Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = beer distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1119 KB  
Article
Assessing Sustainability Trade-Offs in Craft Beer Production Through Life Cycle and Costing Analysis Scenarios
by Shini Ooyama, Yuna Seo and Koichi Maesako
Sustainability 2025, 17(24), 11003; https://doi.org/10.3390/su172411003 - 9 Dec 2025
Viewed by 184
Abstract
This study applies integrated LCA–LCC to 1 L of bottled beer at a representative small Japanese brewery using 2024 operational data. Following ISO 14040/44, the cradle-to-gate boundary covers raw materials (excluding agricultural cultivation while including transport and preprocessing), brewing, packaging, and thermal sterilization. [...] Read more.
This study applies integrated LCA–LCC to 1 L of bottled beer at a representative small Japanese brewery using 2024 operational data. Following ISO 14040/44, the cradle-to-gate boundary covers raw materials (excluding agricultural cultivation while including transport and preprocessing), brewing, packaging, and thermal sterilization. The baseline global warming impact is 0.52 kg CO2e/L and the cost is JPY 487/L, with single-use glass and labor identified as dominant hotspots. As beer is produced from malt, hops, yeast, and water, this study focuses on how alternative production strategies mitigate sustainability hotspots within this process. Three alternative production scenarios were evaluated within this integrated LCA–LCC model. Scenario 1 (local rice substitution) replaces 30% of the fermentable extract from imported malt with domestically grown rice, changing only ingredient transport and preprocessing within the truncated cradle-to-gate boundary (crop cultivation remains excluded), and yields 0.55 kg CO2e/L and JPY 492/L, i.e., a slightly higher global warming impact and cost than the baseline. Scenario 2 (direct sales expansion) assumes that 50% of the beer is sold on site via draft, thereby reducing single-use glass bottles and fuel for pasteurization and achieving 0.29 kg CO2e/L (−44%) and JPY 435/L (−11%) in the deterministic model, the best combined environmental and economic performance among the modeled options. Scenario 3 (joint logistics) models cooperative brewing and shared distribution, which improve labor efficiency and modestly reduce transport intensity, delivering 399 JPY/L in the deterministic model; however, Monte Carlo analysis yields a higher expected cost and indicates that these cost savings are not robust. One-way sensitivity analysis identified packaging and labor as the dominant drivers of both environmental and economic performance, while Monte Carlo simulation confirmed the relative insignificance of electricity-related parameters and reinforced the comparative robustness of Scenario 2. Together, these results highlight the most effective leverage points for a sustainable transition in Japan’s craft beer sector, offering the greatest leverage for a more sustainable transition in Japan’s craft brewing sector. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

14 pages, 3213 KB  
Article
Beyond Fresnel Wave Surfaces: Theory of Off-Shell Photonic Density of States and Near-Fields in Isotropy-Broken Materials with Loss or Gain
by Maxim Durach and David Keene
Photonics 2025, 12(10), 1032; https://doi.org/10.3390/photonics12101032 - 17 Oct 2025
Viewed by 460
Abstract
Fresnel wave surfaces, or isofrequency light shells, provide a powerful framework for describing electromagnetic wave propagation in anisotropic media, yet their applicability is restricted to reciprocal, lossless materials and far-field radiation. This paper extends the concept by incorporating near-field effects and non-Hermitian responses [...] Read more.
Fresnel wave surfaces, or isofrequency light shells, provide a powerful framework for describing electromagnetic wave propagation in anisotropic media, yet their applicability is restricted to reciprocal, lossless materials and far-field radiation. This paper extends the concept by incorporating near-field effects and non-Hermitian responses arising in media with loss, gain, or non-reciprocity. Using the Om-potential approach to macroscopic electromagnetism, we reinterpret near fields as off-shell electromagnetic modes, in analogy with off-shell states in quantum field theory. Formally, both QFT off-shell states and electromagnetic near-field modes lie away from the dispersion shell; physically, however, wavefunctions of fundamental particles admit no external sources (virtual contributions live only inside propagators), whereas macroscopic electromagnetic near-fields are intrinsically source-generated by charges, currents, and boundaries and are therefore directly measurable—for example via near-field probes and momentum-resolved imaging—making “off-shell” language more natural and operational in our setting. We show that photonic density of states (PDOS) distributions near Fresnel surfaces acquire Lorentzian broadening in non-reciprocal media, directly linking this effect to the Beer–Bouguer–Lambert law of exponential attenuation or amplification. Furthermore, we demonstrate how Abraham and Minkowski momenta, locked to light shells in the far field, naturally shift to characterize source structures in the near-field regime. This unified treatment bridges the gap between sources and radiation, on-shell and off-shell modes, and reciprocal and non-reciprocal responses. The framework provides both fundamental insight into structured light and practical tools for the design of emitters and metamaterial platforms relevant to emerging technologies such as 6G communications, photonic density-of-states engineering, and non-Hermitian photonics. Full article
Show Figures

Figure 1

37 pages, 3823 KB  
Article
Development and Validation of a Consumer-Oriented Sensory Evaluation Scale for Pale Lager Beer
by Yiyuan Chen, Ruiyang Yin, Liyun Guo, Dongrui Zhao and Baoguo Sun
Foods 2025, 14(16), 2834; https://doi.org/10.3390/foods14162834 - 15 Aug 2025
Cited by 2 | Viewed by 1419
Abstract
Pale lager dominates global beer markets. However, rising living standards and changing consumer expectations have reshaped sensory preferences, highlighting the importance of understanding consumers’ true sensory priorities. In this study, a twenty-eight-item questionnaire, refined through multiple rounds of optimization, was distributed across China [...] Read more.
Pale lager dominates global beer markets. However, rising living standards and changing consumer expectations have reshaped sensory preferences, highlighting the importance of understanding consumers’ true sensory priorities. In this study, a twenty-eight-item questionnaire, refined through multiple rounds of optimization, was distributed across China and yielded 1837 valid responses. Spearman correlation analysis and partial least-squares regressions showed that educational background and spending willingness exerted the strongest independent effects on sensory priorities. A hybrid analytic hierarchy process–entropy weight method–Delphi procedure was then applied to quantify sensory attribute importance. Results indicated that drinking sensation (30.92%) emerged as the leading driver of pale lager choice, followed by taste (26.60%), aroma (24.77%), and appearance (17.71%), confirming a flavor-led and experience-oriented preference structure. Weighting patterns differed across drinking-frequency cohorts: consumers moved from reliance on overall mouthfeel, through heightened sensitivity to negative attributes, to an eventual focus on subtle hedonic details. Based on these findings, a new sensory evaluation scale was developed and validated against consumer preference rankings, showing significantly stronger alignment with consumer preferences (ρ = 0.800; τ = 0.667) than the traditional scale. The findings supply actionable metrics and decision tools for breweries, supporting applications in product development, quality monitoring, and targeted marketing. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

19 pages, 11648 KB  
Article
Edge Effects on the Spatial Distribution and Diversity of Drosophilidae (Diptera) Assemblages in Deciduous Forests of Central European Russia
by Nikolai G. Gornostaev, Alexander B. Ruchin, Oleg E. Lazebny, Alex M. Kulikov and Mikhail N. Esin
Insects 2025, 16(8), 762; https://doi.org/10.3390/insects16080762 - 24 Jul 2025
Cited by 1 | Viewed by 913
Abstract
In the forest ecosystems of Central European Russia, the influence of forest edges on the spatial distribution of Drosophilidae was studied for the first time. The research was conducted during the period of 2021–2022 in the Republic of Mordovia. Beer traps baited with [...] Read more.
In the forest ecosystems of Central European Russia, the influence of forest edges on the spatial distribution of Drosophilidae was studied for the first time. The research was conducted during the period of 2021–2022 in the Republic of Mordovia. Beer traps baited with fermented beer and sugar were used to collect Drosophilidae. Two study plots were selected, differing in their forest edges, tree stands, and adjacent open ecosystems. In both cases, the forest directly bordered an open ecosystem. Edges serve as transitional biotopes, where both forest and meadow (open area) faunas coexist. Knowing that many drosophilid species prefer forest habitats, we designated forest interior sites as control points. Traps were set at heights of 1.5 m (lower) and 7.5 m (upper) on trees. A total of 936 specimens representing 27 species were collected. Nine species were common across all traps, while ten species were recorded only once. At the forest edges, 23 species were captured across both heights, compared to 19 species in the forest interiors. However, the total abundance at the forest edges was 370 specimens, while it was 1.5 times higher in the forest interiors. Both abundance and species richness varied between plots. Margalef’s index was higher at the forest edges than in the forest interiors, particularly at 1.5 m height at the edge and at 7.5 m height in the forest interior. Shannon and Simpson indices showed minimal variation across traps at different horizontal and vertical positions. The highest species diversity was observed among xylosaprobionts (9 species) and mycetophages (8 species). All ecological groups were represented at the forest edges, whereas only four groups were recorded in the forest interiors, with the phytosaprophagous species Scaptomyza pallida being absent. In general, both species richness and drosophilid abundance increased in the lower strata, both at the forest edge and within the interior. Using the R package Indicspecies, we identified Gitona distigma as an indicator species for the forest edge and Scaptodrosophila rufifrons as an indicator for the forest interior in the lower tier for both plots. In addition, Drosophila testacea, D. phalerata, and Phortica semivirgo were found to be indicator species for the lower tier in both plots, while Leucophenga quinquemaculata was identified as an indicator species for the upper tier at the second plot. Full article
Show Figures

Figure 1

16 pages, 1287 KB  
Data Descriptor
Biodiversity of Scuttle Flies (Diptera: Phoridae) of Interfluves of the Moksha and Sura Rivers (European Russia)
by Bernd Grundmann, Alexander B. Ruchin, Mikhail N. Esin and Evgeniy A. Lobachev
Diversity 2025, 17(8), 502; https://doi.org/10.3390/d17080502 - 22 Jul 2025
Viewed by 926
Abstract
(1) Background: Phoridae is a relatively large and understudied family of Diptera. Species within this family occupy diverse ecological niches across a wide range of habitats. (2) Methods: The dataset is based on Phoridae specimens collected in the Republic of Mordovia (European Russia). [...] Read more.
(1) Background: Phoridae is a relatively large and understudied family of Diptera. Species within this family occupy diverse ecological niches across a wide range of habitats. (2) Methods: The dataset is based on Phoridae specimens collected in the Republic of Mordovia (European Russia). Sampling was conducted from 2019 to 2024 using six collection methods: hand-held sweep nets, pitfall traps, beer traps, pan traps, Malaise traps, and window traps. (3) Results: The dataset includes 4713 occurrence records from the Republic of Mordovia, comprising a total of 15,701 Phoridae specimens. It provides data on 271 species. The highest species richness was recorded in the Mordovia State Nature Reserve (226 species, 83.4%). Fewer species were documented in the fauna of the National Park “Smolny” (177 species, 65.3%), with comparable diversity observed in other parts of the region. Ten species were dominant in the dataset (Megaselia pusilla, Triphleba opaca, Megaselia angusta agg., Diplonevra funebris, Megaselia brevicostalis, Megaselia plurispinulosa, Megaselia minuta, Megaselia lutea, Megaselia lactipennis, and Megaselia flavicans). A total of 139 species were represented by fewer than ten specimens each. Seasonal dynamics varied across habitats: in the Mordovia State Nature Reserve, both species richness and specimen abundance were already high in April, peaking in June. In contrast, in the National Park “Smolny”, peak values were observed in August. (4) Conclusions: We have listed 151 new recorded species from Russia in this list. Currently, the Phoridae fauna of the Republic of Mordovia is among the best-studied in Russia. The distribution of many species has become clearer, with the Mordovia State Nature Reserve demonstrating the highest biodiversity compared to other areas of the region. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

24 pages, 1883 KB  
Article
An Integrated Life Cycle Assessment of a Hemp-Based Craft Beer: A Case Study from Italy
by Marco Ruggeri, Giuliana Vinci, Marco Savastano and Lucia Maddaloni
Sustainability 2025, 17(13), 6232; https://doi.org/10.3390/su17136232 - 7 Jul 2025
Viewed by 1231
Abstract
With over 180 million tons produced annually and a global market exceeding 500 billion dollars, beer is one of the most widely consumed beverages in the world, thanks to its broad variety of styles, traditions, ingredients, and brewing techniques. However, behind this widespread [...] Read more.
With over 180 million tons produced annually and a global market exceeding 500 billion dollars, beer is one of the most widely consumed beverages in the world, thanks to its broad variety of styles, traditions, ingredients, and brewing techniques. However, behind this widespread popularity lies a potentially impactful production chain, whose environmental impacts remain underexplored, particularly within the craft segment. This research evaluates the sustainability of a hemp-based craft beer produced in the Lazio region (Italy) using an integrated approach that combines life cycle assessment with environmental impact monetization. The results indicate that the main impacts in beer production are related to global warming potential (0.916 kg CO2 eq/L), terrestrial ecotoxicity (0.404 kg 1.4-DCB eq/L), land use (0.841 m2a crop eq/L), and fossil resource scarcity (0.211 kg oil eq/L), primarily due to malt production and hop transportation. Packaging analysis revealed that including environmental costs, aluminum cans may add an additional environmental cost of €0.80–1.60 per unit, while glass bottles, despite their weight, incur a lower additional cost. For a beer priced at €3.50, this would translate to a real cost of €4.30–5.10, reflecting a 22–45% increase. Improving sustainability in the brewing sector requires strategic actions, such as careful supplier selection and appropriate packaging choices. Overall, sustainability in brewing emerges as a balance between production needs, distribution impacts, and systemic decisions. Full article
(This article belongs to the Special Issue Sustainable Development in Food Quality and Safety)
Show Figures

Figure 1

11 pages, 301 KB  
Article
AI as Sub-Symbolic Systems: Understanding the Role of AI in Higher Education Governance
by Xiaomin Li, David A. Turner and Baocun Liu
Educ. Sci. 2025, 15(7), 866; https://doi.org/10.3390/educsci15070866 - 6 Jul 2025
Viewed by 971
Abstract
This paper develops the argument that, in the application of AI to improve the system of governance for higher education, machine learning will be more effective in some areas than others. To make that assertion more systematic, a classificatory taxonomy of types of [...] Read more.
This paper develops the argument that, in the application of AI to improve the system of governance for higher education, machine learning will be more effective in some areas than others. To make that assertion more systematic, a classificatory taxonomy of types of decisions is necessary. This paper draws upon the classification of decision processes as either symbolic or sub-symbolic. Symbolic approaches focus on whole system design and emphasise logical coherence across sub-systems, while sub-symbolic approaches emphasise localised decision making with distributed engagement, at the expense of overall coherence. AI, especially generative AI, is argued to be best suited to working at the sub-symbolic level, although there are exceptions when discriminative AI systems are designed symbolically. The paper then uses Beer’s Viable System Model to identify whether the decisions necessary for viability are best approached symbolically or sub-symbolically. The need for leadership to recognise when a sub-symbolic system is failing and requires symbolic intervention is a specific case where human intervention may be necessary to override the conclusions of an AI system. The paper presents an initial analysis of which types of AI would support which functions of governance best, and explains why ultimate control must always rest with human leaders. Full article
(This article belongs to the Special Issue Higher Education Governance and Leadership in the Digital Era)
Show Figures

Figure 1

27 pages, 4066 KB  
Article
Brewers’ Spent Grain from Different Types of Malt: A Comprehensive Evaluation of Appearance, Structure, Chemical Composition, Antimicrobial Activity, and Volatile Emissions
by Aleksander Hejna, Joanna Aniśko-Michalak, Katarzyna Skórczewska, Mateusz Barczewski, Paweł Sulima, Jerzy Andrzej Przyborowski, Hubert Cieśliński and Mariusz Marć
Molecules 2025, 30(13), 2809; https://doi.org/10.3390/molecules30132809 - 30 Jun 2025
Cited by 2 | Viewed by 1449
Abstract
Beer is the third most popular beverage in the world, and its production is distributed uniformly between the biggest continents. Considering the environmental aspects, the utilization of brewing by-products, mainly brewers’ spent grain (BSG), is essential on a global scale. The beer revolution, [...] Read more.
Beer is the third most popular beverage in the world, and its production is distributed uniformly between the biggest continents. Considering the environmental aspects, the utilization of brewing by-products, mainly brewers’ spent grain (BSG), is essential on a global scale. The beer revolution, lasting over a few decades, significantly diversified the beer market in terms of styles, and therefore, also its by-products, which should be characterized appropriately prior to further application. Herein, the presented study investigated the unprecedented number of 22 different variants of brewers’ spent grain, yielded from the production of various beer styles, enabling their proper comparison. A comprehensive by-product characterization revealed an almost linear relationship (Pearson correlation coefficients exceeding 0.9) between the color parameters (L*, a*, browning index) of beer and generated spent grain, enabling a prediction of BSG appearance based on beer color. Applying wheat or rye malts increased the content of extractives by over 40%, reducing cellulose content by as much as 45%. Thermal treatments of malts (kilning or smoking) also reduced extractive content and limited antioxidant activity, often by over 30%. A lack of husk for wheat or rye reduced the crystallinity index of spent grain by 21–41%, while the roasting of barley efficiently decomposed the less stable compounds and maintained the cellulose crystalline structure. All the analyzed BSG samples were characterized by low volatile emissions and very limited antimicrobial activity. Therefore, their harmfulness to human health and the environment is limited, broadening their potential application range. Full article
(This article belongs to the Special Issue Re-Valorization of Waste and Food Co-Products)
Show Figures

Graphical abstract

14 pages, 7661 KB  
Article
Single Scattering Dynamics of Vector Bessel–Gaussian Beams in Winter Haze Conditions
by Yixiang Yang, Yuancong Cao, Wenjie Jiang, Lixin Guo and Mingjian Cheng
Photonics 2025, 12(3), 182; https://doi.org/10.3390/photonics12030182 - 22 Feb 2025
Viewed by 1379
Abstract
This study investigates the scattering dynamics of vector Bessel–Gaussian (BG) beams in winter haze environments, with a particular emphasis on the influence of ice-coated haze particles on light propagation. Employing the Generalized Lorenz–Mie Theory (GLMT), we analyze the scattering coefficients of particles transitioning [...] Read more.
This study investigates the scattering dynamics of vector Bessel–Gaussian (BG) beams in winter haze environments, with a particular emphasis on the influence of ice-coated haze particles on light propagation. Employing the Generalized Lorenz–Mie Theory (GLMT), we analyze the scattering coefficients of particles transitioning from water to ice coatings under varying atmospheric conditions. Our results demonstrate that the presence of ice coatings significantly alters the scattering and extinction efficiencies of BG beams, revealing distinct differences compared to particles coated with water. Furthermore, the study examines the role of Orbital Angular Momentum (OAM) modes in shaping scattering behavior. We show that higher OAM modes, characterized by broader energy distributions and larger beam spot sizes, induce weaker localized interactions with individual particles, leading to diminished scattering and attenuation. In contrast, lower OAM modes, with energy concentrated in smaller regions, exhibit stronger interactions with particles, thereby enhancing scattering and attenuation. These findings align with the Beer–Lambert law in the single scattering regime, where beam intensity attenuation is influenced by the spatial distribution of radiation, while overall power attenuation follows the standard exponential decay with respect to propagation distance. The transmission attenuation of BG beams through haze-laden atmospheres is further explored, emphasizing the critical roles of particle concentration and humidity. This study provides valuable insights into the interactions between vector BG beams and atmospheric haze, advancing the understanding of optical communication and environmental monitoring in hazy conditions. Full article
Show Figures

Figure 1

22 pages, 25548 KB  
Article
Improvement of FAPAR Estimation Under the Presence of Non-Green Vegetation Considering Fractional Vegetation Coverage
by Rui Li, Baolin Li, Yecheng Yuan, Wei Liu, Jie Zhu, Jiali Qi, Haijiang Liu, Guangwen Ma, Yuhao Jiang, Ying Li and Qiuyuan Tan
Remote Sens. 2025, 17(4), 603; https://doi.org/10.3390/rs17040603 - 10 Feb 2025
Cited by 2 | Viewed by 1316
Abstract
The homogeneous turbid medium assumption inherent to the Beer-Lambert’s law can lead to a reduction in the shading effect between leaves when non-green vegetation canopies are present, resulting in an overestimation of the fraction of absorbed photosynthetically active radiation (FAPAR). This paper proposed [...] Read more.
The homogeneous turbid medium assumption inherent to the Beer-Lambert’s law can lead to a reduction in the shading effect between leaves when non-green vegetation canopies are present, resulting in an overestimation of the fraction of absorbed photosynthetically active radiation (FAPAR). This paper proposed a method to improve the FAPAR estimation (FAPARFVC) based on Beer-Lambert’s law by incorporating fractional vegetation coverage (FVC). Initially, the canopy-scale leaf area index (LAI) of the green canopy distribution area within the pixel (sample site) was determined based on the FVC. Subsequently, the canopy-scale FAPAR was calculated within the green canopy distribution area, adhering to the assumption of a homogeneous turbid medium in the Beer-Lambert’s law. Finally, the average FAPAR across the pixel (sample site) was calculated based on the FVC. This paper conducted a case study using measured data from the BigFoot Project and grass savanna in Senegal, West Africa, as well as Moderate Resolution Imaging Spectroradiometer (MODIS) LAI/FPAR products. The results indicated that the FAPARFVC approach demonstrated superior accuracy compared to the FAPAR determined by MODIS LAI, according to the Beer-Lambert’s law (FAPARLAI) and MODIS FPAR products (FAPARMOD). The mean absolute percentage error of FAPARFVC was 48.2%, which is 25.6% and 52.1% lower than that of FAPARLAI and FAPARMOD, respectively. The mean percentage error of FAPARFVC was 16.8%, which was 71.6% and 73.4% lower than that of FAPARLAI and FAPARMOD, respectively. The improvements in accuracy and the decrease in overestimation for FAPARFVC became more pronounced with increasing FVC compared to FAPARLAI. The findings suggested that the FAPARFVC method enhanced the accuracy of FAPAR estimation under the presence of non-green vegetation canopies. The method can be extended to regional scale FAPAR and gross primary production (GPP) estimations, thereby providing more accurate inputs for understanding its tempo-spatial patterns and drivers. Full article
Show Figures

Figure 1

23 pages, 5018 KB  
Data Descriptor
Biology of Blattodea and Dermaptera in the Continental Biogeographical Region and Adjacent Areas of European Russia
by Victor V. Aleksanov, Alexander B. Ruchin, Nikolai V. Shulaev, Inessa O. Karmazina, Sergey V. Lukiyanov, Evgeniy A. Lobachev, Anna M. Nikolaeva and Mikhail N. Esin
Diversity 2025, 17(1), 66; https://doi.org/10.3390/d17010066 - 18 Jan 2025
Cited by 1 | Viewed by 1361
Abstract
(1) Background: Blattodea and Dermaptera in the temperate forest zone include a limited number of species, some of which are widely distributed and common. However, digital data on their biology remains insufficient. (2) Methods: The surveyed area extends from Kaluga Oblast to Tatarstan [...] Read more.
(1) Background: Blattodea and Dermaptera in the temperate forest zone include a limited number of species, some of which are widely distributed and common. However, digital data on their biology remains insufficient. (2) Methods: The surveyed area extends from Kaluga Oblast to Tatarstan and from Vladimir Oblast to Voronezh Oblast. Insects were sampled from 736 plots using various methods, including pitfall traps, beer traps, window traps, pan traps, and sweep nets. (3) Results: The dataset contains 2149 occurrences comprising 18,362 specimens belonging to 5 species of Blattodea and 4 species of Dermaptera. For most occurrences, we recorded the developmental stage (nymph or adult) and the sex (male or female for adults) of the specimens. (4) Conclusions: Three non-synanthropic species are widely distributed and common: Ectobius lapponicus, E. sylvestris, and Forficula auricularia. Ectobius sylvestris is characterized as a true forest species, while E. lapponicus inhabits both forest and grassland habitats. In contrast, F. auricularia is associated with gardens, urban habitats, and some meadows. Ectobius sylvestris exhibits a more pronounced sexual dimorphism concerning the effectiveness of different sampling methods compared to E. lapponicus. Seasonal dynamics of cockroaches and earwigs are described and discussed. Full article
Show Figures

Figure 1

18 pages, 1651 KB  
Article
Fusarium Head Blight in Argentina, a Profile of Produced Mycotoxins and a Biocontrol Strategy in Barley During Micro-Malting Process
by María Silvina Alaniz-Zanon, Marianela Bossa, Lorenzo Antonio Rosales Cavaglieri, Juan Manuel Palazzini, Michael Sulyok, Sofía Noemí Chulze and María Laura Chiotta
Toxins 2025, 17(1), 39; https://doi.org/10.3390/toxins17010039 - 15 Jan 2025
Cited by 3 | Viewed by 2112
Abstract
Barley (Hordeum vulgare L.) is the second winter crop in Argentina. In the national market, grains are mainly destined to produce malt for beer manufacture. Fusarium species are common, causing Fusarium Head Blight (FHB) in barley, which generates yield and quality losses, [...] Read more.
Barley (Hordeum vulgare L.) is the second winter crop in Argentina. In the national market, grains are mainly destined to produce malt for beer manufacture. Fusarium species are common, causing Fusarium Head Blight (FHB) in barley, which generates yield and quality losses, as well as mycotoxin occurrence. The aims of this study were to determine (a) the incidence of the main species causing FHB in different locations of the barley-growing region of Argentina, (b) their ability to produce mycotoxins, and (c) the levels of deoxynivalenol (DON) and nivalenol (NIV) natural occurrence in grains at the harvest stage. Additionally, a strain of Bacillus velezensis was studied as a biocontrol agent in order to control F. graminearum sensu stricto and mycotoxin accumulation during the malting process, with the final objective being to reduce DON contamination in the beer manufacture chain. Fusarium graminearum ss was the most prevalent species causing FHB, with Fusarium poae being less distributed. Both species produced several mycotoxins, including NX-2 and NX-3, which is the first report of their production by strains isolated from barley in Argentina. Deoxynivalenol contamination was found in 95% of barley grains during the 2016 harvest season (mean: 0.4 mg/kg), while NIV contamination was present in 29% of samples (mean: 0.49 mg/kg). In the 2017 harvest season, 53.6% of grains were contaminated with DON (mean: 0.42 mg/kg), and 21% with NIV (mean: 0.8 mg/kg). Quantification of F. graminearum ss by real-time PCR during the micro-malting process showed that application of the biocontrol agent before the germination stage was the most effective treatment, with a 45% reduction in fungal DNA levels. Reduction in DON contamination (69.3–100%) in artificially infected grains with F. graminearum ss, was also observed. The present work contributes to the knowledge of FHB in Argentina and to the development of a strategy to control this disease and mycotoxin contamination in barley, promoting at the same time food security. Full article
Show Figures

Figure 1

18 pages, 1027 KB  
Article
Effect of Physical Separation with Ultrasound Application on Brewers’ Spent Grain to Obtain Powders for Potential Application in Foodstuffs
by Camila Belén Ruíz Suarez, Heidi Laura Schalchli Sáez, Priscilla Siqueira Melo, Carolina de Souza Moreira, Alan Giovanini de Oliveira Sartori, Severino Matias de Alencar and Erick Sigisfredo Scheuermann Salinas
Foods 2024, 13(18), 3000; https://doi.org/10.3390/foods13183000 - 22 Sep 2024
Cited by 2 | Viewed by 2417
Abstract
Brewers’ spent grain (BSG) is the primary by-product of beer production, and its potential use in food products is largely dependent on its processing, given its moisture content of up to 80%. This study aimed to evaluate the effects of physical separation with [...] Read more.
Brewers’ spent grain (BSG) is the primary by-product of beer production, and its potential use in food products is largely dependent on its processing, given its moisture content of up to 80%. This study aimed to evaluate the effects of physical separation with ultrasound application on the color, total phenolic content (TPC), antioxidant activity, proximate composition, total dietary fibers, and particle size distribution of BSG powders. Wet BSG (W) was subjected to two processes: one without ultrasound (A) and one with ultrasound (B). Both processes included pressing, convective air-drying, sieving, fraction separation (A1 and B1 as coarse with particles ≥ 2.36 mm; A2 and B2 as fine with particles < 2.36 mm), and milling. The total color difference compared to W increased through both processes, ranging from 1.1 (B1 vs. A1) to 5.7 (B1 vs. A2). There was no significant difference in TPC, but process B powders, particularly B2, showed lower antioxidant activity against ABTS•+, likely due to the release of antioxidant compounds into the liquid fraction during pressing after ultrasound treatment. Nonetheless, process B powders exhibited a higher content of soluble dietary fibers. In conclusion, ultrasound application shows potential for further extraction of soluble fibers. However, process A might be more practical for industrial and craft brewers. Further studies on the use of the resulting BSG powders as food ingredients are recommended. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

13 pages, 35262 KB  
Article
Distribution and Biology of Protaetia fieberi (Coleoptera, Scarabaeidae)—Is Protection Status Required?
by Leonid V. Egorov, Alexander B. Ruchin and Anatoliy A. Khapugin
Insects 2024, 15(9), 695; https://doi.org/10.3390/insects15090695 - 13 Sep 2024
Cited by 1 | Viewed by 1291
Abstract
Studies on saproxylic species of Coleoptera have garnered significant attention due to the rarity of some of them. To investigate the distribution and biology of Protaetia fieberi (Kraatz, 1880) (Scarabaeidae: Cetoniinae) in European Russia, we analyzed data from 16 regions collected between 2018 [...] Read more.
Studies on saproxylic species of Coleoptera have garnered significant attention due to the rarity of some of them. To investigate the distribution and biology of Protaetia fieberi (Kraatz, 1880) (Scarabaeidae: Cetoniinae) in European Russia, we analyzed data from 16 regions collected between 2018 and 2024. This species has been reliably recorded in 26 regions. We describe the species’ distribution area boundaries and discuss limiting factors that inhibit its spread to the north, south, and southeast of European Russia. The primary limiting factor is the lack of suitable biotopes. Within its distribution, Protaetia fieberi prefers deciduous and mixed forests of various types. These habitats include both old-growth forest ecosystems and secondary forests that have regenerated following logging. The species also inhabits man-made forest ecosystems, such as field protection forest belts, old parks, and gardens. In forest ecosystems, Protaetia fieberi tends to occupy the upper levels and is rarely found on the ground layer. Conversely, in open areas such as glades, the species is more commonly found at ground level. This distribution pattern is linked to the adults’ feeding preferences, which include consuming sap on tree trunks in forests and feeding on flowering plants in open ecosystems. The seasonal activity of Protaetia fieberi peaks from the third decade of June to the second decade of July. It is hypothesized that the perceived rarity of Protaetia fieberi in research samples is due to the specific baiting methods used, with beer traps being the most effective. The status of the species is re-evaluated in light of new data, suggesting that Protaetia fieberi is common rather than rare in European Russia. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

12 pages, 2926 KB  
Article
Ecology of Some Panorpa (Mecoptera, Panorpidae) Species from Several Regions of Russia
by Libor Dvořák, Alexander B. Ruchin, Viktor V. Aleksanov, Leonid V. Egorov, Mikhail N. Esin, Sergei V. Lukiyanov, Evgeniy A. Lobachev and Alexander I. Fayzulin
Forests 2024, 15(9), 1608; https://doi.org/10.3390/f15091608 - 12 Sep 2024
Cited by 1 | Viewed by 1354
Abstract
Our study focuses on the investigation of the ecological aspects (seasonal dynamics, height distribution, and preference of biotopes) of six species within the genus Panorpa (P. alpina Rambur, 1842, P. cognata Rambur, 1842, P. communis Linnaeus, 1758, P. germanica Linnaeus, 1758, P. [...] Read more.
Our study focuses on the investigation of the ecological aspects (seasonal dynamics, height distribution, and preference of biotopes) of six species within the genus Panorpa (P. alpina Rambur, 1842, P. cognata Rambur, 1842, P. communis Linnaeus, 1758, P. germanica Linnaeus, 1758, P. hybrida MacLachlan, 1882, and P. vulgaris Imhoff & Labram, 1845). The observed seasonal dynamics predominantly display a monovoltine nature. P. communis was active from the early days of May, with individuals persisting until the beginning of October. Conversely, P. vulgaris exhibits activity from the third decade of May to mid-September. P. hybrida manifests within a concise timeframe, observed from late May to late July. P. cognata demonstrates activity commencing in early May, with individuals observed until the end of September. Within forest environments, the highest population density of all species is concentrated at a height of 1.5 m above ground level, whereas the minimum population density is recorded at a height of 12 m above ground level. P. vulgaris demonstrates comparable abundance across heights ranging from 1.5 to 7.5 m, whereas P. hybrida exhibits uniform distribution solely at heights of 1.5 and 3.5 m. Furthermore, the abundance of P. communis surpasses that at other heights when observed at the height of 1.5 m. Panorpa specimens exhibit an absence in open ecosystems at heights of 8 and 10 m. The peak of population density for all species is consistently identified at heights of 2 and 4 m. The application of six diverse entomological methodologies leads to optimal outcomes. Our investigations reveal that P. communis, P. vulgaris, and P. hybrida display greater attraction to beer traps, while P. cognata exhibits a comparatively diminished propensity for such traps. P. cognata, in contrast, demonstrates a substantial presence in pan traps and pitfall traps. In Malaise traps, pan traps, and pitfall traps, five distinct species were captured, although with a species composition differing from alternative methods. To sum up, for the comprehensive study of Panorpa across an expansive geographical spectrum, it is judicious to integrate both net captures and the use of diverse trap types. In addition, it is necessary to explore all biotopes and tiers of the forest. Full article
(This article belongs to the Special Issue Biodiversity in Forests: Management, Monitoring for Conservation)
Show Figures

Figure 1

Back to TopTop