Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = bearing heat generation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 15885 KiB  
Article
Comparative Analysis of Fully Floating and Semi-Floating Ring Bearings in High-Speed Turbocharger Rotordynamics
by Kyuman Kim and Keun Ryu
Lubricants 2025, 13(8), 338; https://doi.org/10.3390/lubricants13080338 - 31 Jul 2025
Viewed by 215
Abstract
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they [...] Read more.
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they exhibit significantly different dynamic behaviors due to differences in ring motion and fluid film interaction. A cold air-driven test rig was employed to assess vibration and temperature characteristics across a range of controlled lubricant conditions. The test matrix included oil supply pressures from 2 bar (g) to 4 bar (g) and temperatures between 30 °C and 70 °C. Rotor speeds reached up to 200 krpm (thousands of revolutions per minute), and data were collected using a high-speed data acquisition system, triaxial accelerometers, and infrared (IR) thermal imaging. Rotor vibration was characterized through waterfall and Bode plots, while jump speeds and thermal profiles were analyzed to evaluate the onset and severity of instability. The results demonstrate that the FFRB configuration is highly sensitive to oil supply parameters, exhibiting strong subsynchronous instabilities and hysteresis during acceleration–deceleration cycles. In contrast, the SFRB configuration consistently provided superior vibrational stability and reduced sensitivity to lubricant conditions. Changes in lubricant supply conditions induced a jump speed variation in floating ring bearing (FRB) turbochargers that was approximately 3.47 times larger than that experienced by semi-floating ring bearing (SFRB) turbochargers. Furthermore, IR images and oil outlet temperature data confirm that the FFRB system experiences greater heat generation and thermal gradients, consistent with higher energy dissipation through viscous shear. This study provides a comprehensive assessment of both bearing types under realistic high-speed conditions and highlights the advantages of the SFRB configuration in improving turbocharger reliability, thermal performance, and noise suppression. The findings support the application of SFRBs in high-performance automotive systems where mechanical stability and reduced frictional losses are critical. Full article
(This article belongs to the Collection Rising Stars in Tribological Research)
Show Figures

Figure 1

15 pages, 5165 KiB  
Article
Microstructure and Mechanical Properties of Shoulder-Assisted Heating Friction Plug Welding 6082-T6 Aluminum Alloy Using a Concave Backing Hole
by Defu Li and Xijing Wang
Metals 2025, 15(8), 838; https://doi.org/10.3390/met15080838 - 27 Jul 2025
Viewed by 232
Abstract
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the [...] Read more.
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the joints exhibited no thinning on the top surface while forming a reinforcing boss structure within the concave backing hole on the backside, resulting in a slight increase in the overall load-bearing thickness. The introduction of the concave backing hole led to distinct microstructural zones compared to joints welded without it. The resulting joint microstructure comprised five regions: the nugget zone, a recrystallized zone, a shoulder-affected zone, the thermo-mechanically affected zone, and the heat-affected zone. Significantly, this process eliminated the poorly consolidated ‘filling zone’ often associated with conventional plug repairs. The microhardness across the joints was generally slightly higher than that of the base metal (BM), with the concave backing hole technique having minimal influence on overall hardness values or their distribution. However, under identical welding parameters, joints produced using the concave backing hole consistently demonstrated higher tensile strength than those without. The joints displayed pronounced ductile fracture characteristics. A maximum ultimate tensile strength of 278.10 MPa, equivalent to 89.71% of the BM strength, was achieved with an elongation at fracture of 9.02%. Analysis of the grain structure revealed that adjacent grain misorientation angle distributions deviated from a random distribution, indicating dynamic recrystallization. The nugget zone (NZ) possessed a higher fraction of high-angle grain boundaries (HAGBs) compared to the RZ and TMAZ. These findings indicate that during the SAH-FPW process, the use of a concave backing hole ultimately enhances structural integrity and mechanical performance. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

14 pages, 3914 KiB  
Article
Thermal Error Analysis of Hydrostatic Turntable System
by Jianlei Wang, Changhui Ke, Kaiyu Hu and Jun Zha
Machines 2025, 13(7), 598; https://doi.org/10.3390/machines13070598 - 10 Jul 2025
Viewed by 210
Abstract
The thermal error caused by the temperature rise in the service condition of the hydrostatic turntable system has a significant impact on the accuracy of the machine tool. The temperature rise is mainly caused by the friction heat of the bearing and the [...] Read more.
The thermal error caused by the temperature rise in the service condition of the hydrostatic turntable system has a significant impact on the accuracy of the machine tool. The temperature rise is mainly caused by the friction heat of the bearing and the heat of the oil pump. The amount of heat mainly depends on the working parameters, such as the oil supply pressure and the oil film gap. The unreasonable parameter setting will cause the reduction in the internal flow of the hydrostatic bearing and the increase in the oil pump power, which makes the heat of the lubricating oil increase and the heat dissipation capacity decrease during the movement. Based on the established hydrostatic turntable system, in order to explore the main influencing factors of its thermal error, the temperature field model of the component is established by calculating the thermal balance of the key components of the system. The thermal coupling analysis of the component is carried out by using the model, and the temperature rise, deformation and strain curves of the hydrostatic turntable system under different service conditions are obtained. The results show that with the increase in the temperature, the deformation and strain of the bearing increase monotonously. For every 1 °C increase, the total deformation of the bearing increases by about 0.285 μm. The higher the oil supply pressure, the higher the temperature rise in the system. The larger the oil film gap, the lower the temperature rise in the system. The oil supply pressure has a greater influence on the temperature rise and thermal deformation than the oil film gap. This study provides a valuable reference for reducing the thermal error generated by the hydraulic turntable of the ultra-precision lathe. Full article
Show Figures

Figure 1

20 pages, 2933 KiB  
Article
Characteristic Analysis of Bump Foil Gas Bearing Under Multi-Physical Field Coupling
by Daixing Lu, Zhengjun Zhu and Junjie Lu
Appl. Sci. 2025, 15(13), 7584; https://doi.org/10.3390/app15137584 - 7 Jul 2025
Viewed by 309
Abstract
Due to their self-adaptability, low friction, low loss, and high-speed stability, bump foil aerodynamic journal bearings are widely used in high-speed rotating equipment such as turbomachinery and flywheel energy storage. In the process of high-speed operation, the heat generated leads to changes in [...] Read more.
Due to their self-adaptability, low friction, low loss, and high-speed stability, bump foil aerodynamic journal bearings are widely used in high-speed rotating equipment such as turbomachinery and flywheel energy storage. In the process of high-speed operation, the heat generated leads to changes in air parameters (such as viscosity, density, etc.), thus affecting the overall performance of air bearings. In this paper, combined with the compressible Reynolds equation, a fluid–solid coupling model was established to analyze the steady-state characteristics and key influencing factors of bearings. Through the energy equation, the air viscosity–temperature effect was considered, and different boundary conditions were set. The internal temperature distribution of the air bearing and the influence of the temperature on the bearing characteristics were systematically analyzed. It was found that the bearing capacity increased when the temperature was considered. In a certain range, with the increase in ambient temperature, the increase in bearing capacity is reduced. This paper provides a theoretical design basis for the design of high-stability bearings and promotes the design of next-generation air bearings with higher speed, lower loss, and stronger adaptability, which has very important theoretical and engineering significance. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

26 pages, 9395 KiB  
Article
Study on Piping Layout Optimization for Chiller-Plant Rooms Using an Improved A* Algorithm and Building Information Modeling: A Case Study of a Shopping Mall in Qingdao
by Xiaoliang Ma, Hongshe Cui, Yan Zhang and Xinyao Wang
Buildings 2025, 15(13), 2275; https://doi.org/10.3390/buildings15132275 - 28 Jun 2025
Viewed by 275
Abstract
Heating, ventilation, and air-conditioning systems account for 40–60% of the energy consumed in commercial buildings, and much of this load originates from sub-optimal piping layouts in chiller-plant rooms. This study presents an automated routing framework that couples Building Information Modeling (BIM) with an [...] Read more.
Heating, ventilation, and air-conditioning systems account for 40–60% of the energy consumed in commercial buildings, and much of this load originates from sub-optimal piping layouts in chiller-plant rooms. This study presents an automated routing framework that couples Building Information Modeling (BIM) with an enhanced A* search to produce collision-free, low-resistance pipelines while simultaneously guiding component selection. The algorithm embeds protective buffer zones around equipment, reserves maintenance corridors through an attention-based cost term, and prioritizes 135° elbows to cut local losses. Generated paths are exported as Industry Foundation Classes (IFC) objects for validation in a BIM digital twin, where hydraulic feedback drives iterative reselection of high-efficiency devices—including magnetic-bearing chillers, cartridge filters and tilted-disc valves—until global pressure drop and life-cycle cost are minimized. In a full-scale shopping-mall retrofit, the method significantly reduces pipeline resistance and operating costs, confirming its effectiveness and replicability for sustainable chiller-plant design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 10696 KiB  
Article
High-Temperature Wear Properties of Laser Powder Directed Energy Deposited Ferritic Stainless Steel 430
by Samsub Byun, Hyun-Ki Kang, Jongyeob Lee, Namhyun Kang and Seunghun Lee
Micromachines 2025, 16(7), 752; https://doi.org/10.3390/mi16070752 - 26 Jun 2025
Viewed by 417
Abstract
Ferritic stainless steels (FSSs) have attracted considerable attention due to their excellent corrosion resistance and significantly lower cost compared with nickel-bearing austenitic stainless steels. However, the high-temperature wear behavior of additively manufactured FSS 430 has not yet been thoroughly investigated. This study aims [...] Read more.
Ferritic stainless steels (FSSs) have attracted considerable attention due to their excellent corrosion resistance and significantly lower cost compared with nickel-bearing austenitic stainless steels. However, the high-temperature wear behavior of additively manufactured FSS 430 has not yet been thoroughly investigated. This study aims to examine the microstructural characteristics and wear properties of laser powder directed energy deposition (LP-DED) FSS 430 fabricated under varying laser powers and hatch distances. Wear testing was conducted at 25 °C and 300 °C after subjecting the samples to solution heat treating at 815 °C and 980 °C for 1 h, followed by forced fan cooling. For comparison, an AISI 430 commercial plate was also tested under the same test conditions. The microstructural evolution and worn surfaces were analyzed using SEM-EDS and EBSD techniques. The wear performance was evaluated based on the friction coefficients and cross-sectional profiles of wear tracks, including wear volume, maximum depth, and scar width. The average friction coefficients (AFCs) of the samples solution heat treated at 980 °C were higher than those treated at 815 °C. Additionally, the AFCs increased with hatch distance at both testing temperatures. A strong correlation was observed between Rockwell hardness and wear resistance, indicating that higher hardness generally results in improved wear performance. Full article
(This article belongs to the Special Issue Laser Additive Manufacturing of Metallic Materials, 2nd Edition)
Show Figures

Figure 1

23 pages, 6061 KiB  
Article
Monitoring and Prediction of the Real-Time Transient Thermal Mechanical Behaviors of a Motorized Spindle Tool
by Tria Mariz Arief, Wei-Zhu Lin, Jui-Pin Hung, Muhamad Aditya Royandi and Yu-Jhang Chen
Lubricants 2025, 13(6), 269; https://doi.org/10.3390/lubricants13060269 - 16 Jun 2025
Viewed by 484
Abstract
The spindle is a critical component that significantly influences the performance of machine tools. In motorized spindles, heat generation from both the bearings and built-in motor leads to thermal deformation of structural components, which, in turn, affects machining accuracy. This study investigates the [...] Read more.
The spindle is a critical component that significantly influences the performance of machine tools. In motorized spindles, heat generation from both the bearings and built-in motor leads to thermal deformation of structural components, which, in turn, affects machining accuracy. This study investigates the thermo-mechanical behavior of motorized spindles under various operational conditions, with the aim of accurately predicting thermally induced axial deformation and determining optimal temperature sensor placement. To achieve this, temperature rise and deformation data were simultaneously collected using appropriate data acquisition systems across varying spindle speeds. A correlation analysis confirmed a strong positive relationship exceeding 97.5% between temperature rise at all sensor locations and axial thermal deformation. Multivariate regression analysis was then applied to identify optimal combinations of sensor data for accurate deformation prediction. Additionally, a finite element (FE) thermal–mechanical model was developed to simulate spindle behavior, with the results validated against experimental measurements and regression model predictions. The four-variable regression model and FE simulation achieved Root Mean Square Errors (RMSEs) of 0.84 µm and 0.82 µm, respectively, both demonstrating close agreement with experimental data and effectively capturing the trend of thermal deformation over time under different operating conditions. Finally, an optimal sensor configuration was identified that minimizes pre-diction error while reducing the number of required sensors. Overall, the proposed methodology offers valuable insights for optimizing spindle design to enhance thermal–mechanical performance. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

17 pages, 4460 KiB  
Article
Application of Waste Tire Carbon for Iron-Containing Dust Reduction in Industrial Processes
by Menglan Zeng, Chujun Luan and Fawei Lin
Appl. Sci. 2025, 15(12), 6504; https://doi.org/10.3390/app15126504 - 9 Jun 2025
Viewed by 424
Abstract
The iron and steel industry generates large quantities of iron-bearing dust (IBD), contributing to resource inefficiency and environmental concerns. This study investigates heating methods and the use of organic solid waste, specifically waste tire carbon (WTC), as a reductant for the recovery of [...] Read more.
The iron and steel industry generates large quantities of iron-bearing dust (IBD), contributing to resource inefficiency and environmental concerns. This study investigates heating methods and the use of organic solid waste, specifically waste tire carbon (WTC), as a reductant for the recovery of Fe from sintering machine tail dust (SMTD) and steelmaking gravity dust. The results indicate that the optimal reduction conditions occurred at 1000 °C, with a 2:1 ratio of SMTD to WTC, and 0% O2 holding for 45 min. WTC is the best material, and heating methods affect it limitedly. The leaching behavior of seven metals was measured, showing an increase in the leaching of Ca and Al compared to the raw materials. The study shows that WTC provides a promising alternative reductant for IBD reduction, offering an energy-saving and low-carbon alternative to conventional fossil fuel injections in blast furnaces. The risk of Cr leaching should be paid attention to while enhancing Fe recovery. Full article
Show Figures

Figure 1

29 pages, 1122 KiB  
Review
Trends in Lubrication Research on Tapered Roller Bearings: A Review by Bearing Type and Size, Lubricant, and Study Approach
by Muhammad Ishaq Khan, Lorenzo Maccioni and Franco Concli
Lubricants 2025, 13(5), 204; https://doi.org/10.3390/lubricants13050204 - 6 May 2025
Cited by 1 | Viewed by 891
Abstract
A tapered roller bearing (TRB) is a specialized type of bearing with a high load-to-volume ratio, designed to support both radial and axial loads. Lubrication plays a crucial role in TRB operation by reducing friction and dissipating heat generated during rotation. However, it [...] Read more.
A tapered roller bearing (TRB) is a specialized type of bearing with a high load-to-volume ratio, designed to support both radial and axial loads. Lubrication plays a crucial role in TRB operation by reducing friction and dissipating heat generated during rotation. However, it can also negatively impact TRB performance due to the viscous and inertial effects of the lubricant. Extensive research has been conducted to examine the role of lubrication in TRB performance. Lubrication primarily influences the frictional characteristics, thermal behavior, hydraulic losses, dynamic stability, and contact mechanics of TRBs. This paper aims to collect and classify the scientific literature on TRB lubrication based on these key aspects. Specifically, it explores the scope of research on the use of Newtonian and non-Newtonian lubricants in TRBs. Furthermore, this study analyzes research based on TRB size and type, considering both oil and grease as lubricants. The findings indicate that both numerical and experimental studies have been conducted to investigate Newtonian and non-Newtonian lubricants across various TRB sizes and types. However, the results highlight that limited research has focused on non-Newtonian lubricants in TRBs with an Outer Diameter (OD) exceeding 300 mm, i.e., those typically used in wind turbines, industrial gearboxes, and railways. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

25 pages, 6488 KiB  
Article
High y+ Shear-Stress Turbulence Implementation for High Flux Isotope Reactor Narrow Channel Flows
by Emilian Popov, Nicholas Mecham and Taylor Grubbs
Fluids 2025, 10(4), 85; https://doi.org/10.3390/fluids10040085 - 26 Mar 2025
Viewed by 468
Abstract
The research objective of this work was to improve the engineering predictions of the turbulence characteristics of flows in curved narrow channels. Such channel flows are commonly encountered in nuclear research and test reactors, with one of them being the high-flux isotope reactor [...] Read more.
The research objective of this work was to improve the engineering predictions of the turbulence characteristics of flows in curved narrow channels. Such channel flows are commonly encountered in nuclear research and test reactors, with one of them being the high-flux isotope reactor (HFIR). Research reactors bear high heat fluxes, and the proper computing of turbulence is paramount for safe and reliable reactor operation. The study builds on the results of a previous direct numerical simulation of turbulence to inform a well-known Reynolds-averaged Navier–Stokes shear-stress turbulence model and improves its accuracy in simulating parallel channel flows. A new formulation of the loss term in the dissipation conservation equation is suggested. Combined with high wall distance computational grids, the new implementation provides a fast-running flow solution, suitable for engineering purposes. Model generalization for parallel channel flows, in a broader range of frictional Reynolds numbers, is suggested by introducing a new form of the model constants. Full article
(This article belongs to the Special Issue Modelling Flows in Pipes and Channels)
Show Figures

Figure 1

17 pages, 5559 KiB  
Article
An Innovative Approach Toward Enhancing the Environmental and Economic Sustainability of Resource Recovery from Hazardous Zn-Bearing Dusts from Electric Arc Furnace Steelmaking
by Timur B. Khaidarov, Rita Khanna, Bekzod B. Khaidarov, Kejiang Li, Dmitrii S. Suvorov, Dmitrii A. Metlenkin, Igor N. Burmistrov, Alexander V. Gorokhovsky, Sergey V. Volokhov and Denis V. Kuznetsov
Sustainability 2025, 17(6), 2773; https://doi.org/10.3390/su17062773 - 20 Mar 2025
Viewed by 647
Abstract
An innovative approach is reported for recovering Fe and Zn resources from hazardous zinc-bearing electric arc furnace dusts (ZBDs) in a sustainable manner. A combination of carbothermal and H2 reduction were used to overcome challenges associated with the high temperatures of carbothermal [...] Read more.
An innovative approach is reported for recovering Fe and Zn resources from hazardous zinc-bearing electric arc furnace dusts (ZBDs) in a sustainable manner. A combination of carbothermal and H2 reduction were used to overcome challenges associated with the high temperatures of carbothermal reduction and the high costs/limited supplies of hydrogen. In-depth reduction studies were carried out using zinc-rich (17 wt.%), iron-poor (35 wt.%) ZBD; coke oven battery dry quenching dust (CDQD) was used as reductant. Briquettes were prepared by mixing ZBD and CDQD powders in a range of proportions; heat treatments were carried out in flowing H2 gas at 700 °C–900 °C for 4 h. The reduced products were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and inductively coupled plasma (ICP). The Fe content of the reduced briquettes showed increases between 50 and 150%, depending on composition and reduction temperature; Zn, Pb, Cl, Na, K and S were completely absent. The gaseous elements were collected in cooled traps at the furnace outlet to recover metallic zinc and other phases. The volatile products collected at the outlet (900 °C) contained more than 70% zinc and 6% lead; small amounts of zinc were also present in the metallic phase. The processing temperatures were significantly lower in the combined approach as compared to 100% carbothermal reduction. While reducing energy consumption and limiting the generation of greenhouse gases, this approach has the potential for enhancing the reutilization of hazardous industrial wastes, resource recovery, and economic and environmental sustainability. Full article
(This article belongs to the Special Issue Solid Waste Management and Recycling for a Sustainable World)
Show Figures

Figure 1

9 pages, 2536 KiB  
Proceeding Paper
Integrated Power and Thermal Management System in a Parallel Hybrid-Electric Aircraft: An Exploration of Passive and Active Cooling and Temperature Control
by Zeyu Ouyang, Theoklis Nikolaidis, Soheil Jafari and Evangelia Pontika
Eng. Proc. 2025, 90(1), 36; https://doi.org/10.3390/engproc2025090036 - 13 Mar 2025
Viewed by 607
Abstract
Hybrid-electric aircraft (HEAs) represent a promising solution for reducing fuel consumption and emissions. However, the additional heat loads generated by the electrical propulsion systems in HEAs can diminish these benefits. To address this, an integrated power and thermal management system (IPTMS) is essential [...] Read more.
Hybrid-electric aircraft (HEAs) represent a promising solution for reducing fuel consumption and emissions. However, the additional heat loads generated by the electrical propulsion systems in HEAs can diminish these benefits. To address this, an integrated power and thermal management system (IPTMS) is essential to mitigate these challenges by optimizing the interaction between thermal management and power management. This paper presents a preliminary IPTMS design for a parallel HEA operating under International Standard Atmosphere (ISA) conditions. The design includes an evaluation of active cooling, passive cooling, and active temperature control strategies. The IPTMS accounts for heat loads from the engine system, including the generators, shaft bearings, and power gearboxes, as well as from the electrical propulsion system, such as motors, batteries, converters, and the electric bus. This study investigates the impact of battery power (BP) contribution to cooling power on required coolant pump power and induced ram air drag. A comparison of IPTMS performance under 0% and 100% BP conditions revealed that the magnitude of battery power contribution to cooling power does not significantly impact the thermal management system (TMS) performance due to the large disparity between the total battery power (maximum 950 kW) and the required cooling power (maximum 443 W). Additionally, it was determined that the motor-inverter loop accounts for 95% of the pump power and 97% of the ram air drag. These findings suggest that IPTMS optimization should prioritize the thermal domain, particularly the motor-inverter loop. This study provides new insights into IPTMS design for HEAs, paving the way for further exploration of IPTMS performance under various operating conditions and refinement of cooling strategies. Full article
Show Figures

Figure 1

17 pages, 14483 KiB  
Article
Assessment of an External Cooling System Using Experimental Methods for Thrust Bearing in a Large Hydraulic Unit
by Mehmet Sait Çay and Dogan Gezer
Water 2025, 17(6), 795; https://doi.org/10.3390/w17060795 - 10 Mar 2025
Viewed by 697
Abstract
This research was conducted to evaluate and compare the efficiency of the modern external type thrust bearing cooling system (TBCS) with plate-type heat exchangers (PTHEs) applied as an alternative to standard design external type TBCS with shell-and-tube heat exchangers (STHEs) in a 180 [...] Read more.
This research was conducted to evaluate and compare the efficiency of the modern external type thrust bearing cooling system (TBCS) with plate-type heat exchangers (PTHEs) applied as an alternative to standard design external type TBCS with shell-and-tube heat exchangers (STHEs) in a 180 MW large hydro power plant by experimental methods. Although similar studies are available in the literature, there is no comprehensive study on the effects of different parameters on performance and other plant parameters. The main parameters examined in the study are the cooling rate, oil temperature difference, average pad temperature (APT), and generator winding temperature. The tests were carried out over the range of 144–150.1 MW unit loads, 580–1317 L/min water flow rates, and 998–1411 L/min oil circulation flow rates. The results showed that the APT can only be reduced up to 73.4 °C at 1411 L/min oil circulation flow rate by 252.6 kW cooling, the optimum oil circulation flow rate is 1195 L/min, APT can be reduced by 1.7 °C and the maximum winding temperature by 1.3 °C when external type TBCS with PTHEs is used, and structural changes must be made in the thrust bearing design to provide further decrease in pad temperature. Full article
Show Figures

Figure 1

21 pages, 10268 KiB  
Article
Tribological Performance Comparison of Lubricating Greases for Electric Vehicle Bearings
by Deepika Shekhawat, Ayush Jain, Nitesh Vashishtha, Arendra Pal Singh and Rahul Kumar
Lubricants 2025, 13(3), 108; https://doi.org/10.3390/lubricants13030108 - 1 Mar 2025
Cited by 1 | Viewed by 1974
Abstract
EV motors and machine elements operate at higher speeds, generate significant heat and noise (vibration), and subject lubricants (bearings) to multiple degrading factors, requiring thermal stability, wear protection, mitigating wear mechanisms like pitting and scuffing, and low electrical conductivity to prevent arcing damage [...] Read more.
EV motors and machine elements operate at higher speeds, generate significant heat and noise (vibration), and subject lubricants (bearings) to multiple degrading factors, requiring thermal stability, wear protection, mitigating wear mechanisms like pitting and scuffing, and low electrical conductivity to prevent arcing damage to bearings. This study evaluates the tribological performance of four types of greases—PUEs, PUPao, PUEth (polyurea-based), and LiPAO (lithium–calcium complex-based)—to determine their suitability for electric motor bearings. Key performance metrics include tribological properties, electrical resistivity, leakage, bearing noise, and wear behavior. A four-ball wear test ranks the greases by scar diameter as PUPao < PUEs < PUEth < LiPAO, while the coefficient of friction is observed in the range of 0.15–0.18, with LiPAO exhibiting the lowest friction. Electrical resistivity tests reveal that PUEs grease has the lowest resistivity. Electrical leakage tests, conducted with a voltage differential across bearings, assess pitting damage, with PUEth and LiPAO showing evidence of surface pitting. Optical microscopy and scanning electron microscopy analysis is carried out to examine the pitting. In bearing noise tests, PUEs demonstrates the lowest noise levels, whereas LiPAO produces the highest. Visual and microscopic examination of the greases further characterizes their lubricating properties. Based on overall performance, the greases are ranked in suitability for electric motor applications as PUEs > PUPao > PUEth > LiPAO. The findings highlight the critical need for selecting appropriate grease formulations to ensure optimal bearing performance under varying operational conditions. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

17 pages, 7106 KiB  
Article
Hybrid Tool Holder by Laser Powder Bed Fusion of Dissimilar Steels: Towards Eliminating Post-Processing Heat Treatment
by Faraz Deirmina, Ville-Pekka Matilainen and Simon Lövquist
J. Manuf. Mater. Process. 2025, 9(2), 64; https://doi.org/10.3390/jmmp9020064 - 18 Feb 2025
Viewed by 742
Abstract
The hybridization of additive manufacturing (AM) with conventional manufacturing processes in tooling applications allows the customization of the tool. Examples include weight reduction, improving the vibration-dampening properties, or directing the coolant to the critical zones through intricate conformal cooling channels aimed at extending [...] Read more.
The hybridization of additive manufacturing (AM) with conventional manufacturing processes in tooling applications allows the customization of the tool. Examples include weight reduction, improving the vibration-dampening properties, or directing the coolant to the critical zones through intricate conformal cooling channels aimed at extending the tool life. In this regard, metallurgical challenges like the need for a post-processing heat treatment in the AM segment to meet the thermal and mechanical properties requirements persist. Heat treatment can destroy the dimensional accuracy of the pre-manufactured heat-treated wrought segment, on which the AM part is built. In the case of dissimilar joints, heat treatment may further impact the interface properties through the ease of diffusional reactions at elevated temperatures or buildup of residual stresses at the interface due to coefficient of thermal expansion (CTE) mismatch. In this communication, we report on the laser powder bed fusion (L-PBF) processing of MAR 60, a weldable carbon-free maraging powder, to manufacture a hybrid tool holder for general turning applications, comprising a wrought segment in 25CrMo4 low-alloy carbon-bearing tool steel. After L-PBF process optimization and manipulation, as-built (AB) MAR 60 steel was characterized with a hardness and tensile strength of ~450 HV (44–45 HRC) and >1400 MPa, respectively, matching those of pre-manufactured wrought 25CrMo4 (i.e., 42–45 HRC and 1400 MPa). The interface was defect-free with strong metallurgical bonding, showing slight microstructural and hardness variations, with a thickness of less than 400 µm. The matching strength and high Charpy V-notch impact energy (i.e., >40 J) of AB MAR 60 eliminate the necessity of any post-manufacturing heat treatment in the hybrid tool. Full article
(This article belongs to the Special Issue Advances in Dissimilar Metal Joining and Welding)
Show Figures

Figure 1

Back to TopTop