An FSM-Assisted High-Accuracy Autonomous Magnetic Compensation Optimization Method for Dual-Channel SERF Magnetometers Used in Weak Biomagnetic Signal Measurement
Abstract
Highlights
- FSM-IOMCA Algorithm: A novel finite state machine-assisted iterative optimization method achieves pT-level compensation resolution (error < 1.6%) and 38% higher sensitivity compared to the IHCA algorithm.
- Single-Beam Dual-Channel Design: Utilizes a 1 × 2 polarization-maintaining fiber (PMF) for a miniaturized SERF magnetometer and establishes a single-beam dual-channel system.
- Stability and high accuracy: The FSM framework ensures robustness and enables the automation of magnetic compensation; The iterative optimization method improves the accuracy, reduces the crosstalk between axes and probes, enhances the performance of biomagnetic measurement system, and makes the detection of weak biomagnetic signals more accurate and reliable.
- Array-based biomagnetic sensing potential: 1 × 2 PMF can be extended to 1 × N PMF to achieve multi-channel biomagnetic measurement, which is crucial for biomedical applications (e.g., magnetocardiography, magnetoencephalography, and biomarker detection of magnetic markers).
Abstract
1. Introduction
2. Principle
3. Simulation
4. System Design
5. Magnetic Compensation Method
5.1. Finite State Machine Model of Three-Axis Autonomous Magnetic Field Compensation System
- -
- S0 (Init state): This state initializes all relevant system parameters before entering the compensation routine.
- -
- S1 (Waiting state): In this state, the system awaits events input:—either “open” (O), which initiates the magnetic compensation process, transitioning the system to the compensation states, or “close” (C), which stops the magnetic compensation process, transitioning the system to the final state SF.
- -
- G1 (Z-axis Compensation states): This set includes sub-states dedicated to Z-axis compensation. Two photodetector signals, denoted as Lz and Rz, are sampled and analyzed. If the absolute difference between two samples is within the predefined minimum allowable error threshold εz (L1), the system transitions to G2, the Y-axis compensation states; if the absolute difference exceeds the minimum error threshold εz (¬L1), the step size lz and error threshold Ez are reduced, and G1 is re-executed; if an execution error (E) occurs any sub-state, the system transitions back to S1, awaiting further events input.
- -
- G2 (Y-axis Compensation states): The process mirrors G1, with two signals Ly and Ry sampled and analyzed. If L2 is satisfied (within minimum error threshold εy), the system transitions to S2; if not (¬L2), the step size ly and error threshold Ey are reduced, and G2 is re-executed. In the case of an error (E), the system returns to S1.
- -
- G3 (X-axis Compensation states): Follows a process analogous to G1 and G2, using samples Lx and Rx. If within a minimum error threshold εx (L3), transition to S3. Otherwise, we reduce lx and Ex, and re-execute G3. Errors (E) lead to a transition to S1.
- -
- S2 (Addition state): Applies a magnetic field increment of 17 nT in both y- and z-directions.
- -
- S3 (Reduction state): Reverts the 17 nT magnetic field increment applied in S2, restoring y- and z-directions to their original values.
- -
- S4 (Cycle state): Determines whether to perform additional compensation cycles. If the cycle index reaches 3 (I), the compensation process is deemed complete and the system returns to S1; if not (¬I), the initial step size l and error threshold E are reduced, and the system re-enters G1 to begin another compensation cycle.
- -
- SF (Final state): Terminates the compensation process.
- -
- S11: Decreases the z-direction coil current Iz by a step lz, setting Lz = Iz − lz.
- -
- S12: Samples photodetector signals. The “first sample” (D11), taken at Lz, is recorded as PD(Lz). The system then proceeds to S13. The “second sample” (D12), taken at Rz, is recorded as PD(Rz), then proceeds to S14.
- -
- S13: Increases Iz by a step lz, setting Rz = Iz + lz.
- -
- S14: Computes the error as | Lz − Rz |/2. If both the error threshold Ez (R1) and minimum error threshold εz (L1) are met, transition to G2; if only R1 is satisfied but not L1, reduce lz and Ez, and return to S11; if R1 is not satisfied, transition to S15.
- -
- S15: Compares the sampled values. If PD(Lz) > PD(Rz), set Iz = Lz; Otherwise, set Iz = Rz.
5.2. Iterative Optimization Method of Three-Axis Autonomous Magnetic Field Compensation System
6. Experimental Results
6.1. Parameters Optimization of SERF-Based Magnetometer
6.2. Performance Analysis of Magnetic Compensation Methods
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murzin, D.; Mapps, D.J.; Levada, K.; Belyaev, V.; Omelyanchik, A.; Panina, L.; Rodionova, V. Ultrasensitive Magnetic Field Sensors for Biomedical Applications. Sensors 2020, 20, 32. [Google Scholar] [CrossRef] [PubMed]
- Buchner, M.; Höfler, K.; Henne, B.; Ney, V.; Ney, A. Tutorial: Basic principles, limits of detection, and pitfalls of highly sensitive SQUID magnetometry for nanomagnetism and spintronics. J. Appl. Phys. 2018, 124, 13. [Google Scholar] [CrossRef]
- Sulai, I.A.; DeLand, Z.J.; Bulatowicz, M.D.; Wahl, C.P.; Wakai, R.T.; Walker, T.G. Characterizing atomic magnetic gradiometers for fetal magnetocardiography. Rev. Sci. Instrum. 2019, 90, 10. [Google Scholar] [CrossRef] [PubMed]
- Boto, E.; Meyer, S.S.; Shah, V.; Alem, O.; Knappe, S.; Kruger, P.; Fromhold, T.M.; Lim, M.; Glover, P.M.; Morris, P.G.; et al. A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. Neuroimage 2017, 149, 404–414. [Google Scholar] [CrossRef]
- Perry, A.R.; Sheng, D.; Krzyzewski, S.P.; Geller, S.; Knappe, S. Microfabricated Optically Pumped Magnetometer Arrays for Biomedical Imaging. Slow Light Fast Light Opto-At. Precis. Metrol. X 2017, 10119, 109–114. [Google Scholar]
- Hari, R.; Parkkonen, L.; Nangini, C. The brain in time: Insights from neuromagnetic recordings. Ann. N. Y. Acad. Sci. 2010, 1191, 89–109. [Google Scholar] [CrossRef]
- Wang, J.L.; Yang, K.; Yang, R.H.; Kong, X.Y.; Chen, W. SQUID Gradiometer Module for Fetal Magnetocardiography Measurements Inside a Thin Magnetically Shielded Room. IEEE Trans. Appl. Supercond. 2019, 29, 4. [Google Scholar] [CrossRef]
- Pan, Y.P.; Wang, S.Y.; Liu, X.Y.; Lin, Y.S.; Ma, L.X.; Feng, Y.; Wang, Z.; Chen, L.; Wang, Y.H. 3D nano-bridge-based SQUID susceptometers for scanning magnetic imaging of quantum materials. Nanotechnology 2019, 30, 7. [Google Scholar] [CrossRef]
- Allred, J.C.; Lyman, R.N.; Kornack, T.W.; Romalis, M.V. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 2002, 89, 4. [Google Scholar] [CrossRef]
- Savukov, I.M.; Romalis, M.V. Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields. Phys. Rev. A 2005, 71, 8. [Google Scholar] [CrossRef]
- Dang, H.B.; Maloof, A.C.; Romalis, M.V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 2010, 97, 3. [Google Scholar] [CrossRef]
- Zamani, A.; Ranjbaran, M.; Tehranchi, M.M.; Hamidi, S.M.; Khalkhali, S.M.H. Myocardial Ischemia Detection by a Sensitive Pump-Probe Atomic Magnetometer. J. Lasers Med. Sci. 2022, 13, e24. [Google Scholar] [CrossRef]
- Clancy, R.J.; Gerginov, V.; Alem, O.; Becker, S.; Knappe, S. A study of scalar optically-pumped magnetometers for use in magnetoencephalography without shielding. Phys. Med. Biol. 2021, 66, 13. [Google Scholar] [CrossRef]
- Wang, B.Y.; Peng, T.; Jiang, Z.Y.; Xu, J.X.; Qu, J.F.; Dai, X.H. Highly Sensitive and Quantitative Magnetic Nanoparticle-Based Lateral Flow Immunoassay with an Atomic Magnetometer. ACS Sens. 2023, 8, 4512–4520. [Google Scholar] [CrossRef]
- Bao, B.; Tian, X.R.; Wang, R.D.; Li, D.C. A novel method for multiple cardiovascular disease biomarker detection using a SERF-based microfluidic platform. Sens. Actuator B-Chem. 2024, 415, 10. [Google Scholar] [CrossRef]
- Kominis, I.K.; Kornack, T.W.; Allred, J.C.; Romalis, M.V. A subfemtotesla multichannel atomic magnetometer. Nature 2003, 422, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Seltzer, S.J.; Romalis, M.V. Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer. Appl. Phys. Lett. 2004, 85, 4804–4806. [Google Scholar] [CrossRef]
- Li, Z.M.; Wakai, R.T.; Walker, T.G. Parametric modulation of an atomic magnetometer. Appl. Phys. Lett. 2006, 89, 3. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Wang, T.; Quan, W.; Yuan, H.; Zhang, H.; Li, Y.; Zou, S. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect. Rev. Sci. Instrum. 2014, 85, 063108. [Google Scholar] [CrossRef]
- Wang, K.; Ma, D.; Li, S.; Gao, Y.; Sun, J. Simultaneous in-situ compensation method of residual magnetic fields for the dual-beam SERF atomic magnetometer. Sens. Actuators A-Phys. 2023, 349, 114055. [Google Scholar] [CrossRef]
- Zhao, J.P.; Liu, G.; Lu, J.X.; Yang, K.; Ma, D.Y.; Xing, B.Z.; Han, B.C.; Ding, M. A Non-Modulated Triaxial Magnetic Field Compensation Method for Spin-Exchange Relaxation-Free Magnetometer Based on Zero-Field Resonance. IEEE Access 2019, 7, 167557–167565. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, K.; Zhou, Y.; Ye, M.; Lu, J. Triaxial precise magnetic field compensation of a zero-field optically pumped magnetometer based on a single-beam configuration. Opt. Express 2022, 30, 24579–24588. [Google Scholar] [CrossRef]
- Dong, H.F.; Lin, H.B.; Tang, X.B. Atomic-Signal-Based Zero-Field Finding Technique for Unshielded Atomic Vector Magnetometer. IEEE Sens. J. 2013, 13, 186–189. [Google Scholar] [CrossRef]
- Long, T.; Han, B.; Song, X.; Suo, Y.; Jia, L. Fast In-Situ Triaxial Remanent Magnetic Field Measurement for Single-Beam SERF Atomic Magnetometer Based on Trisection Algorithm. Photonic Sens. 2023, 13, 230311. [Google Scholar] [CrossRef]
- Seltzer, S.J. Developments in Alkali-Metal Atomic Magnetometry; Princeton University: Princeton, NJ, USA, 2008. [Google Scholar]
- Happer, W.; Tang, H. Spin-Exchange Shift and Narrowing of Magnetic Resonance Lines in Optically Pumped Alkali Vapors. Phys. Rev. Lett. 1973, 31, 273–276. [Google Scholar] [CrossRef]
- Happer, W.; Tam, A.C. Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors. Phys. Rev. A 1977, 16, 1877–1891. [Google Scholar] [CrossRef]
- Bell, W.E.; Bloom, A.L. Optically driven spin precession. Phys. Rev. Lett. 1961, 6, 280. [Google Scholar] [CrossRef]
- Bison, G.; Wynands, R.; Weis, A. Optimization and performance of an optical cardiomagnetometer. J. Opt. Soc. Am. B 2005, 22, 77–87. [Google Scholar] [CrossRef]
- Pullia, A.; Zocca, F. Low-Noise Current Preamplifier for Photodiodes with DC-Current Rejector and Precise Intensity Meter Suited for Optical Light Spectroscopy. In Proceedings of the IEEE Nuclear Science Symposium & Medical Imaging Conference, Knoxville, TN, USA, 30 October–6 November 2010; pp. 1343–1345. [Google Scholar]
- Mouton, F.; Nottingham, A.; Leenen, L.; Venter, H.S. Underlying Finite State Machine for the Social Engineering Attack Detection Model. In Proceedings of the 2017 Information Security for South Africa (ISSA), Johannesburg, South Africa, 16–17 August 2017; pp. 98–105. [Google Scholar]
- Harel, D. Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 1987, 8, 231–274. [Google Scholar] [CrossRef]
- Qi, Z.; Song, Q.; Liu, Y.; Guo, C. FSM-HSVM-Based Locomotion Mode Recognition for Exoskeleton Robot. Appl. Sci. 2022, 12, 5483. [Google Scholar] [CrossRef]
- Tierney, T.M.; Holmes, N.; Mellor, S.; David Lopezæ, J.; Roberts, G.; Hill, R.M.; Boto, E.; Leggett, J.; Shah, V.; Brookes, M.J.; et al. Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography. Neuroimage 2019, 199, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Long, T.; Song, X.; Han, B.; Suo, Y.; Jia, L. Speedy in-situ magnetic field compensation algorithm for multiple-channel single-beam SERF atomic magnetometers. Metrologia 2023, 60, 035006. [Google Scholar] [CrossRef]
Nuclear Spin I | Q(P) | qlp | qhp |
---|---|---|---|
3/2 | 6 | 4 | |
5/2 | 38/3 | 6 | |
7/2 | 22 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Bao, B.; Wang, R.; Li, D. An FSM-Assisted High-Accuracy Autonomous Magnetic Compensation Optimization Method for Dual-Channel SERF Magnetometers Used in Weak Biomagnetic Signal Measurement. Sensors 2025, 25, 3690. https://doi.org/10.3390/s25123690
Tian X, Bao B, Wang R, Li D. An FSM-Assisted High-Accuracy Autonomous Magnetic Compensation Optimization Method for Dual-Channel SERF Magnetometers Used in Weak Biomagnetic Signal Measurement. Sensors. 2025; 25(12):3690. https://doi.org/10.3390/s25123690
Chicago/Turabian StyleTian, Xinran, Bo Bao, Ridong Wang, and Dachao Li. 2025. "An FSM-Assisted High-Accuracy Autonomous Magnetic Compensation Optimization Method for Dual-Channel SERF Magnetometers Used in Weak Biomagnetic Signal Measurement" Sensors 25, no. 12: 3690. https://doi.org/10.3390/s25123690
APA StyleTian, X., Bao, B., Wang, R., & Li, D. (2025). An FSM-Assisted High-Accuracy Autonomous Magnetic Compensation Optimization Method for Dual-Channel SERF Magnetometers Used in Weak Biomagnetic Signal Measurement. Sensors, 25(12), 3690. https://doi.org/10.3390/s25123690