Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = bidirectional wireless charging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2919 KiB  
Article
Efficiency Optimization of LCL-Resonant Wireless Power Transfer Systems via Bidirectional Electromagnetic–Thermal Coupling Field Dynamics
by Yao Yuan, Yuan La, Sicheng Shen, Yihui Zhao, Jianchao Li and Fanghui Yin
Energies 2024, 17(17), 4507; https://doi.org/10.3390/en17174507 - 8 Sep 2024
Cited by 1 | Viewed by 1813
Abstract
This paper delved into the thermal dynamics and stability of Wireless Power Transfer (WPT) systems, with a focus on the temperature effects on the coil structure. Using the Finite Element Method (FEM), this study investigated both unidirectional and bidirectional coupling field simulations, assessing [...] Read more.
This paper delved into the thermal dynamics and stability of Wireless Power Transfer (WPT) systems, with a focus on the temperature effects on the coil structure. Using the Finite Element Method (FEM), this study investigated both unidirectional and bidirectional coupling field simulations, assessing their impacts on the transmission efficiency of LCL-resonant WPT systems. The boundary conditions and processes of the electromagnetic–thermal coupling field related to coil loss were analyzed, as well as the dynamic thermal balance in the bidirectional coupling field model. It was found that there is a significant temperature variation across the coil, with the highest temperatures at the central position and the lowest at the edges. This temperature rise notably changed the electrical parameters of the system, leading to variations in its operating state and a reduction in transmission efficiency. A constant coil voltage control strategy was more effective in mitigating the temperature rise compared to a constant coil current strategy, providing valuable insight for enhancing the efficiency and stability of WPT systems. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

25 pages, 2038 KiB  
Review
A Comprehensive Review of Developments in Electric Vehicles Fast Charging Technology
by Ahmed Zentani, Ali Almaktoof and Mohamed T. Kahn
Appl. Sci. 2024, 14(11), 4728; https://doi.org/10.3390/app14114728 - 30 May 2024
Cited by 32 | Viewed by 13976
Abstract
Electric vehicle (EV) fast charging systems are rapidly evolving to meet the demands of a growing electric mobility landscape. This paper provides a comprehensive overview of various fast charging techniques, advanced infrastructure, control strategies, and emerging challenges and future trends in EV fast [...] Read more.
Electric vehicle (EV) fast charging systems are rapidly evolving to meet the demands of a growing electric mobility landscape. This paper provides a comprehensive overview of various fast charging techniques, advanced infrastructure, control strategies, and emerging challenges and future trends in EV fast charging. It discusses various fast charging techniques, including inductive charging, ultra-fast charging (UFC), DC fast charging (DCFC), Tesla Superchargers, bidirectional charging integration, and battery swapping, analysing their advantages and limitations. Advanced infrastructure for DC fast charging is explored, covering charging standards, connector types, communication protocols, power levels, and charging modes control strategies. Electric vehicle battery chargers are categorized into on-board and off-board systems, with detailed functionalities provided. The status of DC fast charging station DC-DC converters classification is presented, emphasizing their role in optimizing charging efficiency. Control strategies for EV systems are analysed, focusing on effective charging management while ensuring safety and performance. Challenges and future trends in EV fast charging are thoroughly explored, highlighting infrastructure limitations, standardization efforts, battery technology advancements, and energy optimization through smart grid solutions and bidirectional chargers. The paper advocates for global collaboration to establish universal standards and interoperability among charging systems to facilitate widespread EV adoption. Future research areas include faster charging, infrastructure improvements, standardization, and energy optimization. Encouragement is given for advancements in battery technology, wireless charging, battery swapping, and user experience enhancement to further advance the EV fast charging ecosystem. In summary, this paper offers valuable insights into the current state, challenges, and future directions of EV fast charging, providing a comprehensive examination of technological advancements and emerging trends in the field. Full article
Show Figures

Figure 1

18 pages, 9625 KiB  
Article
A Control Strategy for Achieving Constant Voltage Output with an Extensive ZVS Operating Range in Bidirectional Wireless EV Charging Systems
by Guangyao Li, Yafei Chen, Hailong Zhang, Junchen Xie, Seungjin Jo and Dong-Hee Kim
Energies 2024, 17(8), 1819; https://doi.org/10.3390/en17081819 - 10 Apr 2024
Viewed by 1321
Abstract
Variations in the coupling coefficient of loosely coupled transformers and dynamic loads have a significant impact on the overall performance of bidirectional inductive power transfer (BIPT) systems. However, a wide range of load and coupling coefficient variations are common in the actual charging [...] Read more.
Variations in the coupling coefficient of loosely coupled transformers and dynamic loads have a significant impact on the overall performance of bidirectional inductive power transfer (BIPT) systems. However, a wide range of load and coupling coefficient variations are common in the actual charging process, which may cause the converter on both sides to operate in a hard switching state, resulting in switching noise, reduced efficiency, and potential safety concerns. In this paper, a triple-phase-shift control (TPSC) strategy is proposed to study the zero-voltage switching (ZVS) operating range and constant-voltage output (CVO) characteristics of the double-side-LCC (DS-LCC) topology. To ensure a CVO over the wide range of coupling coefficient variations, a dual-phase-shift control is introduced for AC voltage matching. Based on this, the third phase-shift angle control between the converters on both sides is introduced to ensure the ZVS realization. Meanwhile, the time-domain model is developed to analyze the rationality of the proposed third phase-shift angle and the ZVS operating range. Finally, the effectiveness of the proposed TPSC strategy is validated through a 1.5 kW experimental prototype with an air gap of 100–150 mm. Full article
Show Figures

Figure 1

27 pages, 20554 KiB  
Article
Novel Meta-Fractal Wearable Sensors and Antennas for Medical, Communication, 5G, and IoT Applications
by Albert Sabban
Fractal Fract. 2024, 8(2), 100; https://doi.org/10.3390/fractalfract8020100 - 6 Feb 2024
Cited by 9 | Viewed by 3455
Abstract
Future communication, 5G, medical, and IoT systems need compact, green, efficient wideband sensors, and antennas. Novel linear and dual-polarized antennas for 5G, 6G, medical devices, Internet of Things (IoT) systems, and healthcare monitoring sensors are presented in this paper. One of the major [...] Read more.
Future communication, 5G, medical, and IoT systems need compact, green, efficient wideband sensors, and antennas. Novel linear and dual-polarized antennas for 5G, 6G, medical devices, Internet of Things (IoT) systems, and healthcare monitoring sensors are presented in this paper. One of the major goals in the evaluation of medical, 5G, and smart wireless communication devices is the development of efficient, compact, low-cost antennas and sensors. Moreover, passive and active sensors may be self-powered by connecting an energy-harvesting unit to the antenna to collect electromagnetic radiation and charge the wearable sensor battery. Wearable sensors and antennas can be employed in smart grid applications that provide communication between neighbors, localized management, bidirectional power transfer, and effective demand response. A low-cost wearable antenna may be developed by etching the printed feed and matching the network on the same substrate in the printed antenna. Active modules may be placed on the same dielectric board. The antenna design parameters and a comparison between the computation and measured electrical performance of the antennas are presented in this paper. The electrical characteristics of the new compact antennas in the vicinity of the patient’s body were simulated by using electromagnetic simulation techniques. Fractal and metamaterial efficient antennas and sensors were evaluated to maximize the electrical characteristics of smart communication and medical devices. The dual- and circularly polarized antennas developed in this paper are crucial to the evaluation of wideband and multiband compact 5G, 6G, and IoT advanced systems. The new efficient sensors and antennas maximize the system’s dynamic range and electrical characteristics. The new efficient wearable antennas and sensors are compact, wideband, and low-cost. The operating resonant frequency of the metamaterial antennas with circular split-ring resonators (CSRRs) may be 5% to 9% lower than the resonant frequency of the sensor without CSRRs. The directivity and gain of the metamaterial fractal antennas with CSRRs may be up to 3 dB higher than the antennas without CSRRs. The directivity and gain of the metamaterial fractal passive sensors with CSRRs may be up to 8.5 dBi. This study presents new wideband active meta-fractal antennas and sensors. The bandwidth of the new sensors is around 9% to 20%. At 2.83 GHz, the receiving active sensor gain is 13.5 dB and drops to 8 dB at 3.2 GHz. The receiving module noise figure with TAV541 LNA is around 1dB. Full article
(This article belongs to the Special Issue Advances in Fractal Antennas: Design, Modeling and Applications)
Show Figures

Figure 1

19 pages, 6632 KiB  
Article
A Bidirectional Wireless Power Transfer System with Integrated Near-Field Communication for E-Vehicles
by Weizhou Ye and Nejila Parspour
Vehicles 2024, 6(1), 256-274; https://doi.org/10.3390/vehicles6010011 - 24 Jan 2024
Cited by 2 | Viewed by 2709
Abstract
This paper presents the design of a bidirectional wireless power and information transfer system. The wireless information transfer is based on near-field technology, utilizing communication coils integrated into power transfer coils. Compared with conventional far-field-based communication methods (e.g., Bluetooth and WLAN), the proposed [...] Read more.
This paper presents the design of a bidirectional wireless power and information transfer system. The wireless information transfer is based on near-field technology, utilizing communication coils integrated into power transfer coils. Compared with conventional far-field-based communication methods (e.g., Bluetooth and WLAN), the proposed near-field-based communication method provides a peer-to-peer feature, as well as lower latency, which enables the simple paring of a transmitter and a receiver for power transfer and the real-time updating of control parameters. Using the established communication, control parameters are transmitted from one side of the system to another side, and the co-control of the inverter and the active rectifier is realized. In addition, this work innovatively presents the communication-signal-based synchronization of an inverter and a rectifier, which requires no AC current sensing in the power path and no complex algorithm for stabilization, unlike conventional current-based synchronization methods. The proposed information and power transfer system was measured under different operating conditions, including aligned and misaligned positions, operating points with different charging powers, and forward and reverse power transfer. The results show that the presented prototype allows a bidirectional power transfer of up to 1.2 kW, and efficiency above 90% for the power ranges from 0.6 kW to 1.2 kW was obtained. Furthermore, the integrated communication is robust to the crosstalk from the power transfer and misalignment, and a zero BER (bit error rate) and ultra-low latency of 15.36 µs are achieved. The presented work thus provides a novel solution to the synchronization and real-time co-control of an active rectifier and an inverter in a wireless power transfer system, utilizing integrated near-field-based communication. Full article
(This article belongs to the Special Issue Wireless Electric Vehicle Charging)
Show Figures

Graphical abstract

18 pages, 3999 KiB  
Article
Mobile Charging Scheduling Approach for Wireless Rechargeable Sensor Networks Based on Multiple Discrete-Action Space Deep Q-Network
by Chengpeng Jiang, Shuai Chen, Jinglin Li, Haoran Wang, Jing Wang, Taian Xu and Wendong Xiao
Appl. Sci. 2023, 13(14), 8513; https://doi.org/10.3390/app13148513 - 23 Jul 2023
Cited by 4 | Viewed by 1634
Abstract
Wireless energy transfer technology (WET)-enabled mobile charging provides an innovative strategy for energy replenishment in wireless rechargeable sensor networks (WRSNs), where the mobile charger (MC) can charge the sensors sequentially by WET according to the mobile charging scheduling scheme. Although there have been [...] Read more.
Wireless energy transfer technology (WET)-enabled mobile charging provides an innovative strategy for energy replenishment in wireless rechargeable sensor networks (WRSNs), where the mobile charger (MC) can charge the sensors sequentially by WET according to the mobile charging scheduling scheme. Although there have been fruitful studies, they usually assume that all sensors will be charged fully once scheduled or charged to a fixed percentage determined by a charging upper threshold, resulting in low charging performance as they cannot adjust the charging operation on each sensor adaptively according to the real-time charging demands. To tackle this challenge, we first formulate the mobile charging scheduling as a joint mobile charging sequence scheduling and charging upper threshold control problem (JSSTC), where the charging upper threshold of each sensor can adjust adaptively. Then, we propose a novel multi-discrete action space deep Q-network approach for JSSTC (MDDRL-JSSTC), where MC is regarded as an agent exploring the environment. The state information observed by MC at each time step is encoded to construct a high-dimensional vector. Furthermore, a two-dimensional action is mapped to the charging destination of MC and the corresponding charging upper threshold at the next time step, using bidirectional gated recurrent units (Bi-GRU). Finally, we conduct a series of experiments to verify the superior performance of the proposed approach in prolonging the lifetime compared with the state-of-the-art approaches. Full article
Show Figures

Figure 1

29 pages, 6462 KiB  
Review
A Review of Compensation Topologies and Control Techniques of Bidirectional Wireless Power Transfer Systems for Electric Vehicle Applications
by Murugan Venkatesan, Narayanamoorthi Rajamanickam, Pradeep Vishnuram, Mohit Bajaj, Vojtech Blazek, Lukas Prokop and Stanislav Misak
Energies 2022, 15(20), 7816; https://doi.org/10.3390/en15207816 - 21 Oct 2022
Cited by 84 | Viewed by 7631
Abstract
Owing to the constantly rising energy demand, Internal Combustion Engine (ICE)-equipped vehicles are being replaced by Electric Vehicles (EVs). The other advantage of using EVs is that the batteries can be utilised as an energy storage device to increase the penetration of renewable [...] Read more.
Owing to the constantly rising energy demand, Internal Combustion Engine (ICE)-equipped vehicles are being replaced by Electric Vehicles (EVs). The other advantage of using EVs is that the batteries can be utilised as an energy storage device to increase the penetration of renewable energy sources. Integrating EVs with the grid is one of the recent advancements in EVs using Vehicle-to-Grid (V2G) technology. A bidirectional technique enables power transfer between the grid and the EV batteries. Moreover, the Bidirectional Wireless Power Transfer (BWPT) method can support consumers in automating the power transfer process without human intervention. However, an effective BWPT requires a proper vehicle and grid coordination with reasonable control and compensation networks. Various compensation techniques have been proposed in the literature, both on the transmitter and receiver sides. Selecting suitable compensation techniques is a critical task affecting the various design parameters. In this study, the basic compensation topologies of the Series–Series (SS), Series–Parallel (SP), Parallel–Parallel (PP), Parallel–Series (SP), and hybrid compensation topology design requirements are investigated. In addition, the typical control techniques for bidirectional converters, such as Proportional–Integral–Derivative (PID), sliding mode, fuzzy logic control, model predictive, and digital control, are discussed. In addition, different switching modulation schemes, including Pulse-Width Modulation (PWM) control, PWM + Phase Shift control, Single-Phase Shift, Dual-Phase Shift, and Triple-Phase Shift methods, are discussed. The characteristics and control strategies of each are presented, concerning the typical applications. Based on the review analysis, the low-power (Level 1/Level 2) charging applications demand a simple SS compensation topology with a PID controller and a Single-Phase Shift switching method. However, for the medium- or high-power applications (Level 3/Level 4), the dual-side LCC compensation with an advanced controller and a Dual-Side Phase-Shift switching pattern is recommended. Full article
Show Figures

Figure 1

15 pages, 3958 KiB  
Article
An Inductively Powered Implantable System to Study the Gastrointestinal Electrophysiology in Freely Behaving Rodents
by Dylan T. Berry, Joanne Choi, Calla A. Dexheimer, Morgan A. Verhaalen and Amir Javan-Khoshkholgh
Bioengineering 2022, 9(10), 530; https://doi.org/10.3390/bioengineering9100530 - 6 Oct 2022
Cited by 5 | Viewed by 2290
Abstract
Chronic studies in the fasting and fed states of conscious subjects are fundamental for understanding the pathophysiological significance of functional gastrointestinal (GI) disorders and motility dysfunctions. To study the electrophysiology of the GI tract in the long term, the development of gastric implants [...] Read more.
Chronic studies in the fasting and fed states of conscious subjects are fundamental for understanding the pathophysiological significance of functional gastrointestinal (GI) disorders and motility dysfunctions. To study the electrophysiology of the GI tract in the long term, the development of gastric implants is essential. This paper presents the development of an implantable system capable of monitoring the bioelectrical activity of the gastric system and modulating the activity in freely behaving rodents. The system consists of a miniature-sized implantable unit (IU), a stationary unit (SU) that communicates with the IU over a 2.4 GHz far-field radio frequency (RF) bidirectional link, and a charging unit (CU) that establishes an inductive 13.56 MHz near-field communication (NFC) with the IU, implementing an adaptive wireless power transfer (WPT). The CU can generate an adjustable power between +20 dBm and +30 dBm, and, in the presence of body movements and stomach motility, can deliver a constant rectified voltage to the IU. The live subject’s exposure to the electromagnetic WPT in the developed system complies with the RF energy absorption restrictions for health and safety concerns. The system can be utilized to investigate the relationship between functional GI disorders and dysrhythmias in the gastric bioelectrical activity and study the potential of electroceutical therapies for motility dysfunctions in clinical settings. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Graphical abstract

15 pages, 8003 KiB  
Article
Multimodal Multidirectional Piezoelectric Vibration Energy Harvester by U-Shaped Structure with Cross-Connected Beams
by Hongbo Qin, Shuting Mo, Xin Jiang, Siyao Shang, Peng Wang and Yan Liu
Micromachines 2022, 13(3), 396; https://doi.org/10.3390/mi13030396 - 28 Feb 2022
Cited by 18 | Viewed by 3238
Abstract
This paper proposes a multidirectional piezoelectric vibration energy harvester based on an improved U-shaped structure with cross-connected beams. Benefitting from the bi-directional capacity of U-shaped beam and additional bending mode induced by cross-connected configuration, the proposed structure can well capture the vibrations in [...] Read more.
This paper proposes a multidirectional piezoelectric vibration energy harvester based on an improved U-shaped structure with cross-connected beams. Benefitting from the bi-directional capacity of U-shaped beam and additional bending mode induced by cross-connected configuration, the proposed structure can well capture the vibrations in 3D space at the frequencies lower than 15 Hz. These features are further validated by finite element analyses and theorical formulas. The prototype is fabricated and the experiments under different conditions are carried out. The results show that the proposed harvester can generate favorable voltage and power under multidirectional vibrations at a low operating frequency. Practical applications of charging capacitors and powering a wireless sensor node demonstrate the feasibility of this energy harvester in supplying power for engineering devices. Full article
(This article belongs to the Special Issue Piezoelectric Energy Harvesting: Analysis, Design and Fabrication)
Show Figures

Figure 1

20 pages, 3128 KiB  
Article
Design of a Bidirectional Wireless Power Transfer System for Vehicle-to-Home Applications
by Manuele Bertoluzzo, Stefano Giacomuzzi and Abhay Kumar
Vehicles 2021, 3(3), 406-425; https://doi.org/10.3390/vehicles3030025 - 31 Jul 2021
Cited by 16 | Viewed by 5538
Abstract
Energy storage plays a fundamental role in balancing the power fluctuations induced by the distributed generation of renewable energy sources. In this scenario, electric vehicles can strongly contribute to exchange power with the grid through their on-board batteries. When the vehicle is parked, [...] Read more.
Energy storage plays a fundamental role in balancing the power fluctuations induced by the distributed generation of renewable energy sources. In this scenario, electric vehicles can strongly contribute to exchange power with the grid through their on-board batteries. When the vehicle is parked, the battery can be discharged, injecting active power into the grid, provided that its state of charge will be restored before vehicle utilization. This paper presents a comprehensive step-by-step design of a wireless charger for a Vehicle-to-Home application. The design procedure begins from the constraints disposed by the Italian reference technical rules for Low Voltage utilities and by the standard SAE J2954 for Wireless Power Transfer for electric vehicles. The selection of the output power of the battery is followed by the power sizing of each stage of the bidirectional wireless charger. Full article
(This article belongs to the Special Issue Advanced Storage Systems for Electric Vehicles)
Show Figures

Figure 1

14 pages, 11409 KiB  
Article
Design and Optimization of Coupling Coils for Bidirectional Wireless Charging System of Unmanned Aerial Vehicle
by Yang Li, Xin Ni, Jiaming Liu, Rui Wang, Jingnan Ma, Yujie Zhai and Yuepeng Huang
Electronics 2020, 9(11), 1964; https://doi.org/10.3390/electronics9111964 - 20 Nov 2020
Cited by 12 | Viewed by 2985
Abstract
To solve the battery power supply problem with wireless sensor networks (WSNs), a novel bidirectional wireless charging system is proposed, in which an unmanned aerial vehicle (UAV) can fly to the WSNs to charge sensors through high-frequency wireless power transfer (WPT) and also [...] Read more.
To solve the battery power supply problem with wireless sensor networks (WSNs), a novel bidirectional wireless charging system is proposed, in which an unmanned aerial vehicle (UAV) can fly to the WSNs to charge sensors through high-frequency wireless power transfer (WPT) and also obtain energy for its own battery in the same way. To improve the performance of the UAV bidirectional wireless charging system, a lightweight design is adopted to increase its loading capacity and working time. Moreover, the radii and the numbers of turns and pitches of coupling coils were designed and optimized on the basis of simulations and experiments. Experimental results show that the weight of optimized UAV coil was reduced by 34.45%. The power transfer efficiency (PTE) of the UAV coil to sensor coil increased from 60.2% to 74.4% at a transmission distance of 15 cm, while that of the ground transmitting coil to UAV coil increased from 65.2% to 90.1% at 10 cm. Full article
(This article belongs to the Special Issue Wireless Power Transfer and Its Applications)
Show Figures

Figure 1

14 pages, 5096 KiB  
Article
Constant Output-Voltage Design for Bi-Directional Wireless Power Transfer System with Multiple Stages
by Jinde Wu, Zhihui Wang and Xin Dai
Energies 2020, 13(14), 3739; https://doi.org/10.3390/en13143739 - 20 Jul 2020
Cited by 2 | Viewed by 2719
Abstract
For the application of wireless power transfer (WPT) technology in a robot (like the snake robot), the power is supposed to be transferred to each device across multiple robot joints. This paper proposes a multi-stage bi-directional WPT (MB-WPT) system that not only provides [...] Read more.
For the application of wireless power transfer (WPT) technology in a robot (like the snake robot), the power is supposed to be transferred to each device across multiple robot joints. This paper proposes a multi-stage bi-directional WPT (MB-WPT) system that not only provides power to multiple loads but also increases the power transfer distance. Besides, the last stage can charge for the preceding stages by reverse power transfer. The constant output voltage can be achieved whether the power is transmitted in a forward or reverse direction, and different output voltages for each stage can be achieved to satisfy the respective voltage requirement through the parameter design method. The validity of the theoretical analysis and the feasibility of the system are verified by experiments. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

16 pages, 6632 KiB  
Article
Three-Port Converter for Integrating Energy Storage and Wireless Power Transfer Systems in Future Residential Applications
by Hyeon-Seok Lee and Jae-Jung Yun
Energies 2020, 13(1), 272; https://doi.org/10.3390/en13010272 - 5 Jan 2020
Cited by 7 | Viewed by 3786
Abstract
This paper presents a highly efficient three-port converter to integrate energy storage (ES) and wireless power transfer (WPT) systems. The proposed converter consists of a bidirectional DC-DC converter and an AC-DC converter with a resonant capacitor. By sharing an inductor and four switches [...] Read more.
This paper presents a highly efficient three-port converter to integrate energy storage (ES) and wireless power transfer (WPT) systems. The proposed converter consists of a bidirectional DC-DC converter and an AC-DC converter with a resonant capacitor. By sharing an inductor and four switches in the bidirectional DC-DC converter, the bidirectional DC-DC converter operates as a DC-DC converter for ES systems and simultaneously as a DC-AC converter for WPT systems. Here, four switches are turned on under the zero voltage switching conditions. The AC-DC converter for WPT system achieves high voltage gain by using a resonance between the resonant capacitor and the leakage inductance of a receiving coil. A 100-W prototype was built and tested to verify the effectiveness of the converter; it had a maximum power-conversion efficiency of 95.9% for the battery load and of 93.8% for the wireless charging load. Full article
Show Figures

Figure 1

13 pages, 3432 KiB  
Article
Wireless Power and Data Transmission System of Submarine Cable-Inspecting Robot Fish and Its Time-Sharing Multiplexing Method
by Guodong Chen, Yue Sun, Junxin Huang, Boda Zhou, Fanchao Meng and Chunsen Tang
Electronics 2019, 8(8), 838; https://doi.org/10.3390/electronics8080838 - 26 Jul 2019
Cited by 11 | Viewed by 4391
Abstract
In this paper, a hybrid system topology with one-way wireless charging function and the function of the bi-directional data communication is proposed for the problem of electric energy replenishment and data transmission faced by robot fish in the implementation of autonomous submarine cable [...] Read more.
In this paper, a hybrid system topology with one-way wireless charging function and the function of the bi-directional data communication is proposed for the problem of electric energy replenishment and data transmission faced by robot fish in the implementation of autonomous submarine cable inspection. Three working modes of the system and the time-sharing multiplexing method are studied. In the power transmission mode, high-efficiency wireless charging is realized by utilizing the transmission characteristics of a series–series (SS)-type resonant network which involves series resonant networks in both the primary side and the secondary side. In the alignment detection and handshake communication mode, the charging platform distance recognition and the handshake signal transmission are implemented through a series–parallel (SP)-type resonant network based on the ASK (amplitude shift keying) modulation method. In the high-speed data transmission mode, the reverse (secondary to primary) high-speed transmission of the inspection data is achieved through a SP-type resonant network based on the OFDM (orthogonal frequency division multiplexing) modulation method. The three modes share the same coupled coils via a reconfigurable resonant network. The working principle of the system is expounded, the system characteristics under each working mode are analyzed, and the time-division multiplexing control strategy is given. The rationality and effectiveness of the scheme are verified by experiments. Full article
(This article belongs to the Special Issue Wireless Charging for Electric Vehicles)
Show Figures

Figure 1

22 pages, 10579 KiB  
Article
Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles
by Yang Yang, Mohamed El Baghdadi, Yuanfeng Lan, Yassine Benomar, Joeri Van Mierlo and Omar Hegazy
Energies 2018, 11(7), 1716; https://doi.org/10.3390/en11071716 - 1 Jul 2018
Cited by 56 | Viewed by 8583
Abstract
Recently, wireless power transfer (WPT) systems have been used as battery chargers for electric vehicles. In a WPT system, the design approach and control strategy have a significant impact on the performance of the wireless power transfer systems in electric vehicle powertrains in [...] Read more.
Recently, wireless power transfer (WPT) systems have been used as battery chargers for electric vehicles. In a WPT system, the design approach and control strategy have a significant impact on the performance of the wireless power transfer systems in electric vehicle powertrains in terms of efficiency, charging power, charging modes, charging time, etc. A characteristic of different topologies appears depending on whether the compensation capacitor is connected in series or parallel with coils. Therefore, it is necessary to select a suitable compensation topology depending on different applications. Thus, this paper proposes a new design methodology and control system for bidirectional 3.7 kW and 7.7 kW WPTs in light-duty electric vehicles (EVs) operating at both 40 kHz and 85 kHz resonance frequencies. In this paper, the series-series (SS) WPT compensation topology is optimally designed and controlled for grid-to-vehicle (G2V) mode using MATLAB/Simulink. A simulation study is performed for a selected WPT design for G2V mode to ensure its functionality and performance at different power levels. Moreover, the magnetic design of the coils and its parameters are verified by using COMSOL. Finally, experimental results are validated for the WPT system. Full article
Show Figures

Figure 1

Back to TopTop