
Abstract
Following publication [...] Full article
30 pages, 5024 KB  
Article
Techno-Economic Evaluation of a Floating Photovoltaic-Powered Green Hydrogen for FCEV for Different Köppen Climates
by Shanza Neda Hussain and Aritra Ghosh
Hydrogen 2025, 6(3), 73; https://doi.org/10.3390/hydrogen6030073 - 22 Sep 2025
Cited by 1 | Viewed by 3388
Abstract
The escalating global demand for electricity, coupled with environmental concerns and economic considerations, has driven the exploration of alternative energy sources, creating competition for land with other sectors. A comprehensive analysis of a 10 MW floating photovoltaic (FPV) system deployed across different Köppen [...] Read more.
The escalating global demand for electricity, coupled with environmental concerns and economic considerations, has driven the exploration of alternative energy sources, creating competition for land with other sectors. A comprehensive analysis of a 10 MW floating photovoltaic (FPV) system deployed across different Köppen climate zones along with techno-economic analysis involves evaluating technical efficiency and economic viability. Technical parameters are assessed using PVsyst simulation and HOMER Pro. While, economic analysis considers return on investment, net present value, internal rate of return, and payback period. Results indicate that temperate and dry zones exhibit significant electricity generation potential from an FPV. The study outlines the payback period with the lowest being 5.7 years, emphasizing the system’s environmental benefits by reducing water loss in the form of evaporation. The system is further integrated with hydrogen generation while estimating the number of cars that can be refueled at each location, with the highest amount of hydrogen production being 292,817 kg/year, refueling more than 100 cars per day. This leads to an LCOH of GBP 2.84/kg for 20 years. Additionally, the comparison across different Koppen climate zones suggests that, even with the high soiling losses, dry climate has substantial potential; producing up to 18,829,587 kWh/year of electricity and 292,817 kg/year of hydrogen. However, factors such as high inflation can reduce the return on investment to as low as 13.8%. The integration of FPV with hydropower plants is suggested for enhanced power generation, reaffirming its potential to contribute to a sustainable energy future while addressing the UN’s SDG7, SDG9, SDG13, and SDG15. Full article
Show Figures

Figure 1

Back to TopTop