Novel Meta-Fractal Wearable Sensors and Antennas for Medical, Communication, 5G, and IoT Applications
Abstract
:1. Introduction
2. Wearable Technologies Status in 2023
2.1. Benefits of Wearable Devices and Technology
- -
- Physicians have a fast response to evaluate and diagnose patient health. The healthcare treatment process is faster due to the information acquired by the worn sensors.
- -
- Athletes can improve their fitness and training process thanks to the healthcare information collected by worn sensors and antennas.
- -
- Equipping workers with wearable sensors improves the health and productivity of the workers.
- -
- Wearable sensors and antennas improve communication between workers, monitor staff activity, improve companies’ safety measures, and may improve the productivity rate of employees, life quality, and the health of the users. These facts save companies up to millions of dollars annually.
- -
- Wearable sensors and devices are employed to monitor IoT networks and devices.
- -
- Hospital daily activities such as patient healthcare, patient sleep patterns, monitoring the heartbeat, blood pressure, and patient temperature may be monitored by wearable sensors and antennas.
- -
- By employing wearable sensors and IoT devices to automate companies’ daily work, companies’ hardware and labor costs may be reduced.
2.2. Wearable Technology Applications and Examples, [49,50,51,52]
3. Design Consideration of Compact Antennas and Sensors for Wearable Devices
Design Considerations and Challenges in Development of Compact Antennas
4. Green Stacked 2.5 GHz Fractal Wearable Antenna with an Energy-Harvesting Unit
5. Compact Metamaterial Fractal Wearable Antenna
6. Compact Double Layers Wideband Wearable Metamaterial Sensor
7. Green Dual-Polarized Wearable Metamaterial Fractal-Stacked Circular Antenna
8. New Active Receiving Dual-Polarized Stacked Circular Wearable Antenna
9. Wearable Sensors and Antennas for Medical, 5G, 6G, Smart Grid, and IoT Applications
10. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Constantine, A. Balanis, Antenna Theory Analysis and Design, 4th ed.; Wiley Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Sabban, A. Novel Wearable Antennas for Communication and Medical Systems; Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Sabban, A. Wideband RF Technologies and Antennas in Microwave Frequencies; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Sabban, A. Low Visibility Antennas for Communication Systems; Taylor & Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Waher, P. Learning Internet of Things; Packt Publishing: Birmingham, UK, 2015; ISBN 13:97-81783553532. [Google Scholar]
- Rajab, K.; Mittra, R.; Lanagan, M. Size Reduction of Microstrip Antennas using Metamaterials. In Proceedings of the 2005 IEEE APS Symposium, Washington, DC, USA, 3–8 July 2005. [Google Scholar]
- Pendry, J.B.; Holden, A.J.; Stewart, W.J.; Youngs, I. Extremely Low Frequency Plasmons in Metallic Meso-structures. Phys. Rev. Lett. 1996, 76, 4773–4776. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B.; Holden, A.; Robbins, D.; Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Technol. 1999, 47, 2075–2084. [Google Scholar] [CrossRef]
- Marqués, R.; Mesa, F.; Martel, J.; Medina, F. Comparative analysis of edge and broadside coupled split ring resonators for metamaterial design—Theory and Experiment. IEEE Trans. Antennas Propag. 2003, 51, 2572–2581. [Google Scholar] [CrossRef]
- Marqués, R.; Baena, J.D.; Martel, J.; Medina, F.; Falcone, F.; Sorolla, M.; Martin, F. Novel small resonant electromagnetic particles for metamaterial and filter design. In Proceedings of the ICEAA’03, Torino, Italy, 8–12 September 2003; pp. 439–442. [Google Scholar]
- Marqués, R.; Martel, J.; Mesa, F.; Medina, F. Left-Handed-Media Simulation and Transmission of EM Waves in Subwavelength Split-Ring-Resonator-Loaded Metallic Waveguides. Phys. Rev. Lett. 2002, 89, 183901. [Google Scholar] [CrossRef]
- Zhu, J.; Eleftheriades, G. A Compact Transmission-Line Metamaterial Antenna with Extended Bandwidth. IEEE Antennas Wirel. Propag. Lett. 2008, 8, 295–298. [Google Scholar] [CrossRef]
- Baena, J.D.; Marqués, R.; Martel, J.; Medina, F. Experimental results on metamaterial simulation using SRR-loaded Waveguides. In Proceedings of the IEEE-AP/S International Symposium on Antennas and Propagation, Columbus, OH, USA, 22–27 June 2003; pp. 106–109. [Google Scholar]
- Marques, R.; Martel, J.; Mesa, F.; Medina, F. A new 2D isotropic left-handed metamaterial design: Theory and experiment. Microw. Opt. Technol. Lett. 2002, 35, 405–408. [Google Scholar] [CrossRef]
- Sabban, A. New Compact Wearable Metamaterials Circular Patch Antennas for IoT, Medical and 5G Applications. Appl. Syst. Innov. 2020, 3, 42. [Google Scholar] [CrossRef]
- Sabban, A. Small Wearable Metamaterials Antennas for Medical Systems. Appl. Comput. Electromagn. Soc. J. 2016, 31, 434–443. [Google Scholar]
- Fujimoto, K. Antenna for Small Mobile Terminals; Artech House: Norwood, MA, USA, 2018. [Google Scholar]
- Sabban, A. Wearable Antenna Measurements in Vicinity of Human Body. Wirel. Eng. Technol. 2016, 7, 97–104. [Google Scholar] [CrossRef]
- Sabban, A. Active Compact Wearable Body Area Networks for Wireless Communication, Medical and IOT Applications. Appl. Syst. Innov. J. 2018, 1, 46. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman and Company: New York, NY, USA, 1983. [Google Scholar]
- Falkoner, F.J. The Geometry of Fractal Sets; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Rusu, M.V.; Baican, R. Chapter 16–Fractal Antenna Application. In Microwave and Millimeter Wave Technologies from Photonic Bandgap Devices to Antenna and Applications; Minin, I., Ed.; INTECH: London, UK, 2010; pp. 351–382. ISBN 978-953-7619-66-4. [Google Scholar]
- Rusu, M.V.; Hirvonen, M.; Rahimi, H.; Enoksson, P.; Rusu, C.; Pesonen, N.; Vermesan, O.; Rustad, H. Minkovsky Fractal Microstrip Antenna for RFID Tags. In Proceedings of the 2008 38th European Microwave Conference, Amsterdam, The Netherlands, 27–31 October 2008. [Google Scholar]
- Rahimi, H.; Rusu, M.; Enoksson, P.; Sandström, D.; Rusu, C. Small Patch Antenna Based on Fractal Design for Wireless Sensors. In Proceedings of the 18th Workshop on Micromachining, Micromechanics, and Microsystems, MME07, Guimaraes, Portugal, 16–18 September 2007. [Google Scholar]
- Mandelbrot, B.B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Chirwa, L.; Hammond, P.; Roy, S.; Cumming, D.R.S. Electromagnetic radiation from ingested sources in the human intestine between 150 MHz and 1.2 GHz. IEEE Trans. Biomed. Eng. 2003, 50, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Werber, D.; Schwentner, A.; Biebl, E.M. Investigation of RF transmission properties of human tissues. Adv. Radio Sci. 2006, 4, 357–360. [Google Scholar] [CrossRef]
- Gupta, B.; Sankaralingam, S.; Dhar, S. Development of wearable and implantable antennas in the last decade: A review. In Proceedings of the 2010 10th Mediterranean Microwave Symposium, Guzelyurt, Cyprus, 25–27 August 2010; pp. 251–267. [Google Scholar]
- Thalmann, T.; Popovic, Z.; Notaros, B.M.; Mosig, J.R. Investigation and design of a multi-band wearable antenna. In Proceedings of the 3rd European Conference on Antennas and Propagation, EuCAP 2009, Berlin, Germany, 23–27 March 2009; pp. 462–465. [Google Scholar]
- Salonen, P.; Rahmat-Samii, Y.; Kivikoski, M. Wearable antennas in the vicinity of human body. In Proceedings of the IEEE Antennas and Propagation Society Symposium, Monterey, CA, USA, 20–25 June 2004; pp. 467–470. [Google Scholar]
- Kellomäki, T.; Heikkinen, J.; Kivikoski, M. Wearable antennas for FM reception. In Proceedings of the 2006 First European Conference on Antennas and Propagation, Nice, France, 6–10 November 2006; pp. 1–6. [Google Scholar]
- Sabban, A. Microstrip Antenna and Antenna Arrays. U.S. Patent 4,623,893, 18 November 1986. [Google Scholar]
- Wheeler, H.A. Small antennas. IEEE Trans. Antennas Propag. 1975, 23, 462–469. [Google Scholar] [CrossRef]
- Jamil, F.; Ahmad, S.; Iqbal, N.; Kim, D. Towards a Remote Monitoring of Patient Vital Signs Based on IoT-Based Blockchain Integrity Management Platforms in Smart Hospitals. Sensors 2020, 20, 2195. [Google Scholar] [CrossRef]
- Lin, J.; Itoh, T. Active integrated antennas. IEEE Trans. Microw. Theory Technol. 1994, 42, 2186–2194. [Google Scholar] [CrossRef]
- Mortazwi, A.; Itoh, T.; Harvey, J. Active Antennas and Quasi-Optical Arrays; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Jacobsen, S.; Klemetsen, Ø. Improved Detectability in Medical Microwave Radio-Thermometers as Obtained by Active Antennas. IEEE Trans. Biomed. Eng. 2008, 55, 2778–2785. [Google Scholar] [CrossRef]
- Jacobsen, S.; Klemetsen, O. Active antennas in medical microwave radiometry. Electron. Lett. 2007, 43, 606. [Google Scholar] [CrossRef]
- Ellingson, S.W.; Simonetti, J.H.; Patterson, C.D. Design and evaluation of an active antenna for a 29–47 MHz radio telescope array. IEEE Trans. Antennas Propag. 2007, 55, 826–831. [Google Scholar] [CrossRef]
- Segovia-Vargas, D.; Castro-Galan, D.; Munoz, L.E.G.; González-Posadas, V. Broadband Active Receiving Patch with Resistive Equalization. IEEE Trans. Microw. Theory Technol. 2008, 56, 56–64. [Google Scholar] [CrossRef]
- Rizzoli, V.; Costanzo, A.; Spadoni, P. Computer-Aided Design of Ultra-Wideband Active Antennas by Means of a New Figure of Merit. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 290–292. [Google Scholar] [CrossRef]
- James, J.R.; Hall, P.S.; Wood, C. Microstrip Antenna Theory and Design; Institution of Engineering and Technology (IET): London, UK, 1981. [Google Scholar]
- Sabban, A. Dual Polarized Dipole Wearable Antenna. U.S. Patent 8,203,497, 19 June 2012. [Google Scholar]
- ADS Momentum Software, Keysightt. Available online: http://www.keysight.com/en/pc-1297113/advanced-design-system-ads?cc=IL&lc=eng (accessed on 3 January 2018).
- Paradiso, J.A.; Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 2005, 4, 18–27. [Google Scholar] [CrossRef]
- Valenta, C.R.; Durgin, G.D. Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 2014, 15, 108–120. [Google Scholar]
- Nintanavongsa, P.; Muncuk, U.; Lewis, D.R.; Chowdhury, K.R. Design optimization and implementation for RF energy harvesting circuits. IEEE J. Emerg. Sel. Top. Circuits Syst. 2012, 2, 24–33. [Google Scholar] [CrossRef]
- Devi, K.K.A.; Sadasivam, S.; Din, N.M.; Chakrabarthy, C.K. Design of a 377 Ω patch antenna for ambient RF energy harvesting at downlink frequency of GSM 900. In Proceedings of the 17th Asia Pacific Conference on Communications (APCC ’11), Sabah, Malaysia, 2–5 October 2011; pp. 492–495. [Google Scholar]
- Sabban, A. Wearable Circular Polarized Antennas for Health Care, 5G, Energy Harvesting, and IoT Systems. Electronics 2022, 11, 427. [Google Scholar] [CrossRef]
- Goudarzi, A.; Ghayoor, F.; Waseem, M.; Fahad, S.; Traore, I. A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook. Energies 2022, 15, 6984. [Google Scholar] [CrossRef]
- Waseem, M.; Khan, M.A.; Goudarzi, A.; Fahad, S.; Sajjad, I.A.; Siano, P. Incorporation of Blockchain Technology for Different Smar Grid Applications: Architecture, Prospects, and Challenges. Energies 2023, 16, 820. [Google Scholar] [CrossRef]
- Sabban, A. Wearable Communication Systems and Antennas: Design, Efficiency, and Miniaturization Techniques, 2nd ed.; IOP Publication: Bristol, UK, 2022. [Google Scholar]
- Chandravanshi, S.; Katare, K.K.; Akhtar, M.J. A Flexible Dual-Band Rectenna With Full Azimuth Coverage. IEEE Access 2021, 9, 27476–27484. [Google Scholar] [CrossRef]
- Rao, N. Modified Sierpinski and its use in Fractal Patch Antenna for Miniaturization and Multiband, Behavior. In Proceedings of the 2022 IEEE Microwaves Antennas, and Propagation Conference NAPCON, Bangalore, India, 12–16 December 2022. [Google Scholar] [CrossRef]
- Shrivastava, S.; Bansal, A.; Malhotra, S. Compact wearable textile antenna design for Biomedical Applications. In Proceedings of the 2023 First International Conference on Microwave, Antenna and Communication (MAC), Prayagraj, India, 24–26 March 2023. [Google Scholar] [CrossRef]
- Hong, K.-D.; Zhang, X.; Zhu, L.; Yuan, T. A High-Gain and Pattern-Reconfigurable Patch Antenna Under Operation of TM20 and TM21 Modes. IEEE Open J. Antennas Propag. 2021, 2, 646–653. [Google Scholar] [CrossRef]
- Suhas, D.; Bhattacharyya, S. Electrically Small Broadband CRLH Metamaterial Inspired Antenna in C band for 5G Laptop Applications. In Proceedings of the 2023 IEEE Wireless Antenna and Microwave Symposium (WAMS), Ahmedabad, India, 7–10 June 2023. [Google Scholar] [CrossRef]
Antenna Type | Gain dB | BW % | Effic. % | Beamwidth | Optimized Parameters | Application | Polarization | |
---|---|---|---|---|---|---|---|---|
θE⁰ | θH⁰ | |||||||
Stacked Fractal | 7.8 | 8 | 91 | 76 | 78 | Fractal shapes, layer spacing | Medical, 5G, IoT, SG | Linear |
Meta-Fractal | 8 | 20 | 90 | 76 | 90 | Fractal shapes, CSRR size | Medical, 5G, IoT, SG | Linear |
Stacked Meta-Fractal | 8.5 | 14 | 95 | 72 | 80 | Fractal shapes, CSRR size | Medical, 5G, IoT, SG | Linear |
Circular Meta-Fractal | 8 | 12 | 90 | 74 | 74 | Fractal shapes, CSRR size | Medical, 5G, IoT, SG | Dual band |
Active Rx. Meta-Fractal | 13 | 50 | 90 | 74 | 74 | Fractal shapes, CSRR size | Medical, 5G, IoT, SG | Dual band |
Antennas Type | 1993–2011 [3] | 2012–2023 [2] | ||||
---|---|---|---|---|---|---|
Gain dB | BW % | Effic. % | Gain dB | BW % | Effic. % | |
Printed dipoles | 3 | 5 | 70 | 4 | 5 | 80 |
Patches | 3.5 | 5 | 70 | 4 | 5 | 80 |
Stacked patches | 7 | 12 | 85 | 7.5 | 15 | 85 |
Metamaterial Ant. | 4 | 10 | 50 | 8–8.5 | 50 | 92 |
Metamaterial Antenna with strips | - | - | - | 5–8 | 50 | 92 |
Fractal Antennas | 4.5 | 5 | 70 | 5 | 10 | 82 |
Parameter | Specification | Remarks |
---|---|---|
Frequency | 0.4–3 GHz | - |
Gain at 2 GHz | 17.9 dB | Vds = 3 V |
N.F at 3 GHz | 0.8 dB | - |
P1 dB at 3 GHz | 19.5 dBm | - |
OIP3 at 2 GHz | 33 dBm | - |
Max input power | 17 dBm | - |
Vgs | 0.50 V | - |
Vds | 3 V | Ids = 60 mA |
Supply voltage | ±5 V | - |
Package | Surface Mount | - |
Operating temperature | −40 °C–80 °C | - |
F-GHz | S11 | S11° | S21 | S21° | S12 | S12° | S22 | S22° |
---|---|---|---|---|---|---|---|---|
0.10 | 0.99 | −17.17 | 25.43 | 168.9 | 0.008 | 88.22 | 0.55 | −14.38 |
0.28 | 0.93 | −45.77 | 22.97 | 149.5 | 0.021 | 65.77 | 0.51 | −33.65 |
0.41 | 0.89 | −65.72 | 20.98 | 137.27 | 0.03 | 57.9 | 0.46 | −49.3 |
0.50 | 0.87 | −77.1 | 19.54 | 130.3 | 0.034 | 53.03 | 0.43 | −57.5 |
0.73 | 0.80 | −100.8 | 16.22 | 115.7 | 0.042 | 42.06 | 0.36 | −74.86 |
0.82 | 0.77 | −108.8 | 15.07 | 110.75 | 0.044 | 39.53 | 0.34 | −80.87 |
1.04 | 0.74 | −126.2 | 12.74 | 100.13 | 0.05 | 33.69 | 0.29 | −94.96 |
1.21 | 0.71 | −137.6 | 11.25 | 92.91 | 0.051 | 30.05 | 0.26 | −104 |
1.53 | 0.69 | −154.2 | 9.30 | 82.06 | 0.055 | 26.08 | 0.22 | −119 |
1.75 | 0.67 | −164.1 | 8.24 | 75.31 | 0.06 | 23.14 | 0.20 | −128.4 |
2.02 | 0.67 | −174.6 | 7.30 | 67.82 | 0.06 | 20.88 | 0.18 | −138.8 |
Parameter | Specification | Remarks |
---|---|---|
Frequency | DC–18 GHz | - |
Gain at DC to 6 GHz | 18 dB | Vds = 8 V |
N.F at DC to 6 GHz | 4 dB | - |
P1dB DC to 6 GHz | 24 dBm | - |
OIP3 at DC to 6 GHz | 34 dBm | - |
Max input power | 17 dBm | - |
Vgs | 0.50 V | - |
Vds | 3 V | Ids = 290 mA |
Supply voltage | ±5 V | - |
Operating temperature | −55 °C–85 °C | - |
Antenna | Frequency (GHz) | BW % | BW % Measured | Computed Gain dBi | Measured Gain dBi | Length.(cm) | Efficiency % |
---|---|---|---|---|---|---|---|
Meta-fractal-stacked | 3.45–3.9 | 16 | 15 | 8 | 8.3 | 2 | 95 |
Meta-fractal-stacked circular patch | 2.7–2.9 | 11 | 10 | 8 | 8.2 | 4.1 | 95 |
Meta circular-polarized patch | 2.4–2.8 | 15 | 14 | 8.3 | 8 | 3.6 | 90 |
Meta circular | 2.5–2.7 | 9 | 9 | 7.5 | 7.8 | 3.6 | 85 |
Circular patch without CSRR [2,3] | 2.6–2.65 | 1.5 | 1.5 | 4.5 | 4.3 | 4.8 | 85 |
Printed dipole with CSRR [2,3] | 0.32–0.36 | 11 | 10 | 5.6 | 5.7 | 19.8 | 95 |
Dipole without CSRR [2,3] | 0.38–0.42 | 10 | 12 | 2.5 | 2.5 | 21 | 90 |
Meta-stacked circular patch | 2.6–2.8 | 9 | 10 | 8.5 | 8.4 | 4 | 95 |
Stacked circular patch | 2.6–2.8 | 8 | 8 | 5.4 | 5.3 | 4.8 | 89 |
Tissue | Parameter | 440 MHz | 600 MHz | 1 GHz | 1.25 GHz |
---|---|---|---|---|---|
Heart/Colon tissues | σ | 1.00 | 1.05 | 1.32 | 1.46 |
ε | 63.52 | 61.95 | 60.00 | 59.45 | |
Attenuation, dB/m | 18 | 20 | 24 | 27 | |
Fat tissues | σ | 0.047 | 0.05 | 0.054 | 0.06 |
ε | 5.00 | 5.00 | 4.72 | 4.55 | |
Attenuation, dB/m | 3.5 | 3.9 | 4.5 | 4.8 | |
Stomach tissues | σ | 0.70 | 0.76 | 0.97 | 0.99 |
ε | 42.7 | 41.40 | 39.1 | 39.00 | |
Attenuation, dB/m | 16 | 18 | 22 | 25 | |
Blood | σ | 1.76 | 1.78 | 1.91 | 1.99 |
ε | 57.2 | 56.5 | 55.40 | 55.00 | |
Attenuation, dB/m | 38 | 40.8 | 46.34 | 49.3 | |
Skin | σ | 0.58 | 0.6 | 0.63 | 0.77 |
ε | 41.6 | 40.45 | 40.25 | 39.65 | |
Attenuation, dB/m | 14 | 15.3 | 18 | 19 | |
Lung tissues | σ | 0.27 | 0.27 | 0.27 | 0.28 |
ε | 38.4 | 38.4 | 38.4 | 38.4 | |
Kidney tissues | σ | 0.90 | 0.90 | 0.90 | 0.91 |
ε | 117.5 | 117.5 | 117.5 | 117.5 | |
Prostate | σ | 0.75 | 0.75 | 0.90 | 1.05 |
ε | 50.5 | 50.0 | 46.7 | 46.5 | |
Attenuation, dB/m | 16.5 | 18.5 | 22.5 | 25 | |
Small intestine | σ | 1.74 | 1.74 | 1.74 | 1.74 |
ε | 128.1 | 128.1 | 128.1 | 128.1 | |
Attenuation, dB/m | 27 | 28 | 28.7 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabban, A. Novel Meta-Fractal Wearable Sensors and Antennas for Medical, Communication, 5G, and IoT Applications. Fractal Fract. 2024, 8, 100. https://doi.org/10.3390/fractalfract8020100
Sabban A. Novel Meta-Fractal Wearable Sensors and Antennas for Medical, Communication, 5G, and IoT Applications. Fractal and Fractional. 2024; 8(2):100. https://doi.org/10.3390/fractalfract8020100
Chicago/Turabian StyleSabban, Albert. 2024. "Novel Meta-Fractal Wearable Sensors and Antennas for Medical, Communication, 5G, and IoT Applications" Fractal and Fractional 8, no. 2: 100. https://doi.org/10.3390/fractalfract8020100
APA StyleSabban, A. (2024). Novel Meta-Fractal Wearable Sensors and Antennas for Medical, Communication, 5G, and IoT Applications. Fractal and Fractional, 8(2), 100. https://doi.org/10.3390/fractalfract8020100