Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (459)

Search Parameters:
Keywords = battery balancing control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8466 KiB  
Article
COTS Battery Charge Equalizer for Small Satellite Applications
by Pablo Casado, José M. Blanes, Ausiàs Garrigós, David Marroquí and Cristian Torres
Appl. Sci. 2025, 15(15), 8228; https://doi.org/10.3390/app15158228 - 24 Jul 2025
Viewed by 109
Abstract
This paper describes the design and implementation of a battery equalizer circuit for small satellites, developed under the New Space philosophy exclusively using commercial off-the-shelf (COTS) components. The primary objective is to ensure high reliability for mission-critical power systems while adhering to strict [...] Read more.
This paper describes the design and implementation of a battery equalizer circuit for small satellites, developed under the New Space philosophy exclusively using commercial off-the-shelf (COTS) components. The primary objective is to ensure high reliability for mission-critical power systems while adhering to strict cost constraints. In order to achieve this objective, the design incorporates a robust analog control circuit, thereby avoiding the complexities and potential single-point failures associated with digital controllers. A comprehensive study of various cell-balancing topologies was conducted, leading to the selection, hardware implementation, and comparative analysis of the two most suitable candidates. The results of this study provide a validated, cost-effective, and reliable battery equalizer solution for developers of small satellites. Full article
(This article belongs to the Special Issue Control Systems for Next Generation Electric Applications)
Show Figures

Figure 1

19 pages, 2017 KiB  
Article
Analysis of Grid Scale Storage Effectiveness for a West African Interconnected Transmission System
by Julius Abayateye and Daniel Zimmerle
Energies 2025, 18(14), 3741; https://doi.org/10.3390/en18143741 - 15 Jul 2025
Viewed by 212
Abstract
The West Africa Power Pool (WAPP) Interconnected Transmission System (WAPPITS) has faced challenges with frequency control due to limited primary frequency control reserves (PFRs). Battery Energy Storage Systems (BESSs) have been identified as a possible solution to address frequency control challenges and to [...] Read more.
The West Africa Power Pool (WAPP) Interconnected Transmission System (WAPPITS) has faced challenges with frequency control due to limited primary frequency control reserves (PFRs). Battery Energy Storage Systems (BESSs) have been identified as a possible solution to address frequency control challenges and to support growing levels of variable renewable energy in the WAPPITS. This paper uses a dynamic PSS/E grid simulation to evaluate the effectiveness of BESSs and conventional power plants for the maximum N-1 contingency scenario in WAPPITS—the loss of 400 MW of generation. BESSs outperform conventional power plants in fast frequency response; a BESS-only PFR mix produces the best technical performance for the metrics analyzed. However, this approach does not have the best marginal cost; a balanced mix of BESSs and conventional reserves achieves adequate performance on all metrics to meet grid requirements. This hybrid approach combines BESSs’ rapid power injection with the lower cost of conventional units, resulting in improved nadir frequencies (e.g., 49.70–49.76 Hz), faster settling times (1.00–2.20 s), and cost efficiency. The study indicates that an optimal approach to frequency control should include a combination of regulatory reforms and coordinated reserve procurement that includes BESS assets. Regulatory reforms should require or incentivize conventional plant to provide PFRs, possibly through creation of a (new to WAPPITS) market for ancillary services. While not a comprehensive analysis of all variables, these findings provide critical insights for policymakers and system operators. Full article
Show Figures

Figure 1

18 pages, 902 KiB  
Article
Coordination, Balance and Fine Motor Skills Deficities in Children with Autism Spectrum Disorder Without Co-Occuring Conditions—Application of MABC-2 Test in Pilot Study Among Polish Children
by Katarzyna Stachura, Ewa Emich-Widera, Beata Kazek and Magdalena Stania
J. Clin. Med. 2025, 14(14), 4946; https://doi.org/10.3390/jcm14144946 - 12 Jul 2025
Viewed by 988
Abstract
Objectives: The primary objective of this study was to determine whether motor disorders are significantly more prevalent in children with Autism Spectrum Disorder (ASD) without co-occurring genetic or neurological conditions compared to neurotypical children. Another aim was to explore the applicability of [...] Read more.
Objectives: The primary objective of this study was to determine whether motor disorders are significantly more prevalent in children with Autism Spectrum Disorder (ASD) without co-occurring genetic or neurological conditions compared to neurotypical children. Another aim was to explore the applicability of the MABC-2 test for assessing motor skills in a Polish cohort of children with ASD. Additionally, this study sought to develop a basic framework for motor skill assessment in children with autism. Methods: This study included 166 Caucasian children, both sexes, aged 5–12 years, without intellectual disability (IQ ≥ 70), without concomitant genetic or neurological disorders, particularly epilepsy or cerebral palsy. The study group consisted of children with ASD (n = 71), and the control group consisted of neurotypical children (n = 95). The participants were assessed with the Movement Assessment Battery for Children–second edition (MABC-2), MABC-2 checklist and the Developmental Coordination Disorder Questionnaire (DCDQ), used as a reference point. Results: The children with ASD obtained significantly lower MABC-2 test results in all subtests in comparison with the control group. The children with suspected or diagnosed coordination disorders were characterized by a significantly greater number of co-occurring non-motor factors than the other participants of this study. MABC-2 test showed greater consistency with DCDQ than with the MABC-2 questionnaire. Conclusions: Children with ASD present a lower level of manual dexterity and balance and greater difficulties in performing tasks, including throwing and catching, in comparison with neurotypical children. The MABC-2 test with the MABC-2 checklist and DCDQ questionnaire constitute a complementary diagnostic tool. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

34 pages, 924 KiB  
Systematic Review
Smart Microgrid Management and Optimization: A Systematic Review Towards the Proposal of Smart Management Models
by Paul Arévalo, Dario Benavides, Danny Ochoa-Correa, Alberto Ríos, David Torres and Carlos W. Villanueva-Machado
Algorithms 2025, 18(7), 429; https://doi.org/10.3390/a18070429 - 11 Jul 2025
Viewed by 500
Abstract
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, [...] Read more.
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, and optimization techniques. Hybrid storage solutions combining battery systems, hydrogen technologies, and pumped hydro storage were identified as effective approaches to mitigate RES intermittency and balance short- and long-term energy demands. The transition from centralized to distributed control architectures, supported by predictive analytics, digital twins, and AI-based forecasting, has improved operational planning and system monitoring. However, challenges remain regarding interoperability, data privacy, cybersecurity, and the limited availability of high-quality data for AI model training. Economic analyses show that while initial investments are high, long-term operational savings and improved resilience justify the adoption of advanced microgrid solutions when supported by appropriate policies and financial mechanisms. Future research should address the standardization of communication protocols, development of explainable AI models, and creation of sustainable business models to enhance resilience, efficiency, and scalability. These efforts are necessary to accelerate the deployment of decentralized, low-carbon energy systems capable of meeting future energy demands under increasingly complex operational conditions. Full article
(This article belongs to the Special Issue Algorithms for Smart Cities (2nd Edition))
Show Figures

Figure 1

21 pages, 3527 KiB  
Article
Research on Lithium Iron Phosphate Battery Balancing Strategy for High-Power Energy Storage System
by Ren Zhou, Junyong Lu, Yiting Wu, Hehui Zhang and Kangwei Yan
Energies 2025, 18(14), 3671; https://doi.org/10.3390/en18143671 - 11 Jul 2025
Cited by 1 | Viewed by 279
Abstract
For the problem of consistency decline during the long-term use of battery packs for high-voltage and high-power energy storage systems, a dynamic timing adjustment balancing strategy is proposed based on the charge–discharge topology. Compared with the traditional balancing strategy, the dynamic timing adjustment [...] Read more.
For the problem of consistency decline during the long-term use of battery packs for high-voltage and high-power energy storage systems, a dynamic timing adjustment balancing strategy is proposed based on the charge–discharge topology. Compared with the traditional balancing strategy, the dynamic timing adjustment balance strategy is more suitable for the transient high-frequency pulse and high-rate output of a high-power energy storage system. It gives full play to the pulse output adjustment function of the integrated charge–discharge topology. The advantages of this strategy include improving the balance between battery groups, the operating capacity of the system, and improving the continuous working ability of the system. Combined with the work condition of the high-power energy storage system, a balance control model is established, and a cycle charge–discharge test platform of battery packs is built. The effectiveness and advantages of the balance strategy of dynamic timing adjustment are verified by the experiment and simulations. The balancing time is less than 2 min, and the voltage difference is less than 6 mv. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

32 pages, 8765 KiB  
Article
Hybrid Efficient Fast Charging Strategy for WPT Systems: Memetic-Optimized Control with Pulsed/Multi-Stage Current Modes and Neural Network SOC Estimation
by Marouane El Ancary, Abdellah Lassioui, Hassan El Fadil, Yassine El Asri, Anwar Hasni, Abdelhafid Yahya and Mohammed Chiheb
World Electr. Veh. J. 2025, 16(7), 379; https://doi.org/10.3390/wevj16070379 - 6 Jul 2025
Viewed by 388
Abstract
This paper presents a hybrid fast charging strategy for static wireless power transfer (WPT) systems that synergistically combines pulsed current and multi-stage current (MCM) modes to enable rapid yet battery-health-conscious electric vehicle (EV) charging, thereby promoting sustainable transportation. The proposed approach employs a [...] Read more.
This paper presents a hybrid fast charging strategy for static wireless power transfer (WPT) systems that synergistically combines pulsed current and multi-stage current (MCM) modes to enable rapid yet battery-health-conscious electric vehicle (EV) charging, thereby promoting sustainable transportation. The proposed approach employs a memetic algorithm (MA) to dynamically optimize the charging parameters, achieving an optimal balance between speed and battery longevity while maintaining 90.78% system efficiency at the SAE J2954-standard 85 kHz operating frequency. A neural-network-based state of charge (SOC) estimator provides accurate real-time monitoring, complemented by MA-tuned PI control for enhanced resonance stability and adaptive pulsed current–MCM profiles for the optimal energy transfer. Simulations and experimental validation demonstrate faster charging compared to that using the conventional constant current–constant voltage (CC-CV) methods while effectively preserving the battery’s state of health (SOH)—a critical advantage that reduces the environmental impact of frequent battery replacements and minimizes the carbon footprint associated with raw material extraction and battery manufacturing. By addressing both the technical challenges of high-power WPT systems and the ecological imperative of battery preservation, this research bridges the gap between fast charging requirements and sustainable EV adoption, offering a practical solution that aligns with global decarbonization goals through optimized resource utilization and an extended battery service life. Full article
Show Figures

Graphical abstract

24 pages, 4035 KiB  
Article
Coordinated Optimization Scheduling Method for Frequency and Voltage in Islanded Microgrids Considering Active Support of Energy Storage
by Xubin Liu, Jianling Tang, Qingpeng Zhou, Jiayao Peng and Nanxing Huang
Processes 2025, 13(7), 2146; https://doi.org/10.3390/pr13072146 - 5 Jul 2025
Viewed by 321
Abstract
In islanded microgrids with high-proportion renewable energy, the disconnection from the main grid leads to the characteristics of low inertia, weak damping, and high impedance ratio, which exacerbate the safety risks of frequency and voltage. To balance the requirements of system operation economy [...] Read more.
In islanded microgrids with high-proportion renewable energy, the disconnection from the main grid leads to the characteristics of low inertia, weak damping, and high impedance ratio, which exacerbate the safety risks of frequency and voltage. To balance the requirements of system operation economy and frequency–voltage safety, a coordinated optimization scheduling method for frequency and voltage in islanded microgrids considering the active support of battery energy storage (BES) is proposed. First, to prevent the state of charge (SOC) of BES from exceeding the frequency regulation range due to rapid frequency adjustment, a BES frequency regulation strategy with an adaptive virtual droop control coefficient is adopted. The frequency regulation capability of BES is evaluated based on the capacity constraints of grid-connected converters, and a joint frequency and voltage regulation strategy for BES is proposed. Second, an average system frequency model and an alternating current power flow model for islanded microgrids are established. The influence of steady-state voltage fluctuations on active power frequency regulation is analyzed, and dynamic frequency safety constraints and node voltage safety constraints are constructed and incorporated into the optimization scheduling model. An optimization scheduling method for islanded microgrids that balances system operation costs and frequency–voltage safety is proposed. Finally, the IEEE 33-node system in islanded mode is used as a simulation case. Through comparative analysis of different optimization strategies, the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

37 pages, 1029 KiB  
Article
Autonomous Reinforcement Learning for Intelligent and Sustainable Autonomous Microgrid Energy Management
by Iacovos Ioannou, Saher Javaid, Yasuo Tan and Vasos Vassiliou
Electronics 2025, 14(13), 2691; https://doi.org/10.3390/electronics14132691 - 3 Jul 2025
Viewed by 353
Abstract
Effective energy management in microgrids is essential for integrating renewable energy sources and maintaining operational stability. Machine learning (ML) techniques offer significant potential for optimizing microgrid performance. This study provides a comprehensive comparative performance evaluation of four ML-based control strategies: deep Q-networks (DQNs), [...] Read more.
Effective energy management in microgrids is essential for integrating renewable energy sources and maintaining operational stability. Machine learning (ML) techniques offer significant potential for optimizing microgrid performance. This study provides a comprehensive comparative performance evaluation of four ML-based control strategies: deep Q-networks (DQNs), proximal policy optimization (PPO), Q-learning, and advantage actor–critic (A2C). These strategies were rigorously tested using simulation data from a representative islanded microgrid model, with metrics evaluated across diverse seasonal conditions (autumn, spring, summer, winter). Key performance indicators included overall episodic reward, unmet load, excess generation, energy storage system (ESS) state-of-charge (SoC) imbalance, ESS utilization, and computational runtime. Results from the simulation indicate that the DQN-based agent consistently achieved superior performance across all evaluated seasons, effectively balancing economic rewards, reliability, and battery health while maintaining competitive computational runtimes. Specifically, DQN delivered near-optimal rewards by significantly reducing unmet load, minimizing excess renewable energy curtailment, and virtually eliminating ESS SoC imbalance, thereby prolonging battery life. Although the tabular Q-learning method showed the lowest computational latency, it was constrained by limited adaptability in more complex scenarios. PPO and A2C, while offering robust performance, incurred higher computational costs without additional performance advantages over DQN. This evaluation clearly demonstrates the capability and adaptability of the DQN approach for intelligent and autonomous microgrid management, providing valuable insights into the relative advantages and limitations of various ML strategies in complex energy management scenarios. Full article
(This article belongs to the Special Issue Artificial Intelligence-Driven Emerging Applications)
Show Figures

Figure 1

20 pages, 3121 KiB  
Article
Decoupling Analysis of Parameter Inconsistencies in Lithium-Ion Battery Packs Guiding Balancing System Design
by Yanzhou Duan, Wenbin Ye, Qiang Zhang, Jixu Wang and Jiahuan Lu
Energies 2025, 18(13), 3439; https://doi.org/10.3390/en18133439 - 30 Jun 2025
Viewed by 220
Abstract
Inconsistencies in lithium-ion battery packs pose significant challenges for both electric vehicles and energy storage systems, causing diminished energy utilization and accelerated battery aging. This study investigates the characteristics and aging processes of 32 batteries, creating simulation models for cells and packs based [...] Read more.
Inconsistencies in lithium-ion battery packs pose significant challenges for both electric vehicles and energy storage systems, causing diminished energy utilization and accelerated battery aging. This study investigates the characteristics and aging processes of 32 batteries, creating simulation models for cells and packs based on experimental data. Through a controlled single-variable approach, the decoupled analysis of multi-parameter inconsistencies is carried out. Simulation results demonstrate that parallel-connected packs can maintain charge consistency without the need for external balancing systems, thanks to their self-balancing mechanisms. On the other hand, series-connected packs experience accelerated capacity degradation primarily due to charge inconsistencies linked to differences in Coulombic efficiency (CE) and the initial state of charge (SOC). For packs with minor capacity variations and temperature inconsistencies, a passive balancing current of 0.001 C can effectively eliminate up to 3.8% of capacity loss caused by charge inconsistencies within 15 cycles. Active balancing systems outperform passive ones primarily when there is significant capacity inconsistency. However, for packs that have undergone capacity screening before assembly, both active and passive balancing systems prove to be equally effective. Additionally, inconsistencies in internal resistance have a minimal impact on overall pack capacity but limit the power of both series-connected and parallel-connected packs. These findings offer essential insights for the development of balancing systems within battery management systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

35 pages, 14682 KiB  
Article
Fast-Balancing Passive Battery Management System with Remote Monitoring for the Automotive Industry
by Ionuț-Constantin Guran, Adriana Florescu, Nicu Bizon and Lucian Andrei Perișoară
Electronics 2025, 14(13), 2606; https://doi.org/10.3390/electronics14132606 - 27 Jun 2025
Viewed by 291
Abstract
Batteries have become the main power source in today’s automotive systems. This paper proposes the design of a fast-balancing passive battery management system (BMS) with remote monitoring for the automotive domain. This system is designed for four series-connected lithium iron phosphate (LiFePO4) cells, [...] Read more.
Batteries have become the main power source in today’s automotive systems. This paper proposes the design of a fast-balancing passive battery management system (BMS) with remote monitoring for the automotive domain. This system is designed for four series-connected lithium iron phosphate (LiFePO4) cells, which are the preferred choice in the automotive industry. The results show that the proposed BMS can monitor the cell voltages with an error lower than 0.12%, and it can perform the balancing operation successfully with maximum currents of 750 mA during both charging and discharging cycles, not only for LiFePO4 cells, but also for lithium-ion (Li-ion) cells. Furthermore, the cell voltages are sent over the controller area network (CAN) interface for remote monitoring. Full article
Show Figures

Figure 1

29 pages, 6029 KiB  
Article
Multi-Mode Operation and Coordination Control Strategy Based on Energy Storage and Flexible Multi-State Switch for the New Distribution Network During Grid-Connected Operation
by Yuechao Ma, Jun Tao, Yu Xu, Hongbin Hu, Guangchen Liu, Tao Qin, Xuchen Fu and Ruiming Liu
Energies 2025, 18(13), 3389; https://doi.org/10.3390/en18133389 - 27 Jun 2025
Viewed by 261
Abstract
For a new distribution network with energy storage and a flexible multi-state switch (FMSS), several problems of multi-mode operation and switching, such as the unbalance of feeder loads and feeder faults, among others, should be considered. This paper forwards a coordination control strategy [...] Read more.
For a new distribution network with energy storage and a flexible multi-state switch (FMSS), several problems of multi-mode operation and switching, such as the unbalance of feeder loads and feeder faults, among others, should be considered. This paper forwards a coordination control strategy to address the above challenges faced by the FMSS under grid-connected operations. To tackle the multi-mode operation problem, the system’s operational state is divided into multiple working modes according to the operation states of the system, the positions and number of fault feeders, the working states of the transformers, and the battery’s state of charge. To boost the system’s operational reliability and load balance and extend the power supply time for the fault load, the appropriate control objectives in the coordination control layer and control strategies in the equipment layer for different working modes are established for realizing the above multi-directional control objectives. To resolve the phase asynchrony issue among the fault load and other normal working loads caused by the feeder fault, the off-grid phase-locked control based on the V/f control strategy is applied. To mitigate the bus voltage fluctuation caused by the feeder fault switching, the switching control sequence for the planned off-grid is designed, and the power feed-forward control strategy of the battery is proposed for the unplanned off-grid. The simulation results show that the proposed control strategy can ensure the system’s power balance and yield a high-quality flexible power supply during the grid-connected operational state. Full article
(This article belongs to the Special Issue Advanced Electric Power Systems, 2nd Edition)
Show Figures

Figure 1

19 pages, 3871 KiB  
Review
A Comprehensive Review of the Art of Cell Balancing Techniques and Trade-Offs in Battery Management Systems
by Adnan Ashraf, Basit Ali, Mothanna S. A. Al Sunjury and Pietro Tricoli
Energies 2025, 18(13), 3321; https://doi.org/10.3390/en18133321 - 24 Jun 2025
Viewed by 644
Abstract
The battery pack is a critical component of electric vehicles, with lithium-ion cells being a frequently preferred choice. Lithium-ion cells are known for long life, high power and energy density, and are reliable for a broad range of temperatures. However, these batteries have [...] Read more.
The battery pack is a critical component of electric vehicles, with lithium-ion cells being a frequently preferred choice. Lithium-ion cells are known for long life, high power and energy density, and are reliable for a broad range of temperatures. However, these batteries have a drawback of over-voltage, under-voltage, thermal runaway, and especially, state of charge or voltage imbalance. Among these, the cell imbalance is particularly important because it causes an uneven power dissipation in each cell, resulting in non-uniform temperature distribution. This uneven temperature distribution negatively affects the lifetime and efficiency of a battery pack. Cell imbalance is mitigated by cell balancing techniques, of which several methods have been presented over the last few years. These methods consider different power electronics circuits and control approaches to optimise cell balancing characteristics. This paper reviews basic to advanced cell balancing techniques and compares their circuit designs, costs, switching stresses, complexity, sizes, and control techniques to highlight the recent trends and future directions. This paper also compares the recent trend of machine learning integration with basic cell balancing topologies and provides a critical analysis of the outcomes. Full article
Show Figures

Figure 1

15 pages, 4137 KiB  
Article
Non-Destructive Thickness Measurement of Energy Storage Electrodes via Terahertz Technology
by Zhengxian Gao, Xiaoqing Jia, Jin Wang, Zhijun Zhou, Jianyong Wang, Dongshan Wei, Xuecou Tu, Lin Kang, Jian Chen, Dengzhi Chen and Peiheng Wu
Sensors 2025, 25(13), 3917; https://doi.org/10.3390/s25133917 - 23 Jun 2025
Viewed by 412
Abstract
Precision thickness control in new energy electrode coatings is a critical determinant of battery performance characteristics. This study presents a non-destructive inspection methodology employing terahertz time-domain spectroscopy (THz-TDS) to achieve high-precision coating thickness measurement in lithium iron phosphate (LFP) battery manufacturing. Industrial THz-TDS [...] Read more.
Precision thickness control in new energy electrode coatings is a critical determinant of battery performance characteristics. This study presents a non-destructive inspection methodology employing terahertz time-domain spectroscopy (THz-TDS) to achieve high-precision coating thickness measurement in lithium iron phosphate (LFP) battery manufacturing. Industrial THz-TDS systems mostly adopt fixed threshold filtering or Fourier filtering, making it disssssfficult to balance noise suppression and signal fidelity. The developed approach integrates three key technological advancements. Firstly, the refractive index of the material is determined through multi-peak amplitude analysis, achieving an error rate control within 1%. Secondly, a hybrid signal processing algorithm is applied, combining an optimized Savitzky–Golay filter for high-frequency noise suppression with an enhanced sinc function wavelet threshold technique for signal fidelity improvement. Thirdly, the time-of-flight method enables real-time online measurement of coating thickness under atmospheric conditions. Experimental validation demonstrates effective thickness measurement across a 35–425 μm range, achieving a 17.62% range extension and a 2.13% improvement in accuracy compared to conventional non-filtered methods. The integrated system offers a robust quality control solution for next-generation battery production lines. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 6043 KiB  
Article
Coordinated Control of Photovoltaic Resources and Electric Vehicles in a Power Distribution System to Balance Technical, Environmental, and Energy Justice Objectives
by Abdulrahman Almazroui and Salman Mohagheghi
Processes 2025, 13(7), 1979; https://doi.org/10.3390/pr13071979 - 23 Jun 2025
Viewed by 517
Abstract
Recent advancements in photovoltaic (PV) and battery technologies, combined with improvements in power electronic converters, have accelerated the adoption of rooftop PV systems and electric vehicles (EVs) in distribution networks, while these technologies offer economic and environmental benefits and support the transition to [...] Read more.
Recent advancements in photovoltaic (PV) and battery technologies, combined with improvements in power electronic converters, have accelerated the adoption of rooftop PV systems and electric vehicles (EVs) in distribution networks, while these technologies offer economic and environmental benefits and support the transition to sustainable energy systems, they also introduce operational challenges, including voltage fluctuations, increased system losses, and voltage regulation issues under high penetration levels. Traditional Voltage and Var Control (VVC) strategies, which rely on substation on-load tap changers, voltage regulators, and shunt capacitors, are insufficient to fully manage these challenges. This study proposes a novel Voltage, Var, and Watt Control (VVWC) framework that coordinates the operation of PV and EV resources, conventional devices, and demand responsive loads. A mixed-integer nonlinear multi-objective optimization model is developed, applying a Chebyshev goal programming approach to balance objectives that include minimizing PV curtailment, reducing system losses, flattening voltage profile, and minimizing demand not met. Unserved demand has, in particular, been modeled while incorporating the concepts of distributional and recognition energy justice. The proposed method is validated using a modified version of the IEEE 123-bus test distribution system. The results indicate that the proposed framework allows for high levels of PV and EV integration in the grid, while ensuring that EV demand is met and PV curtailment is negligible. This demonstrates an equitable access to energy, while maximizing renewable energy usage. Full article
Show Figures

Figure 1

28 pages, 3675 KiB  
Article
Balancing Cam Mechanism for Instantaneous Torque and Velocity Stabilization in Internal Combustion Engines: Simulation and Experimental Validation
by Daniel Silva Cardoso, Paulo Oliveira Fael, Pedro Dinis Gaspar and António Espírito-Santo
Energies 2025, 18(13), 3256; https://doi.org/10.3390/en18133256 - 21 Jun 2025
Viewed by 341
Abstract
Torque and velocity fluctuations in internal combustion engines (ICEs), particularly during idle and low-speed operation, can reduce efficiency, increase vibration, and impose mechanical stress on coupled systems. This work presents the design, simulation, and experimental validation of a passive balancing cam mechanism developed [...] Read more.
Torque and velocity fluctuations in internal combustion engines (ICEs), particularly during idle and low-speed operation, can reduce efficiency, increase vibration, and impose mechanical stress on coupled systems. This work presents the design, simulation, and experimental validation of a passive balancing cam mechanism developed to mitigate fluctuations in single-cylinder internal combustion engines (ICEs). The system consists of a cam and a spring-loaded follower that synchronizes with the engine cycle to store and release energy, generating a compensatory torque that stabilizes rotational speed. The mechanism was implemented on a single-cylinder Honda® engine and evaluated through simulations and laboratory tests under idle conditions. Results demonstrate a reduction in torque ripple amplitude of approximately 54% and standard deviation of 50%, as well as a decrease in angular speed fluctuation amplitude of about 43% and standard deviation of 42%, resulting in significantly smoother engine behavior. These improvements also address longstanding limitations in traditional powertrains, which often rely on heavy flywheels or electronically controlled dampers to manage rotational irregularities. Such solutions increase system complexity, weight, and energy losses. In contrast, the proposed passive mechanism offers a simpler, more efficient alternative, requiring no external control or energy input. Its effectiveness in stabilizing engine output makes it especially suited for integration into hybrid electric systems, where consistent generator performance and low mechanical noise are critical for efficient battery charging and protection of sensitive electronic components. Full article
(This article belongs to the Special Issue Internal Combustion Engines: Research and Applications—3rd Edition)
Show Figures

Figure 1

Back to TopTop