Effect of Physical Separation with Ultrasound Application on Brewers’ Spent Grain to Obtain Powders for Potential Application in Foodstuffs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Process on BSG Solid Fraction
2.2.1. Ultrasound Treatment
2.2.2. Pressing
2.2.3. Convective Air-Drying
2.2.4. Sieving
2.2.5. Fraction Separation
2.2.6. Milling
2.3. Characterization of the Powders Obtained from BSG
2.3.1. Moisture Content
2.3.2. Instrumental Color
2.3.3. Hydroalcoholic Extraction
2.3.4. Total Phenolic Content
2.3.5. Antioxidant Activity against ABTS Radical
2.3.6. Proximate Composition
2.3.7. Particle Size Distribution
2.4. Statistical Analysis
3. Results and Discussion
3.1. Process Effects on BSG Solid Fraction
3.1.1. Monitoring of Moisture Content and Instrumental Color
3.1.2. Ultrasonic Temperature Monitoring
3.1.3. Particle Sieve Size Distribution
3.2. Characterization of the BSG Powders
3.2.1. Color
3.2.2. Total Phenolic Content and Antioxidant Activity against ABTS•+ Radical
3.2.3. Proximate Composition
3.2.4. Powder Particles Sieve Size Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with an emphasis on food and health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Rojas-Chamorro, J.A.; Romero-García, J.M.; Cara, C.; Romero, I.; Castro, E. Improved ethanol production from the slurry of pretreated brewers’ spent grain through different co-fermentation strategies. Bioresour. Technol. 2020, 296, 122367. [Google Scholar] [CrossRef] [PubMed]
- Fărcaş, A.C.; Socaci, S.A.; Dulf, F.V. Volatile profile, fatty acids composition and total phenolics content of brewers’ spent grain by-product with potential use in the development of new functional foods. J. Cereal Sci. 2015, 64, 34–42. [Google Scholar] [CrossRef]
- Zhao, H.; Fan, W.; Dong, J.; Lu, J.; Chen, J.; Shan, L.; Lin, Y.; Kong, W. Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chem. 2008, 107, 296–304. [Google Scholar] [CrossRef]
- Naibaho, J.; Korzeniowska, M.; Wojdyło, A.; Ayunda, H.; Foste, M.; Yang, B. Techno-functional properties of protein from protease-treated brewers’ spent grain (BSG) and investigation of antioxidant activity of extracted proteins and BSG residues. J. Cereal Sci. 2022, 107, 103524. [Google Scholar] [CrossRef]
- Thai, S.; Avena-Bustillos, R.J.; Alves, P.; Pan, J.; Osorio-Ruiz, A.; Miller, J.; Tam, C.; Rolston, M.R.; Teran-Cabanillas, E.; Yokoyama, W.H.; et al. Influence of drying methods on health indicators of brewers spent grain for potential upcycling into food products. Appl. Food Res. 2022, 2, 100052. [Google Scholar] [CrossRef]
- Pabbathi, A.; Velidandi, S.; Pogula, P.K.; Gandam, R.R.; Baadhe, M.; Sharma, R.; Sirohi, V.K.; Thakur, V.K.; Gupta, V.K. Brewer’s spent grains-based biorefineries: A critical review. Fuel 2022, 317, 123435. [Google Scholar] [CrossRef]
- Lech, M.; Labus, K. The methods of brewers’ spent grain treatment towards the recovery of valuable ingredients contained therein and comprehensive management of its residues. Chem. Eng. Res. Des. 2022, 183, 494–511. [Google Scholar] [CrossRef]
- Hassan, S.S.; Ravindran, R.; Jaiswal, S.; Tiwari, B.K.; Williams, G.A.; Jaiswal, A.K. An evaluation of sonication pretreatment for enhancing saccharification of brewers’ spent grain. Waste Manag. 2020, 105, 240–247. [Google Scholar] [CrossRef]
- Bjerregaard, M.F.; Charalampidis, A.; Frøding, R.; Shetty, R.; Pastell, H.; Jacobsen, C.; Zhuang, S.; Pinelo, M.; Hansen, P.B.; Hobley, T.J. Processing of brewing by-products to give food ingredient streams. Eur. Food Res. Technol. 2018, 245, 545–558. [Google Scholar] [CrossRef]
- Ibbett, R.; White, R.; Tucker, G.; Foster, T. Hydro-mechanical processing of brewer’s spent grain as a novel route for separation of protein products with differentiated techno-functional properties. Innov. Food Sci. Emerg. Technol. 2019, 56, 102184. [Google Scholar] [CrossRef]
- Shih, Y.-T.; Wang, W.; Hasenbeck, A.; Stone, D.; Zhao, Y. Investigation of physicochemical, nutritional, and sensory qualities of muffins incorporated with dried brewer’s spent grain flours as a source of dietary fiber and protein. J. Food Sci. 2020, 85, 3978–3988. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.-S.; Tian, Y.-J.; He, Y.-Z.; Li, L.; Hu, S.-Q.; Li, B. Optimisation of ultrasonic-assisted protein extraction from brewer’s spent grain. Czech J. Food Sci. 2010, 28, 9–17. [Google Scholar] [CrossRef]
- Sun, M.; Xu, Y.; Ding, Y.; Ding, Y.; Ying Gu, Y.; Zhuang, Y.; Fan, X. Effect of ultrasound pretreatment on the moisture migration and quality of Cantharellus cibarius following hot air drying. Foods 2023, 12, 2705. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Li, J.; Eichhammer, W. Intensification of moisture separation in the pulp convective drying process with ultrasound-assisted method. Bioresour. Technol. 2024, 394, 130226. [Google Scholar] [CrossRef]
- Wang, K.; He, P.; Wang, Q.; Yang, Z.; Xing, Y.; Ren, W.; Wang, J.; Xu, H. Ultrasound pretreatment enhances moisture migration and drying quality of mulberr y via microstructure and cell-wall polysaccharides nanostructure modification. Food Res. Int. 2024, 2024, 114245. [Google Scholar] [CrossRef]
- Hendriks, A.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Instituto de Salud Pública de Chile. Manual Métodos de Análisis Físico-Químicos de Alimentos, Aguas y Suelo; Andros Ltda.: Santiago, Chile, 1998; pp. 13–14. [Google Scholar]
- Scheuermann, E.; Ihl, M.; Beraud, L.; Quiroz, A.; Salvo, S.; Alfaro, S.; Bustos, R.; Seguel, I. Effects of packaging and preservation treatments on the shelf life of murtilla fruit (Ugni molinae Turcz) in cold storage. Packag. Technol. Sci. 2013, 27, 241–248. [Google Scholar] [CrossRef]
- Ihl, M.; Aravena, L.; Scheuermann, E.; Uquiche, E.; Bifani, V. Effect of immersion solutions on shelf-life of minimally processed lettuce. LWT-Food Sci. Technol. 2003, 36, 591–599. [Google Scholar] [CrossRef]
- Adekunte, A.; Tiwari, B.; Cullen, P.; Scannell, A.; O’Donnell, C. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Sci. Biotechnol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Meneses, N.G.T.; Martins, S.; Teixeira, J.A.; Mussatto, S.I. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep. Purif. Technol. 2013, 108, 152–158. [Google Scholar] [CrossRef]
- Al-Duais, M.; Müller, L.; Böhm, V.; Jetschke, G. Antioxidant capacity and total phenolics of cyphostemma digitatum before and after processing: Use of different assays. Eur. Food Res. Technol. 2009, 228, 813–821. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Rockville, MD, USA, 2019; pp. 325–354. [Google Scholar]
- Asp, N.G.; Johansson, C.G.; Hallmer, H.; Siljeström, M. Rapid enzymatic assay of insoluble and soluble dietary fiber. J. Agric. Food. Chem. 1983, 31, 476–482. [Google Scholar] [CrossRef]
- Garrett, R.; Bellmer, D.; McGlynn, W.; Rayas-Duarte, P. Development of new chip products from brewer’s spent grain. J. Food Qual. 2021, 2021, 5521746. [Google Scholar] [CrossRef]
- Bundhoo, Z.M.A.; Mohee, R. Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: A review. Ultrason. Sonochem. 2018, 40, 298–313. [Google Scholar] [CrossRef]
- Alonso-Riaño, P.; Diez, M.T.S.; Blanco, B.; Beltrán, S.; Trigueros, E.; Benito-Román, O. Water ultrasound-assisted extraction of polyphenol compounds from brewer’s spent grain: Kinetic study, extract characterization, and concentration. Antioxidants 2020, 9, 265. [Google Scholar] [CrossRef]
- Iadecola, R.; Ciccoritti, R.; Ceccantoni, B.; Bellincontro, A.; Amoriello, T. Optimization of phenolic compound extraction from brewers’ spent grain using ultrasound technologies coupled with response surface methodology. Sustainability 2022, 14, 3309. [Google Scholar] [CrossRef]
- Li, W.; Yang, H.; Coldea, T.E.; Zhao, H. Modification of structural and functional characteristics of brewer’s spent grain protein by ultrasound assisted extraction. LWT-Food Sci. Technol. 2021, 139, 110582. [Google Scholar] [CrossRef]
- El-Shafey, E.I.; Gameiro, M.L.F.; Correia, P.F.M.; De Carvalho, J.M.R. Dewatering of brewer’s spent grain using a membrane filter press: A pilot plant study. Sep. Sci. Technol. 2004, 39, 3237–3261. [Google Scholar] [CrossRef]
- Santos, M.V.; Ranalli, N.; Orjuela-Palacio, J.; Zaritzky, N. Brewers spent grain drying: Drying kinetics, moisture sorption isotherms, bioactive compounds stability, and Bacillus cereus lethality during thermal treatment. J. Food Eng. 2024, 364, 111796. [Google Scholar] [CrossRef]
- Jongaroontaprangsee, S.; Tritrong, W.; Chokanaporn, W.; Methacanon, P.; Devahastin, S.; Naphaporn, C. Effects of drying temperature and particle size on hydration properties of dietary fiber powder from lime and cabbage by-products. Int. J. Food Prop. 2007, 10, 887–897. [Google Scholar] [CrossRef]
- Okpala, L.C.; Ofoedu, P.I. Quality characteristics of cookies produced from sweet potato and wheat flour blend fortified with Brewer’s spent grain flour. Curr. Res. Nutr. Food Sci. 2018, 6, 113–119. [Google Scholar] [CrossRef]
- Baiano, A.; la Gatta, B.; Rutigliano, M.; Fiore, A. Functional bread produced in a circular economy perspective: The use of brewers’ spent grain. Foods 2023, 12, 834. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, J.; Al-Attar, H.; Arfat, Y.A. Effect of particle size on compositional, functional, pasting and rheological properties of commercial water chestnut flour. Food Hydrocoll. 2016, 52, 888–895. [Google Scholar] [CrossRef]
- Hejna, A.; Barczewski, M.; Skorczewska, K.; Szulc, J.; Chmielnicki, B.; Korol, J.; Formela, K. Sustainable upcycling of brewers’ spent grain by thermo-mechanical treatment in twin-screw extruder. J. Clean. Prod. 2021, 285, 124839. [Google Scholar] [CrossRef]
- Hejna, A.; Marc, M.; Kowalkowska-Zedler, D.; Pladzyk, A.; Barczewski, M. Insights into the thermo-mechanical treatment of brewers’ spent grain as a potential filler for polymer composites. Polymers 2021, 13, 879. [Google Scholar] [CrossRef]
- Chen, Q.; Koh, H.K.; Park, J.B. Color evaluation of red pepper powder. Trans. ASAE 1999, 42, 749–752. [Google Scholar] [CrossRef]
- Horváth, H.Z.; Halász-Fekete, M. Instrumental colour measurement of paprika grist. Ann. Fac. Eng. Hunedoara 2005, 9, 101–107. [Google Scholar]
- Carpenter, J.; Badve, M.; Rajoriya, S.; George, S.; Saharan, V.K.; Pandit, A.B. Hydrodynamic cavitation: An emerging technology for the intensification of various chemical and physical processes in a chemical process industry. Rev. Chem. Eng. 2017, 33, 433–468. [Google Scholar] [CrossRef]
- Carciochi, R.A.; Sologubik, C.A.; Fernández, M.B.; Manrique, G.D.; D’Alessandro, L.G. Extraction of antioxidant phenolic compounds from brewer’s spent grain: Optimization and kinetics modeling. Antioxidants 2018, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Petrón, M.J.; Andrés, A.I.; Esteban, G.; Timón, M.L. Study of antioxidant activity and phenolic compounds of extracts obtained from different craft beer by-products. J. Cereal Sci. 2021, 98, 103162. [Google Scholar] [CrossRef]
- Patrignani, M.; Brantsen, J.F.; Awika, J.M.; Conforti, P.A. Application of a novel microwave energy treatment on brewers’ spent grain (BSG): Effect on its functionality and chemical characteristics. Food Chem. 2021, 346, 128935. [Google Scholar] [CrossRef] [PubMed]
- Bonifácio-Lopes, T.; Castro, L.M.G.; Vilas-Boas, A.; Campos, D.; Teixeira, J.A.; Pintado, M. Impact of gastrointestinal digestion simulation on brewer’s spent grain green extracts and their prebiotic activity. Food Res. Int. 2023, 165, 112515. [Google Scholar] [CrossRef] [PubMed]
- Kissell, T.; Prentice, N. Protein and fiber enrichment of cookie flour with brewer’s spent grain. Cereal Chem. 1979, 56, 261–266. [Google Scholar]
- Chetrariu, A.; Dabija, A. Brewer’ s spent grains: Possibilities of valorization, a review. Appl. Sci. 2020, 10, 5619. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Ikram, S.; Huang, L.; Zhang, H.; Wang, J.; Yin, M. Composition and nutrient value proposition of brewers spent grain. J. Food Sci. 2017, 82, 2232–2242. [Google Scholar] [CrossRef]
- Boukid, F. Comprehensive review of barley dietary fibers with emphasis on arabinoxylans. Bioact. Carbohydr. Diet. Fibre 2024, 31, 100410. [Google Scholar] [CrossRef]
- Reis, S.F.; Coelho, E.; Coimbra, M.A.; Abu-Ghannam, N. Improved efficiency of brewer’s spent grain arabinoxylans by ultrasound-assisted extraction. Ultrason. Sonochem. 2015, 24, 155–164. [Google Scholar] [CrossRef]
- Ioniță-Mîndrican, C.B.; Ziani, K.; Mititelu, M.; Oprea, E.; Neacșu, S.M.; Moroșan, E.; Dumitrescu, D.E.; Roșca, A.C.; Drăgănescu, D.; Negrei, C. Therapeutic benefits and dietary restrictions of fiber intake: A state of the art review. Nutrients 2022, 14, 2641. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Jin, Q.; Xu, Y.; Wang, H.; Huang, H. Subcritical water treatment to modify insoluble dietary fibers from brewer’s spent grain for improved functionality and gut fermentability. Food Chem. 2024, 435, 137654. [Google Scholar] [CrossRef] [PubMed]
- Jantason, N.; Suphantharika, M.; Wipatanawin, A.; Chansong, S.; Payongsri, P. Valorization of spent grains from beer production through β-glucan extraction. Foods 2024, 13, 440. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Lan, Y.; Ohm, J.; Gillespie, J.; Schwarz, P.; Chen, B. Physicochemical composition, fermentable sugars, free amino acids, phenolics, and minerals in brewers’ spent grains obtained from craft brewing operations. J. Cereal Sci. 2022, 104, 103413. [Google Scholar] [CrossRef]
Process | W | U1 | P | U2 | D | A1 and B1 | A2 and B2 |
---|---|---|---|---|---|---|---|
A | 72.4 ± 2.4 Aa | - | 59.8 ± 1.6 Ab | - | 5.2 ± 0.6 Ac | 6.6 ± 0.5 Ac | 6.1 ± 0.9 Ac |
B | 71.2 ± 1.7 Aa | 72.1 ± 3.3 a | 59.1 ± 1.1 Ab | 60.4 ± 2.6 b | 5.4 ± 3.1 Ac | 6.4 ± 0.3 Ac | 5.9 ± 0.1 Ac |
Color Parameter | Process | W | P | U1 | U2 | D | A1 and B1 | A2 and B2 |
---|---|---|---|---|---|---|---|---|
L* | A | 44.1 ± 0.6 c | 45.0 ± 1.1 c | - | - | 48.7 ± 0.6 b | 68.0 ± 1.4 a | 63.4 ± 1.2 a |
B | 44.4 ± 0.5 c | 47.3 ± 1.3 b | 44.8 ± 1.1 c | 46.6 ± 1.0 c | 49.9 ± 1.1 b | 69.3 ± 2.1 a | 66.5 ± 3.0 a | |
a* | A | 5.3 ± 0.3 a | 4.9 ± 0.3 a | - | - | 3.4 ± 0.2 b | 3.0 ± 0.3 b | 3.4 ± 0.3 b |
B | 5.4 ± 0.4 a | 5.2 ± 0.4 a | 5.5 ± 0.2 a | 5.8 ± 0.4 a | 3.7 ± 0.1 b | 2.7 ± 0.6 c | 3.0 ± 0.5 c | |
b* | A | 22.5 ± 0.5 a | 22.6 ± 0.8 a | - | - | 21.5 ± 0.5 a | 20.9 ± 0.2 a | 21.4 ± 1.4 a |
B | 22.8 ± 0.5 a | 23.1 ± 0.3 a | 22.8 ± 0.3 a | 24.0 ± 0.4 a | 21.8 ± 0.4 a | 20.6 ± 0.5 a | 21.2 ± 0.3 a | |
ΔE | A | - | 1.3 ± 1.1 d | - | - | 5.2 ± 1.0 c | 24.3 ± 1.4 a | 19.4 ± 1.6 b |
B | - | 3.1 ± 1.4 d | 1.1 ± 0.5 e | 2.6 ± 0.8 d | 5.9 ± 0.7 c | 25.2 ± 2.2 a | 22.4 ± 3.2 b | |
h* | A | 81.8 ± 0.7 a | 81.0 ± 0.3 a | - | - | 76.8 ± 0.6 b | 77.8 ± 0.7 b | 81.0 ± 0.7 a |
B | 82.5 ± 1.4 a | 76.8 ± 0.6 c | 82.0 ± 1.2 ab | 76.6 ± 0.3 c | 77.3 ± 0.9 c | 76.4 ± 1.0 c | 80.4 ± 0.5 b | |
C* | A | 23.1± 0.4 a | 23.1± 0.8 a | - | - | 21.8 ± 0.5 a | 21.1 ± 0.2 a | 21.7 ± 1.7 a |
B | 23.5 ± 0.6 a | 23.7 ± 0.3 a | 23.5 ± 0.3 a | 24.7 ± 0.4 a | 22.1 ± 0.4 a | 20.8 ± 0.5 a | 21.4 ± 0.3 a |
A2 | B1 | B2 | |
A1 | 4.9 ± 1.0 ab | 1.1 ± 1.0 d | 1.8 ± 1.3 d |
A2 | - | 5.7 ± 2.6 a | 3.2 ± 1.9 b |
B1 | - | - | 2.8 ± 1.4 bc |
BSG Powder | TPC (mg GAE g−1 d.m.) | ABTS•+ (µmol TEAC g−1 d.m.) |
---|---|---|
A1 | 3.05 ± 0.28 a | 30.58 ± 1.65 a |
A2 | 3.04 ± 0.23 a | 30.43 ± 1.98 a |
B1 | 3.59 ± 0.43 a | 24.72 ± 1.86 ab |
B2 | 3.68 ± 0.33 a | 22.81 ± 1.59 b |
Component | A1 | A2 | B1 | B2 |
---|---|---|---|---|
Total lipid (fat) | 8.7 ± 0.1 a | 10.0 ± 0.6 a | 8.6 ± 1.0 a | 9.6 ± 0.0 a |
Protein (N × 5.83) | 18.1 ± 0.3 a | 21.8 ± 1.9 a | 21.5 ± 1.5 a | 24.2 ± 2.1 a |
Total dietary fiber | 37.8 ± 0.7 c | 45.5 ± 1.0 b | 46.0 ± 0.2 b | 56.1 ± 0.5 a |
Soluble | 4.0 ± 0.0 b | 3.9 ± 0.4 b | 4.9 ± 0.3 a | 5.3 ± 0.1 a |
Insoluble | 33.8 ± 0.7 c | 41.6 ± 1.4 b | 41.1 ± 0.3 b | 50.7 ± 0.6 a |
Ash | 2.3 ± 0.1 a | 2.7 ± 0.2 a | 2.2 ± 0.4 a | 2.6 ± 0.4 a |
Available carbohydrate (by difference) | 33.5 ± 0.1 a | 19.6 ± 1.7 b | 21.8 ± 2.3 b | 7.3 ± 1.7 c |
Particle Sieve Size (µm) | A1 | A2 | B1 | B2 |
---|---|---|---|---|
425 | 0.4 ± 0.0 a | 0.3 ± 0.3 a | 0.2 ± 0.2 a | 0.3 ± 0.2 a |
180 | 0.0 ± 0.0 a | 0.5 ± 0.1 a | 3.1 ± 2.8 a | 1.4 ± 1.0 a |
125 | 22.1 ± 1.1 b | 21.3 ± 2.1 b | 24.0 ± 0.3 ab | 27.9 ± 2.1 a |
90 | 35.4 ± 1.1 b | 27.8 ± 0.2 c | 38.3 ± 1.0 a | 19.5 ± 1.5 d |
75 | 36.3 ± 1.0 a | 17.5 ± 2.1 d | 30.1 ± 0.6 b | 26.2 ± 1.5 c |
45 | 4.6 ± 0.2 c | 31.8 ± 0.5 a | 3.8 ± 1.2 c | 22.8 ± 0.8 b |
<45 | 1.2 ± 0.8 a | 0.8 ± 0.3 a | 0.5 ± 0.2 a | 2.0 ± 1.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruíz Suarez, C.B.; Schalchli Sáez, H.L.; Melo, P.S.; Moreira, C.d.S.; Sartori, A.G.d.O.; de Alencar, S.M.; Scheuermann Salinas, E.S. Effect of Physical Separation with Ultrasound Application on Brewers’ Spent Grain to Obtain Powders for Potential Application in Foodstuffs. Foods 2024, 13, 3000. https://doi.org/10.3390/foods13183000
Ruíz Suarez CB, Schalchli Sáez HL, Melo PS, Moreira CdS, Sartori AGdO, de Alencar SM, Scheuermann Salinas ES. Effect of Physical Separation with Ultrasound Application on Brewers’ Spent Grain to Obtain Powders for Potential Application in Foodstuffs. Foods. 2024; 13(18):3000. https://doi.org/10.3390/foods13183000
Chicago/Turabian StyleRuíz Suarez, Camila Belén, Heidi Laura Schalchli Sáez, Priscilla Siqueira Melo, Carolina de Souza Moreira, Alan Giovanini de Oliveira Sartori, Severino Matias de Alencar, and Erick Sigisfredo Scheuermann Salinas. 2024. "Effect of Physical Separation with Ultrasound Application on Brewers’ Spent Grain to Obtain Powders for Potential Application in Foodstuffs" Foods 13, no. 18: 3000. https://doi.org/10.3390/foods13183000
APA StyleRuíz Suarez, C. B., Schalchli Sáez, H. L., Melo, P. S., Moreira, C. d. S., Sartori, A. G. d. O., de Alencar, S. M., & Scheuermann Salinas, E. S. (2024). Effect of Physical Separation with Ultrasound Application on Brewers’ Spent Grain to Obtain Powders for Potential Application in Foodstuffs. Foods, 13(18), 3000. https://doi.org/10.3390/foods13183000