Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (324)

Search Parameters:
Keywords = beam pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5580 KiB  
Article
A CNN-GS Hybrid Algorithm for Generating Pump Light Fields in Atomic Magnetometers
by Miaohui Song, Ying Liu, Feijie Lu, Qian Cao and Yueyang Zhai
Photonics 2025, 12(8), 796; https://doi.org/10.3390/photonics12080796 (registering DOI) - 7 Aug 2025
Abstract
Atomic magnetometers (AMs), recognized for their ultra-high magnetic sensitivity, demand highly uniform pump light fields to maximize measurement accuracy. In this paper, a phase modulation-based method using convolutional neural networks (CNN) and the Gerchberg–Saxton (GS) algorithm is proposed to generate the pumping light [...] Read more.
Atomic magnetometers (AMs), recognized for their ultra-high magnetic sensitivity, demand highly uniform pump light fields to maximize measurement accuracy. In this paper, a phase modulation-based method using convolutional neural networks (CNN) and the Gerchberg–Saxton (GS) algorithm is proposed to generate the pumping light field, and the model was trained using a supervised learning approach with a custom dataset. The specific training settings are as follows: the backpropagation algorithm was adopted as the training algorithm, and the Adam optimization method was used for network training, with a learning rate of 0.001 and a total of 100 training epochs, utilizing a liquid crystal spatial light modulator (LCSLM) to regulate the light field phase distribution dynamically. By transforming Gaussian beams into flat-top beams, the method significantly enhances polarization uniformity within vapor cells, leading to improved magnetometric sensitivity. The proposed hybrid algorithm reduces the mean square error from 35% to 19% and peak non-uniformity from 21% to 7.6%. A reflective LCSLM-based optical setup is implemented to produce circular and square flat-top beams with a measured non-uniformity of 5.1%, resulting in an enhancement of magnetic sensitivity from 14.04fT/Hz1/2 to 7.80fT/Hz1/2. Full article
13 pages, 3812 KiB  
Article
Generation of Four-Beam Output in a Bonded Nd:YAG/Cr4+:YAG Laser via Fiber Splitter Pumping
by Qixiu Zhong, Dongdong Meng, Zhanduo Qiao, Wenqi Ge, Tieliang Zhang, Zihang Zhou, Hong Xiao and Zhongwei Fan
Photonics 2025, 12(8), 760; https://doi.org/10.3390/photonics12080760 - 29 Jul 2025
Viewed by 184
Abstract
To address the poor thermal performance and low output efficiency of conventional solid-state microchip lasers, this study proposes and implements a bonded Nd:YAG/Cr4+:YAG laser based on fiber splitter pumping. Experimental results demonstrate that at a 4.02 mJ pump pulse energy and [...] Read more.
To address the poor thermal performance and low output efficiency of conventional solid-state microchip lasers, this study proposes and implements a bonded Nd:YAG/Cr4+:YAG laser based on fiber splitter pumping. Experimental results demonstrate that at a 4.02 mJ pump pulse energy and a 100 Hz repetition rate, the system achieves four linearly polarized output beams with an average pulse energy of 0.964 mJ, a repetition rate of 100 Hz, and an optical-to-optical conversion efficiency of 23.98%. The energy distribution ratios for the upper-left, lower-left, upper-right, and lower-right beams are 22.61%, 24.46%, 25.50%, and 27.43%, with pulse widths of 2.184 ns, 2.193 ns, 2.205 ns, and 2.211 ns, respectively. As the optical axis distance increases, the far-field spot pattern transitions from a single circular profile to four fully separated spots, where the lower-right beam exhibits beam quality factors of Mx2 = 1.181 and My2 = 1.289. Simulations at a 293.15 K coolant temperature and a 4.02 mJ pump energy reveal that split pumping reduces the volume-averaged temperature rise in Nd:YAG by 28.81% compared to single-beam pumping (2.57 K vs. 3.61 K), decreases the peak temperature rise by 66.15% (6.97 K vs. 20.59 K), and suppresses peak-to-peak temperature variation by 78.6% (1.34 K vs. 6.26 K). Compared with existing multi-beam generation methods, the fiber splitter approach offers integrated advantages—including compact size, low cost, high energy utilization, superior beam quality, and elevated damage thresholds—and thus shows promising potential for automotive multi-point ignition, multi-beam single-photon counting LiDAR, and laser-induced breakdown spectroscopy (LIBS) online analysis. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

16 pages, 2583 KiB  
Article
Burst-Mode Operation of End-Pumped, Passively Q-Switched (Er/Yb):Glass Lasers
by Stephen R. Chinn, Lew Goldberg and A. D. Hays
Photonics 2025, 12(8), 750; https://doi.org/10.3390/photonics12080750 - 25 Jul 2025
Viewed by 174
Abstract
We describe the output characteristics of a compact, passively Q-switched, diode-end-pumped (Er/Yb):Glass laser operating in a multi-pulse burst mode. Such operation enables much higher optical efficiency and larger output of total energy than possible with conventional solitary pulse emissions. The laser generated a [...] Read more.
We describe the output characteristics of a compact, passively Q-switched, diode-end-pumped (Er/Yb):Glass laser operating in a multi-pulse burst mode. Such operation enables much higher optical efficiency and larger output of total energy than possible with conventional solitary pulse emissions. The laser generated a 15-pulse burst of pulses at 1.5 μm with a combined energy of 5.8 mJ. Measurements of pulse energies, spatial mode characteristics, output beam divergence, and impact of thermal effects in the (Er/Yb):Glass are described. These results are compared to predictions of a numerical simulation using a finite-difference beam propagation method (FD-BPM) that incorporates thermal effects caused by distributed local heating in the glass. We show good agreement between the measured and simulated laser output characteristics. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

12 pages, 1896 KiB  
Article
A 6 kW Level Linearly Polarized Near-Diffraction-Limited Monolithic Fiber Laser with a 0.43 nm Linewidth
by Zixiang Gao, Qiang Shu, Fang Li, Chun Zhang, Fengyun Li, Xingchen Jiang, Yu Wen, Cheng Chen, Li Li, Qiuhui Chu, Rumao Tao, Honghuan Lin, Zhitao Peng and Jianjun Wang
Photonics 2025, 12(7), 701; https://doi.org/10.3390/photonics12070701 - 11 Jul 2025
Viewed by 406
Abstract
A high-power, narrow-linewidth, all-fiber polarization-maintaining (PM) amplifier has been demonstrated. A lasing power of 5870 W has been delivered in master oscillator power amplifier architecture with cascaded white noise source (WNS) phase modulation and bidirectional pumping schemes. The maximal power was limited by [...] Read more.
A high-power, narrow-linewidth, all-fiber polarization-maintaining (PM) amplifier has been demonstrated. A lasing power of 5870 W has been delivered in master oscillator power amplifier architecture with cascaded white noise source (WNS) phase modulation and bidirectional pumping schemes. The maximal power was limited by the onset of stimulated Brillouin scattering. At the maximum power operation, the amplifier exhibited a 3 dB spectral linewidth of 0.43 nm with beam quality being M2 < 1.33 and polarization extinction ratio (PER) being 16.3 dB. To the best of our knowledge, this represents the highest spectral brightness and PER achieved by PM fiber laser systems around 6 kW-level operation. Full article
(This article belongs to the Special Issue High-Power Fiber Lasers)
Show Figures

Figure 1

43 pages, 6150 KiB  
Article
The Effect of Surface Roughness on Supersonic Nozzle Flow and Electron Dispersion at Low Pressure Conditions
by Pavla Šabacká, Jiří Maxa, Robert Bayer, Tomáš Binar and Petr Bača
Sensors 2025, 25(13), 4204; https://doi.org/10.3390/s25134204 - 5 Jul 2025
Viewed by 367
Abstract
This study investigates supersonic flow within a nozzle under low-pressure conditions at the continuum mechanics boundary. This phenomenon is commonly encountered in applications such as the differentially pumped chamber of an Environmental Scanning Electron Microscope (ESEM), which employs an aperture to separate two [...] Read more.
This study investigates supersonic flow within a nozzle under low-pressure conditions at the continuum mechanics boundary. This phenomenon is commonly encountered in applications such as the differentially pumped chamber of an Environmental Scanning Electron Microscope (ESEM), which employs an aperture to separate two regions with a great pressure gradient. The nozzle geometry and flow control in this region can significantly influence the scattering and loss of the primary electron beam traversing the differentially pumped chamber and aperture. To this end, an experimental chamber was designed to explore aspects of this low-pressure regime, characterized by a varying ratio of inertial to viscous forces. The initial experimental results obtained using pressure sensors from the fabricated experimental chamber were utilized to refine the Ansys Fluent simulation setup, and in this combined approach, initial analyses of supersonic flow and shock waves in low-pressure environments were conducted. The refined Ansys Fluent system demonstrated a very good correspondence with the experimental findings. Subsequently, an analysis of the influence of surface roughness on the resulting flow behavior in low-pressure conditions was performed on this refined model using the refined CFD model. Based on the obtained results, a comparison of the influence of nozzle roughness on the resulting electron beam scattering was conducted for selected low-pressure variants relevant to the operational conditions of the Environmental Scanning Electron Microscope (ESEM). The influence of roughness at elevated working pressures within the ESEM operating regime on reduced electron beam scattering has been demonstrated. At lower pressure values within the ESEM operating regime, this influence is significantly diminished. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

21 pages, 3171 KiB  
Review
Self-Mode-Locking and Frequency-Modulated Comb Semiconductor Disk Lasers
by Arash Rahimi-Iman
Photonics 2025, 12(7), 677; https://doi.org/10.3390/photonics12070677 - 5 Jul 2025
Viewed by 545
Abstract
Optically pumped semiconductor disk lasers—known as vertical-external-cavity surface-emitting lasers (VECSELs)—are promising devices for ultrashort pulse formation. For it, a “SESAM-free” approach labeled “self-mode-locking” received considerable attention in the past decade, relying solely on a chip-related nonlinear optical property which can establish adequate pulsing [...] Read more.
Optically pumped semiconductor disk lasers—known as vertical-external-cavity surface-emitting lasers (VECSELs)—are promising devices for ultrashort pulse formation. For it, a “SESAM-free” approach labeled “self-mode-locking” received considerable attention in the past decade, relying solely on a chip-related nonlinear optical property which can establish adequate pulsing conditions—thereby suggesting a reduced reliance on a semiconductor saturable-absorber mirror (the SESAM) in the cavity. Self-mode-locked (SML) VECSELs with sub-ps pulse durations were reported repeatedly. This motivated investigations on a Kerr-lensing type effect acting as an artificial saturable absorber. So-called Z-scan and ultrafast beam-deflection experiments were conducted to emphasize the role of nonlinear lensing in the chip for pulse formation. Recently, in addition to allowing stable ultrashort pulsed operation, self-starting mode-locked operation gave rise to another emission regime related to frequency comb formation. While amplitude-modulated combs relate to signal peaks in time, providing a so-called pulse train, a frequency-modulated comb is understood to cause quasi continuous-wave output with its sweep of instantaneous frequency over the range of phase-locked modes. With gain-bandwidth-enhanced chips, as well as with an improved understanding of the impacts of dispersion and nonlinear lensing properties and cavity configurations on the device output, an enhanced employment of SML VECSELs is to be expected. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

9 pages, 1553 KiB  
Communication
Orthogonally Polarized Pr:LLF Red Laser at 698 nm with Tunable Power Ratio
by Haotian Huang, Menghan Jia, Yuzhao Li, Jing Xia, Nguyentuan Anh and Yanfei Lü
Photonics 2025, 12(7), 666; https://doi.org/10.3390/photonics12070666 - 1 Jul 2025
Viewed by 175
Abstract
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of [...] Read more.
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of the waist location of the pump beam in the active media, the output power ratio of the two polarized components of the OPSRL could be adjusted. Under pumping by a 20 W, 444 nm InGaN laser diode (LD), a maximum total output power of 4.12 W was achieved with equal powers for both polarized components, corresponding to an optical conversion efficiency of 23.8% relative to the absorbed pump power. Moreover, by a type-II critical phase-matched (CPM) BBO crystal, a CW ultraviolet (UV) second-harmonic generation (SHG) at 349 nm was also obtained with a maximum output power of 723 mW. OPSRLs can penetrate deep tissues and demonstrate polarization-controlled interactions, and are used in bio-sensing and industrial cutting with minimal thermal distortion, etc. The dual-polarized capability of OPSRLs also supports multi-channel imaging and high-speed interferometry. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

22 pages, 11611 KiB  
Article
Analysis of Structural Internal Forces and Stratum Deformation in Shaft Construction Using Vertical Shaft Sinking Machine
by Hexige Baoyin, Zhibing Xu, Long Yu, Xu Zhang, Xiaoxiao Wang and Yang Liu
Buildings 2025, 15(12), 2043; https://doi.org/10.3390/buildings15122043 - 13 Jun 2025
Viewed by 456
Abstract
The use of the vertical shaft sinking machine (VSM) for shaft construction can effectively improve construction safety and efficiency. This study focused on analyzing the internal forces and deformation characteristics of a 50.3 m deep shaft constructed by the VSM method. Findings reveal [...] Read more.
The use of the vertical shaft sinking machine (VSM) for shaft construction can effectively improve construction safety and efficiency. This study focused on analyzing the internal forces and deformation characteristics of a 50.3 m deep shaft constructed by the VSM method. Findings reveal that the external pressure of the shaft is positively correlated with the excavation depth, increasing as the depth grows. Pumping water inside the shaft disrupts the balance of the soil behind it, leading to a reduction in the external pressure of the shaft wall. During the excavation and sinking stage, the bottom connecting beam mainly endures compression. After water pumping, the coupling and restrictive effect between the bottom connecting beam and the shaft wall strengthens, significantly boosting the internal compressive stress. The stress states of the segments above and below the shaft vary: the upper segments are under pure compression, while the lower ones may experience uneven deformation due to multiple factors. Moreover, the cast-in-place piles and surrounding stratum show a “bulging” deformation pattern during sinking, greatly influenced by the shaft’s attitude deviation, whereas grouting at the shaft bottom and internal water pumping have minimal impact on the surrounding stratum. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 2846 KiB  
Article
An FSM-Assisted High-Accuracy Autonomous Magnetic Compensation Optimization Method for Dual-Channel SERF Magnetometers Used in Weak Biomagnetic Signal Measurement
by Xinran Tian, Bo Bao, Ridong Wang and Dachao Li
Sensors 2025, 25(12), 3690; https://doi.org/10.3390/s25123690 - 12 Jun 2025
Viewed by 341
Abstract
Atomic magnetometers based on the spin-exchange relaxation-free (SERF) regime have broad applications in bio-magnetic measurement due to their high sensitivity and miniaturized size. In this paper, we propose a SERF-based magnetometer using 1 × 2 polarization-maintaining fiber (PMF) with single-beam parameter optimization. The [...] Read more.
Atomic magnetometers based on the spin-exchange relaxation-free (SERF) regime have broad applications in bio-magnetic measurement due to their high sensitivity and miniaturized size. In this paper, we propose a SERF-based magnetometer using 1 × 2 polarization-maintaining fiber (PMF) with single-beam parameter optimization. The impacts of temperature, pumping laser power, and modulation amplitude on the magnetometer’s response signal at the SERF regime are examined. Moreover, through the simulation of zero-field resonance, the compensation accuracy is optimized. To further improve the compensation stability and accuracy, a novel finite state machine (FSM)-assisted iterative optimization magnetic field compensation algorithm is proposed. A pT-level compensation resolution with an error below 1.6% is achieved, which lays the foundation for the subsequent application of biomagnetic measurement arrays. Full article
Show Figures

Figure 1

15 pages, 1185 KiB  
Article
Analysis and Suppression of Pump Beam Alignment Error in SERF Co-Magnetometer
by Qi Yuan, Wenfeng Fan, Haoying Pang, Xue Han, Zhuo Wang and Wei Quan
Photonics 2025, 12(6), 550; https://doi.org/10.3390/photonics12060550 - 29 May 2025
Viewed by 428
Abstract
The beam angle error of the pump light in a K-Rb-21Ne spin-exchange relaxation-free atomic co-magnetometer (SERFCM) significantly degrades the efficiency of optical pumping and the system’s ability to suppress magnetic field noise. In this work, a system response model that incorporates [...] Read more.
The beam angle error of the pump light in a K-Rb-21Ne spin-exchange relaxation-free atomic co-magnetometer (SERFCM) significantly degrades the efficiency of optical pumping and the system’s ability to suppress magnetic field noise. In this work, a system response model that incorporates the pump beam alignment error (PBAE) is established. The influence of PBAE on the scale factor, bandwidth, and magnetic noise response of the inertial output is analyzed. Theoretical results show that PBAE increases the internal magnetic field gradient, reduces the efficiency of nuclear spin hyperpolarization, and increases the nuclear spin relaxation rate, ultimately degrading the system’s scale factor, bandwidth, and magnetic noise suppression capability. Experimental results demonstrate that, compared to the original SERFCM with PBAE, aligning the pump laser using the proposed method improves the polarization strength of nuclear spins by approximately 10% and enhances magnetic noise suppression by 40%. Full article
(This article belongs to the Special Issue Quantum Enhanced Devices and Instruments for Sensing Applications)
Show Figures

Figure 1

24 pages, 4731 KiB  
Article
Simulation and Identification of the Habitat of Antarctic Krill Based on Vessel Position Data and Integrated Species Distribution Model: A Case Study of Pumping-Suction Beam Trawl Fishing Vessels
by Heng Zhang, Yuyan Sun, Hanji Zhu, Delong Xiang, Jianhua Wang, Famou Zhang, Sisi Huang and Yang Li
Animals 2025, 15(11), 1557; https://doi.org/10.3390/ani15111557 - 27 May 2025
Viewed by 453
Abstract
This study, based on the vessel position data of pump-suction beam trawlers and the integrated species distribution model (ISDM), deeply analyzes the spatio-temporal distribution characteristics of the habitat of Antarctic krill and the contributions of key environmental factors. The Convolutional Neural Network–attention model [...] Read more.
This study, based on the vessel position data of pump-suction beam trawlers and the integrated species distribution model (ISDM), deeply analyzes the spatio-temporal distribution characteristics of the habitat of Antarctic krill and the contributions of key environmental factors. The Convolutional Neural Network–attention model (CNN–attention model) was used to identify the fishing status of the vessel position data of Norwegian pump-suction beam trawlers for Antarctic krill during the fishing seasons from 2021 to 2023. Variables of marine environment, including sea surface temperature (SST), sea surface height (SSH), chlorophyll concentration (CHL), sea ice concentration (SIC), sea surface salinity (SSS), and spatial factor Geographical Offshore Linear Distance (GLD) were combined and input into the ISDM for simulating and predicting the spatial distribution of the habitat. The model results show that the Area Under the Curve (AUC) and True Skill Statistic (TSS) indices for all months exceed 0.9, with an average AUC of 0.997 and a TSS of 0.973, indicating extremely high accuracy of the model in habitat prediction. Further analysis of environmental factors reveals that Geographical Offshore Linear Distance (GLD) and chlorophyll concentration (CHL) are the main factors affecting habitat suitability, contributing 34.9% and 25.2%, respectively, and their combined contribution exceeds 60%. In addition, factors such as sea surface height (SSH), sea surface temperature (SST), sea ice concentration (SIC), and sea surface salinity (SSS) have impacts on the habitat distribution to varying degrees, and each factor exhibits different suitability response characteristics in different seasons and sub-regions. There is no significant correlation between the habitat area of Antarctic krill and catch (p > 0.05), while there is a significant positive correlation between the fishing duration and the catch (p < 0.001), indicating that a longer fishing duration can effectively increase the Antarctic krill catch. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

22 pages, 3493 KiB  
Article
Oscillations of the Oil Pipeline Axis with Consideration of the Inertia Component When Pumping Diesel Fuel
by Roman Tutko and Vasyl Lozynskyi
Energies 2025, 18(10), 2472; https://doi.org/10.3390/en18102472 - 12 May 2025
Viewed by 468
Abstract
This study examines a single-span beam crossing without longitudinal deformation compensators during diesel fuel pumping. In addition to static forces, namely, the weight of the pipeline and the transported product, the analysis considers vertical components of inertial forces acting on the oil product [...] Read more.
This study examines a single-span beam crossing without longitudinal deformation compensators during diesel fuel pumping. In addition to static forces, namely, the weight of the pipeline and the transported product, the analysis considers vertical components of inertial forces acting on the oil product and the pipeline itself. These forces are directed perpendicularly to the abscissa axis connecting the endpoints of the crossing. The inertial effects cause significant vertical oscillations of the pipeline, which have not been sufficiently addressed in previous research. This work aims to study these oscillations to determine the displacements of points along the pipeline axis, the magnitudes of the inertial forces, and the resulting bending moments at the crossing. A classical Fourier series method is applied to solve the formulated boundary value problem. The results show that oscillations occur in the vertical plane, are symmetrical relative to the center of the span, and are undamped. The maximum vertical displacement reaches approximately 57 mm at the midpoint of the crossing, and the oscillation period is around 0.415 s. Inertial force distribution and bending moments are also symmetric about the center. A detailed analysis with small time steps confirmed that the oscillations are strictly periodic, exhibiting equal displacements in the upward and downward directions. The results highlight that fatigue loads arise during the operation of such crossings, which is important for assessing the strength and stability of oil pipeline structures under real operating conditions. Full article
(This article belongs to the Special Issue Advances in Gas Transportation by Pipeline and LNG)
Show Figures

Figure 1

10 pages, 2141 KiB  
Article
Dual-Wavelength Operation at 607 nm and 640 nm with the Same Threshold and Slope Efficiency in Pr3+:LiLuF4 Crystal
by Haotian Huang, Jing Xia, Nguyentuan Anh, Yuzhao Li and Yanfei Lü
Photonics 2025, 12(5), 447; https://doi.org/10.3390/photonics12050447 - 5 May 2025
Cited by 2 | Viewed by 412
Abstract
A dual-wavelength (DW) Pr3+:LiLuF4 (Pr:LLF) laser with the same threshold and slope efficiency was achieved for the first time. We theoretically deduced the conditions for obtaining the same threshold and slope efficiency of the DW operation, and experimentally demonstrated the [...] Read more.
A dual-wavelength (DW) Pr3+:LiLuF4 (Pr:LLF) laser with the same threshold and slope efficiency was achieved for the first time. We theoretically deduced the conditions for obtaining the same threshold and slope efficiency of the DW operation, and experimentally demonstrated the orange-red DW Pr:LLF laser by optimizing the output coupling transmittance and adjusting the rotation angle of the intracavity Lyot filter. A CW orange-red DW laser, pumped by a 10 W 479 nm frequency-doubled optically pumped semiconductor laser (2ω-OPSL), delivers combined outputs of 607 nm and 640 nm with a total power of 2.69 W. The orange and red wavelengths maintained balanced power output under each pump level. Furthermore, by a type-I critical phase-matched (CPM) β-BaB2O4 (BBO) crystal, a CW ultraviolet (UV) second harmonic generation (SHG) at 312 nm was also obtained through intracavity sum-frequency mixing (SFM) of the 607 nm and 640 nm fundamental beams, achieving a maximum power output of 812 mW. Full article
Show Figures

Figure 1

31 pages, 9296 KiB  
Article
An Experimental and Numerical Analysis of the Influence of Surface Roughness on Supersonic Flow in a Nozzle Under Atmospheric and Low-Pressure Conditions
by Pavla Šabacká, Jiří Maxa, Robert Bayer, Tomáš Binar, Petr Bača, Jana Švecová, Jaroslav Talár and Martin Vlkovský
Technologies 2025, 13(4), 160; https://doi.org/10.3390/technologies13040160 - 16 Apr 2025
Cited by 1 | Viewed by 658
Abstract
The ongoing research in Environmental Scanning Electron Microscopy (ESEM) is contributed to in this paper. Specifically, this study investigates supersonic flow in a nozzle aperture under low-pressure conditions at the continuum mechanics boundary. This phenomenon is prevalent in the differentially pumped chamber of [...] Read more.
The ongoing research in Environmental Scanning Electron Microscopy (ESEM) is contributed to in this paper. Specifically, this study investigates supersonic flow in a nozzle aperture under low-pressure conditions at the continuum mechanics boundary. This phenomenon is prevalent in the differentially pumped chamber of an ESEM, which separates two regions with a significant pressure gradient using an aperture with a pressure ratio of approximately 10:1 in the range of 10,000 to 100 Pa. The influence of nozzle wall roughness on the boundary layer characteristics and its subsequent impact on the oblique shock wave behavior, and consequently, on the static pressure distribution along the flow axis, is solved in this paper. It demonstrates the significant effect of varying inertial-to-viscous force ratios at low pressures on the resulting impact of roughness on the oblique shock wave characteristics. The resulting oblique shock wave distribution significantly affects the static pressure profile along the axis, which can substantially influence the scattering and loss of the primary electron beam traversing the differential pumping stage. This, in turn, affects the sharpness of the resulting image. The boundary layer within the nozzle plays a crucial role in determining the overall flow characteristics and indirectly affects beam scattering. This study examines the influence of surface roughness and quality of the manufactured nozzle on the resulting flow behavior. The initial results obtained from experimental measurements using pressure sensors, when compared to CFD simulation results, demonstrate the necessity of accurately setting roughness values in CFD calculations to ensure accurate results. The CFD simulation has been validated against experimental data, enabling further simulations. The research combines physical theory, CFD simulations, advanced experimental sensing techniques, and precision manufacturing technologies for the critical components of the experimental setup. Full article
(This article belongs to the Special Issue New Technologies for Sensors)
Show Figures

Figure 1

14 pages, 5826 KiB  
Communication
Research on the Superposition Evolution of Double Laguerre–Gaussian Modes Based on Astigmatic Mode Conversion
by Lingmin Zhao, Jingliang Liu, Jiaxin Yuan, Yongji Yu, Guangyong Jin and Xinyu Chen
Photonics 2025, 12(4), 378; https://doi.org/10.3390/photonics12040378 - 14 Apr 2025
Viewed by 396
Abstract
In this paper, the evolution of the beam from the double Hermite–Gaussian beam superposition state to the double Laguerre–Gaussian beam superposition state is realized based on the astigmatism conversion. Firstly, the tunable output of the double Hermite–Gaussian mode superposition state is realized by [...] Read more.
In this paper, the evolution of the beam from the double Hermite–Gaussian beam superposition state to the double Laguerre–Gaussian beam superposition state is realized based on the astigmatism conversion. Firstly, the tunable output of the double Hermite–Gaussian mode superposition state is realized by adjusting the off-axis pumping distance of the crystal. On this basis, an astigmatic mode converter is added to the back end of the resonant cavity output mirror. By utilizing it, the evolution from the double Hermite–Gaussian mode superposition state to the specific double Laguerre–Gaussian mode superposition state is realized. The evolution process of the double mode superposition state based on the astigmatic mode is analyzed theoretically. The light field change of the evolution process is demonstrated experimentally. Full article
(This article belongs to the Special Issue Realization and Application of Vortex Laser)
Show Figures

Figure 1

Back to TopTop