Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (208)

Search Parameters:
Keywords = bearing capacity of pile foundation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7618 KiB  
Article
A Comparative Analysis of Axial Bearing Behaviour in Steel Pipe Piles and PHC Piles for Port Engineering
by Runze Zhang, Yizhi Liu, Lei Wang, Weiming Gong and Zhihui Wan
Buildings 2025, 15(15), 2738; https://doi.org/10.3390/buildings15152738 - 3 Aug 2025
Viewed by 221
Abstract
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the [...] Read more.
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the context of the Yancheng Dafeng Port Security Facilities Project. A self-balanced static load numerical model for PHC piles was developed using Plaxis 3D, enabling the simulation of load-displacement responses, axial force transfer, and side resistance distribution. The accuracy of the model was verified through a comparison with field static load test data. With the verified model parameters, the internal force distribution of steel pipe piles was analysed by modifying material properties and adjusting boundary conditions. A comparative analysis of the two pile types was conducted under identical working conditions. The results reveal that the ultimate bearing capacities of the 1# steel pipe pile and the 2# PHC pile are 6734 kN and 6788 kN, respectively. Despite the PHC pile having a 20% larger diameter, its ultimate bearing capacity is comparable to that of the steel pipe pile, suggesting a more efficient utilisation of material strength in the latter. Further numerical simulations indicate that, under the same working conditions, the ultimate bearing capacity of the steel pipe pile exceeds that of the PHC pile by 18.43%. Additionally, the axial force distribution along the steel pipe pile shaft is more uniform, and side resistance is mobilised more effectively. The reduction in side resistance caused by construction disturbances, combined with the slenderness ratio (L/D = 41.7) of the PHC pile, results in 33.87% of the pile’s total bearing capacity being attributed to tip resistance. The findings of this study provide crucial insights into the selection of optimal pile types for terminal foundations, considering factors such as bearing capacity, environmental conditions, and economic viability. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 4551 KiB  
Article
Study on the Bearing Performance of Pole-Assembled Inclined Pile Foundation Under Downward Pressure-Horizontal Loads
by Chong Zhao, Wenzhuo Song, Wenzheng Hao, Furan Guo, Yan Yang, Mengxin Kang, Liang Zhang and Yun Wang
Buildings 2025, 15(15), 2656; https://doi.org/10.3390/buildings15152656 - 28 Jul 2025
Viewed by 195
Abstract
A novel prefabricated pile foundation is presented to improve the disaster resistance of the pole line. Bearing performance analysis of prefabricated inclined pile foundations for electric poles under downward pressure-horizontal loading is carried out, and the effects of prefabricated foundation dimensions and pile [...] Read more.
A novel prefabricated pile foundation is presented to improve the disaster resistance of the pole line. Bearing performance analysis of prefabricated inclined pile foundations for electric poles under downward pressure-horizontal loading is carried out, and the effects of prefabricated foundation dimensions and pile inclination on the horizontal load–displacement curves at the top of the poles, the horizontal displacement and settlement at the top of the piles, the horizontal displacement and tilt rate of the poles’ bodies and piles bending moments are investigated. The findings indicate the following: as the prefabricated foundation size grows, the bearing capacity of the foundation improves, and the anti-overturning ability of the electric pole improves; the foundation size increases from 0.9 m to 1.35 m, the anti-overturning bearing capacity of the foundation increases by 15.77%, the maximum bending moment of the foundation pile body increases by 19.7%, and the maximum bending moment occurs at about 0.2 m of the pile body; the bearing capacity of inclined piles is larger than that of straight piles—with an increase in the pile inclination angle, the foundation bearing performance increases, and the overturning bearing capacity of the poles increases; the pile inclination angle grows from 0° to 20°, the overturning bearing performance of the foundation increases by 19.2%, the maximum bending moment of the foundation piles reduces by 21.2%, and the maximum of the bending moment occurs at the pile body at a position of about 0.2 m. Full article
Show Figures

Figure 1

26 pages, 2330 KiB  
Article
Enhanced Dung Beetle Optimizer-Optimized KELM for Pile Bearing Capacity Prediction
by Bohang Chen, Mingwei Hai, Gaojian Di, Bin Zhou, Qi Zhang, Miao Wang and Yanxiu Guo
Buildings 2025, 15(15), 2654; https://doi.org/10.3390/buildings15152654 - 27 Jul 2025
Viewed by 236
Abstract
The safety associated with the bearing capacity of pile foundations is intrinsically linked to the overall safety, stability, and economic viability of structural systems. In response to the need for rapid and precise predictions of pile bearing capacity, this study introduces a kernel [...] Read more.
The safety associated with the bearing capacity of pile foundations is intrinsically linked to the overall safety, stability, and economic viability of structural systems. In response to the need for rapid and precise predictions of pile bearing capacity, this study introduces a kernel extreme learning machine (KELM) prediction model optimized through a multi-strategy improved beetle optimization algorithm (IDBO), referred to as the IDBO-KELM model. The model utilizes the pile length, pile diameter, average effective vertical stress, and undrained shear strength as input variables, with the bearing capacity serving as the output variable. Initially, experimental data on pile bearing capacity was gathered from the existing literature and subsequently normalized to facilitate effective integration into the model training process. A detailed introduction of the multi-strategy improved beetle optimization algorithm (IDBO) is provided, with its superior performance validated through 23 benchmark functions. Furthermore, the Wilcoxon rank sum test was employed to statistically assess the experimental outcomes, confirming the IDBO algorithm’s superiority over other prevalent metaheuristic algorithms. The IDBO algorithm was then utilized to optimize the hyperparameters of the KELM model for predicting pile bearing capacity. In conclusion, the statistical metrics for the IDBO-KELM model demonstrated a root mean square error (RMSE) of 4.7875, a coefficient of determination (R2) of 0.9313, and a mean absolute percentage error (MAPE) of 10.71%. In comparison, the baseline KELM model exhibited an RMSE of 6.7357, an R2 of 0.8639, and an MAPE of 18.47%. This represents an improvement exceeding 35%. These findings suggest that the IDBO-KELM model surpasses the KELM model across all evaluation metrics, thereby confirming its superior accuracy in predicting pile bearing capacity. Full article
Show Figures

Figure 1

22 pages, 9506 KiB  
Article
The Influence of Plate Geometry on the Cyclic Bearing Behavior of Single Helical Piles in Silty Sand
by Faxiang Gong, Wenni Deng, Xueliang Zhao, Xiaolong Wang and Kanmin Shen
J. Mar. Sci. Eng. 2025, 13(8), 1416; https://doi.org/10.3390/jmse13081416 - 25 Jul 2025
Viewed by 237
Abstract
Helical piles are widely used in geotechnical engineering, and their rapid installation and service reliability have attracted significant interest from the offshore wind industry. These piles are frequently subjected to cyclic loading in complex marine environments. Although the cyclic bearing behavior of helical [...] Read more.
Helical piles are widely used in geotechnical engineering, and their rapid installation and service reliability have attracted significant interest from the offshore wind industry. These piles are frequently subjected to cyclic loading in complex marine environments. Although the cyclic bearing behavior of helical piles has been studied, most research has focused on soil properties and loading conditions, with a limited systematic analysis of plate parameters. Moreover, the selection of plate parameters is not explicitly defined. As a crucial preliminary step in the capacity calculation, it is vital for the design of helical piles. To address this gap, the present study combines physical modeling tests and finite element simulations to systematically evaluate the influence of plate parameters on their cyclic bearing behavior. The parameters investigated include the plate depth, the plate diameter, plate spacing, and the number of plates. The results indicate that, under the same embedment conditions, cumulative displacement increases with the plate depth, with a critical embedment depth ratio of Hcr/D = 6 under cyclic loading conditions, but decreases with the number of plates. Axial stiffness increases with the plate depth, diameter, and number of plates, with an increase ranging from 0.5 to 3.0. However, the normalized axial stiffness decreases with these parameters, reaching a minimum value of 1.63. The plate spacing has a minimal influence on cyclic bearing behavior. Additionally, this study examines the evolution of displacement and stiffness parameters over repeated cycles in numerical simulations, as well as the post-cyclic pullout capacity of the helical pile foundation, which varies between −5% and +12%. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 2911 KiB  
Article
Investigation of Implantable Capsule Grouting Technology and Its Bearing Characteristics in Soft Soil Areas
by Xinran Li, Yuebao Deng, Wenxi Zheng and Rihong Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1362; https://doi.org/10.3390/jmse13071362 - 17 Jul 2025
Viewed by 184
Abstract
The implantable capsule grouting pile is a novel pile foundation technology in which a capsule is affixed to the side of the implanted pile to facilitate grouting and achieve extrusion-based reinforcement. This technique is designed to improve the bearing capacity of implanted piles [...] Read more.
The implantable capsule grouting pile is a novel pile foundation technology in which a capsule is affixed to the side of the implanted pile to facilitate grouting and achieve extrusion-based reinforcement. This technique is designed to improve the bearing capacity of implanted piles in coastal areas with deep, soft soil. This study conducted model tests involving multiple grouting positions across different foundation types to refine the construction process and validate the enhancement of bearing capacity. Systematic measurements and quantitative analyses were performed to evaluate the earth pressure distribution around the pile, the resistance characteristics of the pile end, the evolution of side friction resistance, and the overall bearing performance. Special attention was given to variations in the lateral friction resistance adjustment coefficient under different working conditions. Furthermore, an actual case analysis was conducted based on typical soft soil geological conditions. The results indicated that the post-grouting process formed a dense soil ring through the expansion and extrusion of the capsule, resulting in increased soil strength around the pile due to increased lateral earth pressure. Compared to conventional piles, the grouted piles exhibited a synergistic improvement characterized by reduced pile end resistance, enhanced side friction resistance, and improved overall bearing capacity. The ultimate bearing capacity of model piles at different grouting depths across different foundation types increased by 6.8–22.3% compared with that of ordinary piles. In silty clay and clayey silt foundations, the adjustment coefficient ηs of lateral friction resistance of post-grouting piles ranged from 1.097 to 1.318 and increased with grouting depth. The findings contribute to the development of green pile foundation technology in coastal areas. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

23 pages, 9408 KiB  
Article
Pullout Behaviour of Snakeskin-Inspired Sustainable Geosynthetic Reinforcements in Sand: An Experimental Study
by Xin Huang, Fengyuan Yan and Jia He
Sustainability 2025, 17(14), 6502; https://doi.org/10.3390/su17146502 - 16 Jul 2025
Viewed by 288
Abstract
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study [...] Read more.
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study first investigated the frictional properties and surface morphologies of the ventral scales of Cantor’s rat snakes (Ptyas dhumnades). Based on the findings on the snake scales, a novel snakeskin-inspired geosynthetic reinforcement (SIGR) is developed using 3D-printed polylactic acid (PLA). A series of pullout tests under different normal loads (25 kPa, 50 kPa, and 75 kPa) were performed to analyze the pullout behavior of SIGR in sandy soil. Soil deformation and shear band thickness were measured using Particle Image Velocimetry (PIV). The results revealed that the ventral scales of Ptyas dhumnades have distinct thorn-like micro-protrusions pointing towards the tail, which exhibit frictional anisotropy. A SIGR with a unilateral (one-sided) layout scales (each scale 1 mm in height and 12 mm in length) could increase the peak pullout force relative to a smooth-surface reinforcement by 29% to 67%. Moreover, the peak pullout force in the cranial direction (soil moving against the scales) was found to be 13% to 20% greater than that in the caudal direction (soil moving along the scales). The pullout resistance, cohesion, and friction angle of SIGR all showed significant anisotropy. The soil deformation around the SIGR during pullout was more pronounced than that observed with smooth-surface reinforcement, which suggests that SIGR can mobilize a larger volume of soil to resist external loads. This study demonstrates that SIGR is able to enhance the pullout resistance of reinforcements, thereby improving the stability of reinforced soil structures, reducing materials and energy consumption, and is important for the sustainability of geotechnical engineering. Full article
Show Figures

Figure 1

25 pages, 10843 KiB  
Article
Experimental and Numerical Study of a Cone-Top Pile Foundation for Challenging Geotechnical Conditions
by Askar Zhussupbekov, Assel Sarsembayeva, Baurzhan Bazarov and Abdulla Omarov
Appl. Sci. 2025, 15(14), 7893; https://doi.org/10.3390/app15147893 - 15 Jul 2025
Viewed by 260
Abstract
This study investigates the behavior and performance of a newly proposed cone-top pile foundation designed to improve stability in layered, deformable, or strain-sensitive soils. Traditional shallow and uniform conical foundations often suffer from excessive settlement and reduced capacity when subjected to vertical loads [...] Read more.
This study investigates the behavior and performance of a newly proposed cone-top pile foundation designed to improve stability in layered, deformable, or strain-sensitive soils. Traditional shallow and uniform conical foundations often suffer from excessive settlement and reduced capacity when subjected to vertical loads and horizontal soil deformations. To address these limitations, a hybrid foundation was developed that integrates an inverted conical base with a central pile shaft and a rolling joint interface between the foundation and the superstructure. Laboratory model tests, full-scale field loading experiments, and axisymmetric numerical simulations using Plaxis 2D (Version 8.2) were conducted to evaluate the foundation’s bearing capacity, settlement behavior, and load transfer mechanisms. Results showed that the cone-top pile foundation exhibited lower settlements and higher load resistance than columnar foundations under similar loading conditions, particularly in the presence of horizontal tensile strains. The load was effectively distributed through the conical base and transferred into deeper soil layers via the pile shaft, while the rolling joint reduced stress transmission to the structure. The findings support the use of cone-top pile foundations in soft soils, seismic areas and areas affected by underground mining, where conventional designs may be inadequate. This study provides a validated and practical design alternative for challenging geotechnical environments. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 2945 KiB  
Article
An Investigation of the Influence of Concrete Tubular Piles at the Pit Bottom During Excavation on Bearing Behavior
by Qingguang Yang, Shikang Hong, Quan Shen, Sen Xiao and Haofeng Zhu
Buildings 2025, 15(14), 2437; https://doi.org/10.3390/buildings15142437 - 11 Jul 2025
Viewed by 233
Abstract
The influence of foundation pit excavation on the bearing behavior of concrete tubular piles at the pit bottom remains unclear. Based on the Vesic cavity expansion theory, this paper proposes a method for calculating pile driving resistance, which takes into account the residual [...] Read more.
The influence of foundation pit excavation on the bearing behavior of concrete tubular piles at the pit bottom remains unclear. Based on the Vesic cavity expansion theory, this paper proposes a method for calculating pile driving resistance, which takes into account the residual effect of vertical pressure changes on earth pressure during excavation. Furthermore, relying on the statistical regularity between Qu/Pu (ratio of ultimate bearing capacity to ultimate cavity expansion pressure) and L/d (length-to-diameter ratio), theoretical formulas for calculating the ultimate bearing capacity of tubular piles before and after foundation pit excavation are established, with their reliability and influencing factors analyzed. This method only requires determining the L/d of the tubular piles and the theoretical value of pile driving resistance. With its simple parameter requirements, it is suitable for estimating the ultimate bearing capacity of tubular piles affected by excavation. By comparing the computed penetration resistance, earth pressure, and driving resistance of tubular piles with field measurements, the computed results show good agreement with field measurements, and the accuracy of the proposed method meets the requirements of engineering design, verifying its feasibility as an empirical method. The fitting results of the Qu/Pu ratios indicate that the deviations between the measured and computed values are 4.17% and 5.64% before and after excavation, respectively. Additionally, L/d and L/H (ratio of pile length to excavation depth) significantly affect the earth pressure, driving resistance, and vertical bearing capacity of monopoles. Smaller L/d and L/H ratios lead to greater earth pressure on the pile and more pronounced effects on driving resistance and vertical bearing capacity. The development of this method offers an approach for estimating the ultimate bearing capacity of tubular piles before and after foundation pit excavation during preliminary design, thereby holding substantial engineering significance. Full article
(This article belongs to the Special Issue Research on Structural Analysis and Design of Civil Structures)
Show Figures

Figure 1

18 pages, 2925 KiB  
Article
Study on the Effect of Pile Spacing on the Bearing Performance of Low-Capping Concrete Expanded-Plate Group Pile Foundations Under Composite Stress
by Yongmei Qian, Yawen Yu, Miao Ma, Yu Mu, Zhongwei Ma and Tingting Zhou
Buildings 2025, 15(14), 2412; https://doi.org/10.3390/buildings15142412 - 9 Jul 2025
Viewed by 251
Abstract
The spacing between piles plays a crucial role in determining the load-bearing capacity of CEP group pile foundations equipped with a bearing platform. In this research, five sets of six-pile models with different pile spacings were created using ANSYS finite element analysis. To [...] Read more.
The spacing between piles plays a crucial role in determining the load-bearing capacity of CEP group pile foundations equipped with a bearing platform. In this research, five sets of six-pile models with different pile spacings were created using ANSYS finite element analysis. To understand how damage impacts the system, this study examined displacement patterns and stress distribution within both the piles and the adjacent soil. Additionally, the force interaction between the piles and soil was explored to uncover the underlying failure mechanisms. The results shed light on how varying pile spacing affects the overall bearing capacity of the foundations. Based on our thorough analysis, we pinpoint the most effective pile spacing configuration. The findings reveal that, generally speaking, increasing the distance between piles tends to boost the load-bearing capacity of the entire group foundation. However, this relationship is not linear; once the spacing surpasses four times the cantilever’s diameter, further widening does not yield noticeable gains in performance. In real-world scenarios, it is advisable to keep the spacing between 3.5 to 4 times the cantilever diameter for optimal results. Moreover, the stability of the bearing platform and the plate plays a vital role in resisting sideways forces. Ensuring that the shear strength of the surrounding soil aligns with established standards is essential for maintaining the overall durability and safety of the group pile system. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 4581 KiB  
Article
Deformation Response and Load Transfer Mechanism of Collar Monopile Foundations in Saturated Cohesive Soils
by Zhuang Liu, Lunliang Duan, Yankun Zhang, Linhong Shen and Pei Yuan
Buildings 2025, 15(14), 2392; https://doi.org/10.3390/buildings15142392 - 8 Jul 2025
Viewed by 289
Abstract
Collar monopile foundation is a new type of offshore wind power foundation. This paper explores the horizontal bearing performance of collar monopile foundation in saturated cohesive soil through a combination of physical experiments and numerical simulations. After analyzing the deformation characteristics of the [...] Read more.
Collar monopile foundation is a new type of offshore wind power foundation. This paper explores the horizontal bearing performance of collar monopile foundation in saturated cohesive soil through a combination of physical experiments and numerical simulations. After analyzing the deformation characteristics of the pile–soil system under horizontal load through static load tests, horizontal cyclic loading tests were conducted at different cycles to study the cumulative deformation law of the collar monopile. Based on a stiffness degradation model for soft clay, a USDFLD subroutine was developed in Fortran and embedded in ABAQUS. Coupled with the Mohr–Coulomb criterion, it was used to simulate the deformation behavior of the collar monopile under horizontal cyclic loading. The numerical model employed the same geometric dimensions and boundary conditions as the physical test, and the simulated cumulative pile–head displacement under 4000 load cycles showed good agreement with the experimental results, thereby verifying the rationality and reliability of the proposed simulation method. Through numerical simulation, the distribution characteristics of bending moment and the shear force of collar monopile foundation were studied, and the influence of pile shaft and collar on the horizontal bearing capacity of collar monopile foundation at different loading stages was analyzed. The results show that as the horizontal load increases, cracks gradually appear at the bottom of the collar and in the surrounding soil. The soil disturbance caused by the sliding and rotation of the collar will gradually increase, leading to plastic failure of the surrounding soil and reducing the bearing capacity. The excess pore water pressure in shallow soil increases rapidly in the early cycle and then gradually decreases with the formation of drainage channels. Deep soil may experience negative pore pressure, indicating the presence of a suction effect. This paper can provide theoretical support for the design optimization and performance evaluation of collar monopile foundations in offshore wind power engineering applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 7033 KiB  
Article
Numerical Investigation into the Response of a Laterally Loaded Pile in Coastal and Offshore Slopes Considering Scour Effect
by Hao Zhang, Abubakarr Barrie, Fayun Liang and Chen Wang
Water 2025, 17(13), 2032; https://doi.org/10.3390/w17132032 - 7 Jul 2025
Viewed by 327
Abstract
This study investigates the response of laterally loaded pile foundations embedded in sloping beds under scour conditions, which is vital for the design and stability of coastal and offshore infrastructure like sea-crossing bridges, offshore wind turbines, and wharves. While previous studies have focused [...] Read more.
This study investigates the response of laterally loaded pile foundations embedded in sloping beds under scour conditions, which is vital for the design and stability of coastal and offshore infrastructure like sea-crossing bridges, offshore wind turbines, and wharves. While previous studies have focused on scour-affected pile performance in horizontal beds, this research expands the scope by incorporating sloped beds and corresponding scour effect, which are common in coastal and offshore environments. A three-dimensional finite element model was established to evaluate the pile foundation’s lateral load-bearing capacity under different slope and scour conditions, according to preceding flume tests on the mechanism of local scour around a pile in sloping bed. The results indicate that the lateral response of the pile is significantly influenced by the seabed slope and scour depth. A negatively inclined seabed weakens the interaction between the pile and the surrounding sediment, thereby reducing the lateral bearing capacity and bending moment. As the scour depth increases, the support provided by the soil further weakens, intensifying the reduction in lateral resistance. This effect is particularly pronounced for steep negative slopes, where the combined impact of slope and scour has a more significant detrimental effect. Full article
Show Figures

Figure 1

15 pages, 4293 KiB  
Article
A Study on the Vertical Bearing Characteristics of Screw Piles in Permafrost Regions
by Tao Liu, Jun Lv, Xuyan Deng, Chunxiang Guo, Weijia Zhang and Daijun Jiang
Appl. Sci. 2025, 15(13), 7416; https://doi.org/10.3390/app15137416 - 1 Jul 2025
Viewed by 299
Abstract
The screw piles used in permafrost regions represent a new type of pile, and their vertical bearing characteristics play a crucial role in ensuring the normal operation of engineering buildings. This study establishes a numerical calculation model to simulate the interaction between screw [...] Read more.
The screw piles used in permafrost regions represent a new type of pile, and their vertical bearing characteristics play a crucial role in ensuring the normal operation of engineering buildings. This study establishes a numerical calculation model to simulate the interaction between screw piles and soil in permafrost regions and verifies the numerical simulation results through model tests. The bearing mechanism of screw piles in permafrost areas is studied and compared with common, bored, cast-in-place piles widely used. Finally, a method for estimating the bearing capacity of screw piles in permafrost regions is proposed. The research indicates that approximately 90% of the bearing capacity of screw piles in permafrost regions is derived from the mechanical interaction between the concrete pile’s side and the permafrost soil. The shear strength of the permafrost is the primary determinant of the pile foundation’s bearing capacity, while the seasonally active layer has a minimal impact on its bearing capacity, resulting in a stable year-round performance. In permafrost regions, the equivalent friction resistance of screw piles is significantly greater than that of the conventional cast-in-place piles. When the pile reaches its ultimate bearing capacity, the plastic zone on the pile’s side becomes connected, and shear failure occurs in the surrounding soil. The design value of the bearing capacity of a single pile can be effectively estimated in engineering practice by improving the formula of the code for calculating the vertical bearing capacity. Full article
Show Figures

Figure 1

15 pages, 3155 KiB  
Article
Study on Bearing Characteristics of DMJ Group Pile Composite Foundation Under Embankment Loading
by Haining Wang, Yuhe Zhang, Yang Wang, Weizhe Feng, Jie Li, Kaixing Zhang, Yu Rong, Zhanyong Yao and Kai Yao
CivilEng 2025, 6(3), 35; https://doi.org/10.3390/civileng6030035 - 30 Jun 2025
Viewed by 294
Abstract
The Deep Cement Mixing Integrated Drilling, Mixing, and Jetting (DMJ) technique was innovatively developed by incorporating high-pressure jetting apertures into the mixing blades to enhance the bearing capacity of deep cement-mixed piles. In this study, the bearing characteristics of DMJ pile composite foundations [...] Read more.
The Deep Cement Mixing Integrated Drilling, Mixing, and Jetting (DMJ) technique was innovatively developed by incorporating high-pressure jetting apertures into the mixing blades to enhance the bearing capacity of deep cement-mixed piles. In this study, the bearing characteristics of DMJ pile composite foundations under embankment loading are investigated using numerical simulation. Through comparative simulations involving various pile configurations, the results demonstrate that DMJ pile composite foundations exhibit significantly enhanced settlement control compared to conventional deep mixing piles. Notably, under identical area replacement ratios, the use of DMJ piles reduces total foundation settlement by approximately 30%. Furthermore, the findings indicate that larger pile diameters and smaller spacing are particularly effective in minimizing settlement. In terms of load transfer efficiency, DMJ piles are capable of transmitting embankment loads to depths of up to 15 m, surpassing the 10 m transfer depth observed in conventional pile systems. An analysis of excess pore water pressure further reveals that DMJ piles promote more effective dissipation, highlighting their superior performance in maintaining foundation stability under embankment loading. Full article
(This article belongs to the Section Geotechnical, Geological and Environmental Engineering)
Show Figures

Figure 1

23 pages, 3551 KiB  
Article
The Influence of Soft Soil, Pile–Raft Foundation and Bamboo on the Bearing Characteristics of Reinforced Concrete (RC) Structure
by Zhibin Zhong, Xiaotong He, Shangheng Huang, Chao Ma, Baoxian Liu, Zhile Shu, Yineng Wang, Kai Cui and Lining Zheng
Buildings 2025, 15(13), 2302; https://doi.org/10.3390/buildings15132302 - 30 Jun 2025
Viewed by 357
Abstract
Pile–raft foundations are widely used in soft soil engineering due to their good integrity and high stiffness. However, traditional design methods independently design pile–raft foundations and superstructures, ignoring their interaction. This leads to significant deviations from actual conditions when the superstructure height increases, [...] Read more.
Pile–raft foundations are widely used in soft soil engineering due to their good integrity and high stiffness. However, traditional design methods independently design pile–raft foundations and superstructures, ignoring their interaction. This leads to significant deviations from actual conditions when the superstructure height increases, resulting in excessive costs and adverse effects on building stability. This study experimentally investigates the interaction characteristics of pile–raft foundations and superstructures in soft soil under different working conditions using a 1:10 geometric similarity model. The superstructure is a cast-in-place frame structure (beams, columns, and slabs) with bamboo skeletons with the same cross-sectional area as the piles and rafts, cast with concrete. The piles in the foundation use rectangular bamboo strips (side length ~0.2 cm) instead of steel bars, with M1.5 mortar replacing C30 concrete. The raft is also made of similar materials. The results show that the soil settlement significantly increases under the combined action of the pile–raft and superstructure with increasing load. The superstructure stiffness constrains foundation deformation, enhances bearing capacity, and controls differential settlement. The pile top reaction force exhibits a logarithmic relationship with the number of floors, coordinating the pile bearing performance. Designers should consider the superstructure’s constraint of the foundation deformation and strengthen the flexural capacity of inner pile tops and bottom columns for safety and economy. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 2766 KiB  
Article
Parameter Analysis of Pile Foundation Bearing Characteristics Based on Pore Water Pressure Using Rapid Load Test
by Jing-Jie Su, Xue-Liang Zhao, Qing Guo, Wei-Ming Gong, Yu-Chen Wang and Tong-Xing Zeng
Infrastructures 2025, 10(7), 159; https://doi.org/10.3390/infrastructures10070159 - 26 Jun 2025
Viewed by 250
Abstract
A novel approach for determining the bearing capacity of pile foundations using rapid load testing is suggested to rectify the inaccuracies arising from the presumption of a constant damping coefficient and excess pore water pressure during the evaluation of pile foundation bearing capacity [...] Read more.
A novel approach for determining the bearing capacity of pile foundations using rapid load testing is suggested to rectify the inaccuracies arising from the presumption of a constant damping coefficient and excess pore water pressure during the evaluation of pile foundation bearing capacity in soil. This research focuses on the characteristics associated with the segmented damping coefficient of pile foundations and the permeability coefficient of sand at the pile terminus, resulting in a long pulse vibration equation derived from dynamic effects. A numerical model incorporating the damping coefficient and permeability coefficient is developed, yielding the time history features of load, displacement, and acceleration. The findings indicate that (1) the long pulse vibration equation, predicated on dynamic effects, aligns more closely with the actual bearing capacity of pile foundations than traditional detection theory; (2) in the rapid load test method, the maximum load applied to sand pile foundations occurs prior to peak displacement, while the ultimate bearing capacity, after accounting for inertial forces, corresponds to the maximum displacement value; (3) the permeability coefficient significantly influences the ultra-static pore water pressure, and the testing error regarding the bearing capacity of low permeability sand pile foundations using the rapid loading method is elevated. Full article
Show Figures

Figure 1

Back to TopTop