Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = beet by-product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1686 KiB  
Article
Effect of Sugar Beet Molasses and Compost from Brewery Sludge on Celery (Apium graveolens var. rapaceum) Yield and Nutrient Uptake
by Boris Adamović, Đorđe Vojnović, Ivana Maksimović, Marina Putnik Delić, Dragan Kovačević, Ranko Čabilovski, Milorad Živanov, Maja Ignjatov, Janko Červenski and Dragana Latković
Horticulturae 2025, 11(7), 836; https://doi.org/10.3390/horticulturae11070836 - 15 Jul 2025
Viewed by 293
Abstract
The rising cost of mineral fertilizers and the decreasing availability of manure in vegetable farming highlight the need for alternative fertilization strategies. To examine the possibility of applying byproducts from the food processing industry, sugar beet molasses, and compost from brewery sewage sludge [...] Read more.
The rising cost of mineral fertilizers and the decreasing availability of manure in vegetable farming highlight the need for alternative fertilization strategies. To examine the possibility of applying byproducts from the food processing industry, sugar beet molasses, and compost from brewery sewage sludge in celery production, the field experiment was conducted over two years, using a randomized complete block design with three replications. The examined variants were T0—control (without fertilizer); T1—mineral fertilizer; T2—cattle manure; T3—sheep manure; T4—poultry manure; T5—supercompost; and T6—molasses. In the first year, there was no significant difference between T1 and T5 in thickened root yield, while these two variants achieved significantly higher yield compared with other variants. In both years, the highest leaf yield was achieved with T1, while no significant difference was found between T5, T6, and conventional organic fertilizers of animal origin. The highest amount of N was absorbed by roots in T1 (42.0 kg/ha and 51.2 kg/ha, respectively), while the lowest amount was absorbed in T0 (25.5 kg/ha and 26.7 kg/ha, respectively). A significantly higher amount of P2O5 was absorbed by roots in all organic fertilizer variants compared to T0 and T1. In both years, of all the nutrients, K2O was the most absorbed nutrient by the celery root, while CaO was absorbed in greater quantities than N. Based on two years of research, it can be concluded that compost from brewery sludge and sugar beet molasses can be used as an alternative source of nutrients for plants. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

27 pages, 7546 KiB  
Article
Upcycling Luffa cylindrica (Luffa Sponge) Seed Press Cake as a Functional Ingredient for Meat Substitute Formulations
by Génica Lawrence, Thaïna Josy, Ewa Pejcz, Agata Wojciechowicz-Budzisz, Remigiusz Olędzki, Katarzyna Górska, Adam Zając, Guylène Aurore and Joanna Harasym
Appl. Sci. 2025, 15(14), 7753; https://doi.org/10.3390/app15147753 - 10 Jul 2025
Viewed by 291
Abstract
In the current context of environmental concerns and the search for sustainable food solutions, this study investigated the valorization of Luffa cylindrica seed press cake, a waste byproduct from oil extraction, as a functional ingredient for meat substitute formulations. The research systematically characterized [...] Read more.
In the current context of environmental concerns and the search for sustainable food solutions, this study investigated the valorization of Luffa cylindrica seed press cake, a waste byproduct from oil extraction, as a functional ingredient for meat substitute formulations. The research systematically characterized the functional and bioactive properties of L. cylindrica seed press cake powder (LP) and its blends with tapioca flour (TF) at ratios of 30–70%. Techno-functional analyses included: hydration properties (water holding capacity, water absorption capacity, water absorption index, water solubility index, swelling power, oil absorption capacity); rheological characteristics; bioactive profiling through antioxidant assays (DPPH, ABTS, FRAP); and reducing sugar content determination. Meat substitute formulations were developed using an LP30/TF70 blend combined with coral lentils, red beet powder, and water, followed by a sensory evaluation and storage stability assessment. Pure L. cylindrica powder exhibited the highest water holding capacity (3.62 g H2O/g) and reducing sugar content (8.05 mg GE/g), while tapioca flour showed superior swelling properties. The blends demonstrated complementary functional characteristics, with the LP30/TF70 formulation selected for meat substitute development based on optimal textural properties. The sensory evaluation revealed significant gender differences in acceptance, with women rating the product substantially higher than men across all attributes. The study successfully demonstrated the feasibility of transforming agricultural waste into a valuable functional ingredient, contributing to sustainable food production and representing the first comprehensive evaluation of L. cylindrica seed press cake for food applications. However, the study revealed limitations, including significant antioxidant loss during thermal processing (80–85% reduction); a preliminary sensory evaluation with limited participants showing gender-dependent acceptance; and a reliance on locally available tapioca flour, which may limit global applicability. Future research should focus on processing optimization to preserve bioactive compounds, comprehensive sensory studies with diverse populations, and an investigation of alternative starch sources to enhance the worldwide implementation of this valorization approach. Full article
(This article belongs to the Special Issue Processing and Application of Functional Food Ingredients)
Show Figures

Figure 1

31 pages, 488 KiB  
Review
Betaine Dietary Supplementation: Healthy Aspects in Human and Animal Nutrition
by Giovanni Buonaiuto, Alessia Federiconi, Carla Giuditta Vecchiato, Elisa Benini and Attilio Luigi Mordenti
Antioxidants 2025, 14(7), 771; https://doi.org/10.3390/antiox14070771 - 23 Jun 2025
Viewed by 1709
Abstract
Betaine, a naturally occurring compound primarily derived from sugar beet by-products, has attracted increasing attention for its multifaceted roles in human and animal nutrition. Acting as both an osmolyte and a methyl group donor, betaine contributes to cellular hydration, methylation balance, antioxidant defense, [...] Read more.
Betaine, a naturally occurring compound primarily derived from sugar beet by-products, has attracted increasing attention for its multifaceted roles in human and animal nutrition. Acting as both an osmolyte and a methyl group donor, betaine contributes to cellular hydration, methylation balance, antioxidant defense, and metabolic regulation. This review provides a comprehensive overview of betaine’s biological functions and its health-promoting effects across species. In humans, betaine supports hepatic function, cardiovascular health, renal protection, and physical performance, mainly by modulating homocysteine metabolism, lipid profiles, and oxidative stress. In animal production systems, it enhances growth, feed efficiency, reproductive performance, and resilience to heat stress, with species-specific applications in monogastrics, ruminants, aquaculture species, and companion animals. The review also explores the molecular mechanisms underlying betaine’s effects, including epigenetic regulation and mitochondrial function, and presents updated evidence on its biosynthesis, bioavailability, and nutrient interactions. Furthermore, the use of betaine derived from agro-industrial by-products aligns with the principles of the circular economy, promoting the sustainable reuse of valuable compounds within the agri-food chain. Despite promising findings, further research is needed to standardize effective dosages and clarify species-specific responses under different physiological and environmental conditions. Overall, betaine emerges as a promising and sustainable functional ingredient with wide-ranging applications in nutrition and health. Full article
14 pages, 1550 KiB  
Article
Fermentation of Sugar Beet Pulp by E. coli for Enhanced Biohydrogen and Biomass Production
by Gayane Mikoyan, Liana Vanyan, Akerke Toleugazykyzy, Roza Bekbayeva, Kamila Baichiyeva, Kairat Bekbayev and Karen Trchounian
Energies 2025, 18(10), 2648; https://doi.org/10.3390/en18102648 - 20 May 2025
Cited by 1 | Viewed by 883
Abstract
This study investigates the potential of sugar beet pulp (SBP), a lignocellulosic by-product of sugar production, as a low-cost substrate for biohydrogen and biomass generation using Escherichia coli under dark fermentation conditions. Two strains—BW25113 wild-type and a genetically engineered septuple mutant—were employed. SBP [...] Read more.
This study investigates the potential of sugar beet pulp (SBP), a lignocellulosic by-product of sugar production, as a low-cost substrate for biohydrogen and biomass generation using Escherichia coli under dark fermentation conditions. Two strains—BW25113 wild-type and a genetically engineered septuple mutant—were employed. SBP was pretreated via thermochemical hydrolysis, and the effects of substrate concentration, dilution, and glycerol supplementation were evaluated. Hydrogen production was highly dependent on substrate dilution and nutrient balance. The septuple mutant achieved the highest H2 yield in 30 g L−1 SBP hydrolysate (0.75% sulfuric acid) at 5× dilution with glycerol, reaching 12.06 mmol H2 (g sugar)−1 and 0.28 mmol H2 (g waste)−1, while the wild type under the same conditions yielded 3.78 mmol H2 (g sugar)−1 and 0.25 mmol H2 (g waste)−1. In contrast, undiluted hydrolysates favored biomass accumulation over H2 production, with the highest biomass yield (0.3 g CDW L−1) obtained using the septuple mutant in 30 g L−1 SBP hydrolysate without glycerol. These findings highlight the potential of genetically optimized E. coli and optimized hydrolysate conditions to enhance the valorization of agro-industrial waste, supporting future advances in sustainable hydrogen bioeconomy and integrated waste biorefineries. Full article
Show Figures

Figure 1

14 pages, 515 KiB  
Article
Potential Use of Tropical and Subtropical Fruits By-Products in Pig Diet: In Vitro Two-Step Evaluation
by Dieu donné Kiatti, Francesco Serrapica, Nadia Musco, Rossella Di Palo and Serena Calabrò
Animals 2025, 15(10), 1454; https://doi.org/10.3390/ani15101454 - 17 May 2025
Viewed by 544
Abstract
Pineapple (Ananas comosus L.), cashew (Anacardium occidentale L.) and mango (Mangifera indica L.) are among the most cultivated plants in tropical and subtropical regions due to the high demand around the world. Following the harvesting and processing of pineapple, cashew [...] Read more.
Pineapple (Ananas comosus L.), cashew (Anacardium occidentale L.) and mango (Mangifera indica L.) are among the most cultivated plants in tropical and subtropical regions due to the high demand around the world. Following the harvesting and processing of pineapple, cashew and mango fruits, a huge amount of waste is generated, which is generally discarded into the environment, contributing to global pollution and water contamination. This study aims to propose alternative feeds for pigs by characterizing cashew, pineapple and mango fruit by-products through an in vitro two-step (gastro-intestinal and caecum) study to provide feeds not competing with humans and promoting eco-sustainable livestock. Ten by-products [i.e., pineapple peel and pomace; cashew nut testa, cashew (var. yellow) whole fruit and pomace; cashew (var. red) whole fruit and pomace; mango peel, kernel and testa] were sampled in Benin. The samples involved chemical analysis and an in vitro two-step digestion method (enzymatic + microbial digestibility). The results report a low dry matter (DM) content specifically in the pomace, peel and whole apple (13.0–27.2%), while higher lipids were observed for cashew nut testa and mango kernel (26.4 and 11.2% DM). The investigated by-products fall within the interval of referenced feeds for structural carbohydrates (NDF: 7.6–47.1% DM) and protein (6.21–51.2% DM), except mango by-products with a low content of protein (2.51–4.69% DM). The total dry matter digestibility, short-chain fatty acid and gas production were low for cashew by-products and stopped after 48 h of incubation. Pineapple pomace, cashew whole apple, pomace and testa can be considered as feedstuff in fattening pigs, presenting characteristics partly similar to beet pulp. Indeed, mango peel and kernel should be combined with a protein feed source to feed pigs. Presently, fruit by-products, such as those from cashew, pineapple and mango, are thrown into the environment, contributing to global warming and water pollution. These problems would be reduced by recycling these wastes in other fields, such as pig nutrition, creating a circular economy to provide feeds promoting eco-sustainable livestock. Indeed, in vivo studies are needed before proposing these by-products for pig diets. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
Show Figures

Figure 1

18 pages, 1626 KiB  
Review
Potential of Bio-Sourced Oligogalacturonides in Crop Protection
by Camille Carton, Maryline Magnin-Robert, Béatrice Randoux, Corinne Pau-Roblot and Anissa Lounès-Hadj Sahraoui
Molecules 2025, 30(6), 1392; https://doi.org/10.3390/molecules30061392 - 20 Mar 2025
Cited by 1 | Viewed by 803
Abstract
During plant development or interactions with pathogens, modifications of the plant cell wall occur. Among the enzymes involved, pectinases, particularly polygalacturonases (PGases), play a crucial role in the controlled hydrolysis of cell wall polysaccharides, leading to the formation of oligogalacturonides (OGs). These pectin-derived [...] Read more.
During plant development or interactions with pathogens, modifications of the plant cell wall occur. Among the enzymes involved, pectinases, particularly polygalacturonases (PGases), play a crucial role in the controlled hydrolysis of cell wall polysaccharides, leading to the formation of oligogalacturonides (OGs). These pectin-derived fragments act as key elicitors of plant defense responses, stimulating innate immunity and enhancing resistance to pathogens by modulating the expression of genes involved in immune responses and inducing the production of defense compounds. OGs are of particular interest for plant protection as a natural alternative to conventional phytosanitary products as they can be obtained through chemical, thermal, or enzymatic degradation of plant biomass. In a sustainable approach, agricultural by-products rich in pectin, such as citrus peels, apple pomace, or sugar beet pulp, offer an eco-friendly and cost-effective alternative for OG production. Thus, the current review aims to (i) update the state of the art about the different methods used to produce OGs, (ii) explore the potential of OGs as bio-based biocontrol molecules, and (iii) examine the relevance of new pectin sources for OG production. Full article
Show Figures

Figure 1

26 pages, 2742 KiB  
Article
High-Power Ultrasound and High-Voltage Electrical Discharge-Assisted Extractions of Bioactive Compounds from Sugar Beet (Beta vulgaris L.) Waste: Electron Spin Resonance and Optical Emission Spectroscopy Analysis
by Josipa Dukić, Anet Režek Jambrak, Jurica Jurec, Dalibor Merunka, Srećko Valić, Rafaela Radičić, Nikša Krstulović, Marinela Nutrizio and Igor Dubrović
Molecules 2025, 30(4), 796; https://doi.org/10.3390/molecules30040796 - 9 Feb 2025
Cited by 2 | Viewed by 1557
Abstract
To achieve sustainable extractions, this study examines the impact of different extraction methods to utilize waste from the sugar industry. In addition to conventional thermal extraction, the impact of high-power ultrasound (US) and high-voltage electrical discharge (HVED)-assisted extractions on the yield of bioactive [...] Read more.
To achieve sustainable extractions, this study examines the impact of different extraction methods to utilize waste from the sugar industry. In addition to conventional thermal extraction, the impact of high-power ultrasound (US) and high-voltage electrical discharge (HVED)-assisted extractions on the yield of bioactive compounds and the antioxidant capacity (AC) value of sugar beet leaf extracts was determined. US extraction proved to be an excellent method for extracting bioactive compounds, while HVED extraction proved to be an excellent method for extracting Vitexin. AC was measured both spectrophotometrically (DPPH and FRAP) and spectroscopically via electron spin resonance (ESR). The AC results correlate with each other, and the highest AC values were found in the US-treated samples with 25% ethanol solution as the extraction solvent. Characterization of the plasma via optical emission spectroscopy (OES) showed that neither the solvent nor the sample influenced the plasma spectra, only the gas used (nitrogen/argon). All of the obtained results provide an excellent basis for future research into the utilization of food waste and by-products. Full article
Show Figures

Graphical abstract

21 pages, 1976 KiB  
Article
Thermal Characteristics and Kinetics of the Thermal Degradation of Sugar Beet Waste Leaves and Pulp in Relation to Chemical Composition
by Sanja Ostojić, Darko Micić, Josipa Dukić, Iva Sabljak, Ayça Akyüz, Seda Ersus and Anet Režek Jambrak
Foods 2025, 14(2), 307; https://doi.org/10.3390/foods14020307 - 17 Jan 2025
Viewed by 1707
Abstract
Thermal characteristics of dried sugar beet pulp, leaves and leaf fractions obtained after extraction: fibrous leaf pulp and fibre rich leaf fraction, were investigated by differential scanning calorimetry and thermogravimetry. The sugar beet samples showed a similar thermal behaviour associated with a similar [...] Read more.
Thermal characteristics of dried sugar beet pulp, leaves and leaf fractions obtained after extraction: fibrous leaf pulp and fibre rich leaf fraction, were investigated by differential scanning calorimetry and thermogravimetry. The sugar beet samples showed a similar thermal behaviour associated with a similar composition. Two endotherms are found on the differential scanning calorimetry curves. First one in the temperature range 31–153 °C and the second from 150–160 °C. Thermal degradation kinetics was studied by thermogravimetric analysis. Four degradation stages were observed within the temperature range 25–700 °C. The kinetic parameters of the degradation, obtained by Ortega and Friedman non-isothermal isoconversional methods did not significantly differ between models: Ea-activation energy at a conversion degree 0.1–0.9 ranged 50–200 kJ/mol; lnA- the natural logarithm of the pre-exponential factor 8–48; kp1-thermal degradation rate constant at a conversion extent of 0.5 ranged of 0.19–2.55 min−1. Constant rate of degradation is highest for the sugar beet leaves kp1 (2.58–2.55 min−1), and kp2 (70.1–70.4 min−1). The results obtained are valuable for sugar beet leaf industrial processing. A positive environmental impact is achieved by transforming the waste into high-value food additives. Full article
Show Figures

Figure 1

18 pages, 3980 KiB  
Article
Efficient Production of Fuel Ethanol via the Simultaneous Use of Distillery Stillage Biomass and Beet Molasses
by Katarzyna Osmolak, Dawid Mikulski and Grzegorz Kłosowski
Energies 2025, 18(2), 312; https://doi.org/10.3390/en18020312 - 12 Jan 2025
Cited by 4 | Viewed by 1243
Abstract
The integrated production of ethanol fuel through the simultaneous use of various by-products and waste materials is an intriguing concept, as it maximizes the raw material potential while addressing the challenge of managing waste biomass from different technological processes. The efficient utilization of [...] Read more.
The integrated production of ethanol fuel through the simultaneous use of various by-products and waste materials is an intriguing concept, as it maximizes the raw material potential while addressing the challenge of managing waste biomass from different technological processes. The efficient utilization of lignocellulosic waste depends on employing a pretreatment method that enhances the susceptibility of structural polysaccharides to hydrolysis. The aim of the study was to assess the possibility of the simultaneous use of corn stillage biomass and beet molasses as raw materials for the production of ethanol fuel. The research focused on optimizing the process conditions for the acid pretreatment of stillage biomass and the enzymatic hydrolysis of cellulose and evaluating the effectiveness of two fermentation strategies: SHF (Separate Hydrolysis and Fermentation) and SSF (Simultaneous Saccharification and Fermentation). The highest hydrolysis susceptibility was observed in biomass pretreated with 2% v/v H3PO4 for 30 min at 121 °C. The maximum glucose concentration of about 12 g/L (hydrolysis efficiency about 35.5%) was achieved even with the lowest enzyme dose, i.e., 7.5 FPU per gram of biomass. The yeast also showed high fermentation activity in media prepared from stillage biomass and molasses, producing about 50 g/L of ethanol regardless of the fermentation strategy used. The complete fermentation of carbohydrates assimilated by yeast confirmed the complementarity of the two raw materials used to prepare fermentation media, emphasizing the high potential of the proposed technological solution for ethanol fuel production. Full article
(This article belongs to the Special Issue New Challenges in Lignocellulosic Biomass Conversion)
Show Figures

Figure 1

18 pages, 1879 KiB  
Article
Efficient Hydrolysis of Sugar Beet Pulp Using Novel Enzyme Complexes
by Maria I. Komarova, Margarita V. Semenova, Pavel V. Volkov, Igor A. Shashkov, Alexandra M. Rozhkova, Ivan N. Zorov, Sergei A. Kurzeev, Aidar D. Satrutdinov, Ekaterina A. Rubtsova and Arkady P. Sinitsyn
Agronomy 2025, 15(1), 101; https://doi.org/10.3390/agronomy15010101 - 1 Jan 2025
Cited by 1 | Viewed by 1100
Abstract
Sugar beet pulp is a byproduct of white sugar production, and it is quite significant in terms of volume. Every year, tens of millions of tons of beet pulp are produced around the world. However, only a fraction of it is currently used, [...] Read more.
Sugar beet pulp is a byproduct of white sugar production, and it is quite significant in terms of volume. Every year, tens of millions of tons of beet pulp are produced around the world. However, only a fraction of it is currently used, mainly as animal feed. The composition of beet pulp includes plant polysaccharides, such as cellulose, arabinan, and pectin. Through the process of enzymatic hydrolysis, these polysaccharides are converted into technical C6/C5 sugars, which can be further used as a substrate for the microbial synthesis of various substances, including biofuels, organic acids, and other green chemistry molecules. The current study was designed with a primary objective that focused on the development of a strain that had the potential for enhanced productivity and the capacity to produce enzymes suitable for beet pulp hydrolysis. The pelA and abfA genes, which encode pectin lyase and arabinofuranosidase, respectively, in the fungus Penicillium canescens (VKPM F-178), were cloned and successfully expressed in the recipient strain Penicillium verruculosum B1-537 (VKPM F-3972D). New recombinant strains were created using the expression system of the mycelial fungus P. verruculosum B1-537, which is capable of simultaneously producing pectin lyase and arabinofuranosidase, as well as homologous cellulases. The screening of strains for increased enzymatic activity towards citrus pectin, sugar beet branched arabinan, and microcrystalline cellulose revealed that a B4 clone of P. verruculosum exhibited the greatest potential in sugar beet pulp cake hydrolysis. This clone was selected as the basis for the creation of a new enzyme preparation with enhanced pectin lyase, arabinase, and cellulase activities. The component composition of the enzyme preparation was determined, and the results indicated that the enzyme content comprised approximately 11% pectin lyase, 40% arabinofuranosidase, and 40% cellulases. The primary products of the enzymatic hydrolysis of the unpretreated beet pulp cake were arabinose and glucose. The degree of arabinan and cellulose conversion was observed to be up to 50% and 80%, respectively, after a period of 48 to 72 h of hydrolysis. The new B4 preparation was observed to be highly efficacious in the hydrolysis of beet cake at elevated concentrations of solids (up to 300 g/L) within the reaction mixture. The newly developed strain, as a producer of pectin lyase, arabinofuranosidase, and cellulase complexes, has the potential to be utilized for the bioconversion of sugar beet processing wastes and for the efficient generation of highly concentrated solutions of technical sugars for further implementation in processes of microbial synthesis. Full article
Show Figures

Figure 1

19 pages, 1375 KiB  
Article
Assessment of the Possibility of Using Sugar Beet Pulp with Molasses as By-Product for Enriching Flour and Production of Bread with Pro-Health Properties
by Agnieszka Salamon, Anna Szafrańska, Andrzej Baryga, Anna Diowksz, Krystyna Szymczyk and Hanna Kowalska
Appl. Sci. 2024, 14(22), 10570; https://doi.org/10.3390/app142210570 - 16 Nov 2024
Cited by 1 | Viewed by 1527
Abstract
The decrease in bread consumption in the daily diet observed in recent years results from the growing awareness of consumers and the desire to promote a healthy lifestyle. The valorization of sugar by-products allows for the design of new food products intended for [...] Read more.
The decrease in bread consumption in the daily diet observed in recent years results from the growing awareness of consumers and the desire to promote a healthy lifestyle. The valorization of sugar by-products allows for the design of new food products intended for health-conscious consumers. The aim of this study was to assess the possibility of using sugar beet pulp (SBP), without and with molasses, in bakery recipes as part of a strategy promoting increased consumption of foods rich in bioactive compounds. The basic composition of SBP was examined, and wheat flour mixtures with their addition at 0, 1, 5, and 10% were prepared. The rheological properties of the dough with flour blend samples were determined using Mixolab®. The technological quality of the bread, its nutritional value, and its antioxidant potential were assessed. The research results indicate that fortifying bread up to 5% SBP allows for obtaining products of acceptable sensory and technological quality. The bread with 5% molasses SBP (mSBP) compared to the sample with SBP without molasses (umSBP) was characterized by greater bread volume and crumb moisture, a darker color of the crumb, a more appropriate color of the crust (golden-brown), more favorable, thin-walled pores, and a fluffier crumb. Moreover, the samples enriched with mSBP contained more total polyphenols (by approx. 40%) and showed higher antioxidant activity (by approx. 50%) than the bread with umSBP. Additionally, for bread samples with 5% or more SBP added, a nutritional claim could be made that they are a “source of fiber” (i.e., at least 3 g per 100 g of product). Full article
(This article belongs to the Special Issue Innovative Technology in Food Analysis and Processing)
Show Figures

Figure 1

27 pages, 2001 KiB  
Review
Upcycling of Food By-Products and Waste: Nonthermal Green Extractions and Life Cycle Assessment Approach
by Marinela Nutrizio, Josipa Dukić, Iva Sabljak, Aleksandra Samardžija, Vedran Biondić Fučkar, Ilija Djekić and Anet Režek Jambrak
Sustainability 2024, 16(21), 9143; https://doi.org/10.3390/su16219143 - 22 Oct 2024
Cited by 12 | Viewed by 5852
Abstract
Food loss and waste constitute a substantial threat to global food system sustainability, representing 38% of energy consumption in the supply chain. The 2030 Agenda for Sustainable Development highlights a vision integrating social, economic, and environmental pillars. Addressing environmental impact requires recycling (destruction [...] Read more.
Food loss and waste constitute a substantial threat to global food system sustainability, representing 38% of energy consumption in the supply chain. The 2030 Agenda for Sustainable Development highlights a vision integrating social, economic, and environmental pillars. Addressing environmental impact requires recycling (destruction for new creations) and upcycling (converting waste into valuable products). This review highlights nonthermal green extractions and sustainable techniques in upcycling raw materials such as olives, red beetroot, sugar beet, and coffee, which are widely used in the food industry. Nonthermal processing efficiently extracts bioactive compounds and utilizes waste. Key approaches for its valorization include life cycle assessment, environmental footprint analysis, energy efficiency strategies, digitalization, and sustainability considerations. However, challenges remain in calculating their environmental impact. Waste and by-product valorization from raw materials address disposal issues, offering economic and environmental benefits. Nonthermal techniques show optimistic opportunities in green extraction and sustainable upcycling. The focus is on raw materials including olives, red beetroot, sugar beet, and coffee byproducts, and possible product development. There are powerful connections offering industry tools for impactful sustainability management and guiding decisions on waste-to-value or ‘upcycling’ products. The review contributes to filling the gap in usage of nonthermal processing in upcycling of waste and by-products. Full article
Show Figures

Figure 1

19 pages, 2630 KiB  
Article
Encapsulation of Phenolic Compounds Extracted from Beet By-Products: Analysis of Physical and Chemical Properties
by María del Cisne Guamán-Balcázar, Magdalena Montero, Alejandro Celi, Antonio Montes, Ceferino Carrera, Clara Pereyra and Miguel Ángel Meneses
Foods 2024, 13(18), 2859; https://doi.org/10.3390/foods13182859 - 10 Sep 2024
Cited by 2 | Viewed by 1749
Abstract
Beet is a nutritious and health-promoting food with important bioactive compounds in its industrial by-products. The encapsulation of antioxidants from beet by-products has been proposed for valorization. For this, an ethanol–water extract was mixed with polyvinylpyrrolidone (PVP) (used as a carrier agent) and [...] Read more.
Beet is a nutritious and health-promoting food with important bioactive compounds in its industrial by-products. The encapsulation of antioxidants from beet by-products has been proposed for valorization. For this, an ethanol–water extract was mixed with polyvinylpyrrolidone (PVP) (used as a carrier agent) and then encapsulated. The encapsulation was performed by spray drying, where the effects of temperature (140–160 °C), extract input flow rate (10–30%), and extraction solvent (ethanol–water 50/50 v/v and ethanol) were evaluated for the total phenol content and the spray-drying yield. The yields obtained were between 60 and 89%, and total phenols were between 136 and 1026 mg gallic acid equivalents/g of encapsulated product. Both responses were affected (p < 0.05) by the extraction solvent. The optimal spray-drying conditions were determined by response surface methodology (RSM). The encapsulated product obtained at optimal conditions was characterized by infrared spectrometry, X-ray fluorescence, Ultra-High Performance Liquid Chromatography, and scanning electron microscopy analysis. The results show that the encapsulated product has a high content of total phenols and compounds such as betanin, isobetanin, and neobetanin. Considering the results of physicochemical properties and the bioactive compounds, the optimized encapsulated product could be applied in the food industry as a bioactive ingredient or natural colorant. However, the further investigation of alternative carrier agents needs to be performed to reduce caking. Full article
Show Figures

Figure 1

19 pages, 3447 KiB  
Article
Development of a Two-Stage Bioprocess for the Production of Bioethanol from the Acid Hydrolysate of Brewer’s Spent Grain
by Renata Vičević, Marko Božinović, Nikolina Zekić, Mario Novak, Dajana Kučić Grgić, Anita Šalić and Bruno Zelić
Energies 2024, 17(16), 3975; https://doi.org/10.3390/en17163975 - 11 Aug 2024
Cited by 2 | Viewed by 2300
Abstract
Bioethanol, an alcohol produced by microbial fermentation, is traditionally produced from sugar-rich plants such as sugar cane, sugar beet and maize. However, there is growing interest in the use of lignocellulose, an abundant and inexpensive renewable energy source, as a potential substitute for [...] Read more.
Bioethanol, an alcohol produced by microbial fermentation, is traditionally produced from sugar-rich plants such as sugar cane, sugar beet and maize. However, there is growing interest in the use of lignocellulose, an abundant and inexpensive renewable energy source, as a potential substitute for the production of biofuels and biochemicals. Yeast Saccharomyces cerevisiae, which is commonly used for ethanol fermentation, cannot cope with lignocellulose due to a lack of lignocellulolytic enzymes and the inefficient functioning of the pentose phosphate pathway. The aim of this research was to isolate yeasts that can efficiently produce bioethanol and valuable byproducts from both glucose and xylose in a two-stage fermentation process using brewer’s spent grains. This approach should maximize sugar utilization and improve the economic viability of bioethanol production while contributing to waste valorization and sustainability. Kluyveromyces marxianus and Candida krusei were identified and tested with different initial concentrations of glucose and xylose. The results showed that both yeasts produced bioethanol from glucose but were inefficient with xylose, yielding valuable compounds, such as 2,3-butanediol and glycerol instead. A two-stage fermentation was then carried out with weak acidic hydrolysate from brewer’s spent grain. In the first stage, glucose was fermented by S. cerevisiae to produce bioethanol; in the second stage, xylose was fermented by K. marxianus and C. krusei to obtain other valuable products. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

18 pages, 2864 KiB  
Article
Bioproduction of 2-Phenylethanol by Yarrowia lipolytica on Sugar Beet Molasses as a Low-Cost Substrate
by Sara Mitri, Nicolas Louka, Tristan Rossignol, Richard G. Maroun and Mohamed Koubaa
Fermentation 2024, 10(6), 290; https://doi.org/10.3390/fermentation10060290 - 30 May 2024
Cited by 6 | Viewed by 2092
Abstract
2-phenylethanol (2-PE) is a valuable aromatic alcohol with diverse applications in cosmetics, food, beverages, and pharmaceutical industries. Currently, 2-PE is produced either through chemical synthesis or by extraction from plant materials. However, both conventional production methods have their own limitations. Therefore, there is [...] Read more.
2-phenylethanol (2-PE) is a valuable aromatic alcohol with diverse applications in cosmetics, food, beverages, and pharmaceutical industries. Currently, 2-PE is produced either through chemical synthesis or by extraction from plant materials. However, both conventional production methods have their own limitations. Therefore, there is a need for more eco-friendly and cost-effective approaches to produce natural 2-PE. Biotechnological routes, particularly microbial fermentations, hold promise for natural 2-PE production, especially when using low-cost substrates. In this study, 2-PE was produced by de novo synthesis via the shikimate pathway, using the yeast Yarrowia lipolytica in a medium composed of sugar beet molasses (SBM) and yeast extract (YE) as carbon and nitrogen sources, respectively. A genetically engineered strain was generated, in which the SUC2 gene was transformed, expressing the invertase enzyme, enabling Y. lipolytica to efficiently utilize SBM as a cost-effective substrate. A central composite design allowed for the optimization of the concentrations of the carbon and nitrogen sources, resulting in approximately 0.71 g(2-PE)/L(culture medium). The results obtained highlight the potential of utilizing SBM as a low-cost substrate for 2-PE production, advancing biotechnological approaches in fragrance synthesis. Full article
Show Figures

Figure 1

Back to TopTop