Coordination, Balance and Fine Motor Skills Deficities in Children with Autism Spectrum Disorder Without Co-Occuring Conditions—Application of MABC-2 Test in Pilot Study Among Polish Children
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment
2.3. Statistical Analysis
3. Results
3.1. MABC-2 Test Results
3.2. MABC-2 Check List Results
3.3. DCDQ Questionnaire Results
3.4. Consistency of Results of MABC-2 Test, MABC-2 Check List and DCDQ Questionnaire
3.5. Non-Motor Factors in Children with Suspicion or Occurrence of Coordination Disorder
3.6. Basic Motor Assessment Scheme for Children
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASD | Autism Spectrum Disorders |
ADHD | Attention Deficit Hyperactivity Disorder |
SI | Sensory Integration |
DCD | Developmental Coordination Disorder |
DCDQ | Developmental Coordination Disorder Questionnaire |
MABC-2 | Movement Assessment Battery for Children–second edition |
MD | manual dexterity |
AC | aiming and catching |
BAL | balance |
IQ | intelligence quotient |
BMI | body mass index |
References
- Hyman, S.L.; Levy, S.E.; Myers, S.M.; Kuo, D.Z.; Apkon, S.; Davidson, L.F.; Ellerbeck, K.A.; Foster, J.E.; Noritz, G.H.; Leppert, M.O.C.; et al. Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics 2020, 145, e20193447. [Google Scholar] [CrossRef]
- Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Robinson Rosenberg, C.; White, T.; et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill Summ. 2018, 67, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Maenner, M.J.; Warren, Z.; Williams, A.R. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network. Surveill Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Pan, P.Y.; Bölte, S.; Kaur, P.; Jamil, S.; Jonsson, U. Neurological disorders in autism: A systematic review and meta-analysis. Autism 2021, 25, 812–830. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.Y.; Chu, C.H.; Tsai, C.L.; Sung, M.C.; Huang, C.Y.; Ma, W.Y. The impacts of physical activity intervention on physical and cognitive outcomes in children with autism spectrum disorder. Autism 2017, 21, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Kurzius-Spencer, M.; Pettygrove, S.; Christensen, D.; Pedersen, A.L.; Cunniff, C.; Meaney, F.J.; Soke, G.N.; Harrington, R.A.; Durkin, M.; Rice, S. Behavioral problems in children with autism spectrum disorder with and without co-occurring intellectual disability. Res. Autism. Spectr. Disord. 2018, 56, 61–71. [Google Scholar] [CrossRef]
- Lai, M.C.; Kassee, C.; Besney, R.; Bonato, S.; Hull, L.; Mandy, W.; Szatmari, P.; Ameis, S.H. Prevalence of co-occurring mental health diagnoses in the autism population: A systematic review and meta-analysis. Lancet Psychiatry 2019, 6, 81. [Google Scholar] [CrossRef]
- Marco, E.J.; Hinkley, L.B.; Hill, S.S.; Nagarajan, S.S. Sensory Processing in Autism: A Review of Neurophysiologic Findings. Pediatr. Res. 2011, 69, 48–54. [Google Scholar] [CrossRef]
- Riquelme, I.; Hatem, S.M.; Montoya, P. Abnormal Pressure Pain, Touch Sensitivity, Proprioception and Manual Dexterity in Children with Autism Spectrum Disorders. Neural Plast. 2016, 2016, 1723401. [Google Scholar] [CrossRef]
- Mayoral, M.; Merchán-Naranjo, J.; Rapado, M.; Leiva, M.; Moreno, C.; Giráldez, M.; Arango, C.; Parellada, M. Neurological soft signs in juvenile patients with Asperger syndrome, early-onset psychosis and healthy controls. Early Interv. Psychiatry 2010, 4, 283–290. [Google Scholar] [CrossRef]
- Fournier, K.A.; Hass, C.J.; Naik, S.K.; Lodha, N.; Cauraugh, J.H. Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. J. Autism Dev. Disord. 2010, 40, 1227–1240. [Google Scholar] [CrossRef]
- Kaur, M.; Srinivasan, S.M.; Bhat, A.N. Comparing motor performance, praxis, coordination, and interpersonal synchrony between children with and without Autism Spectrum Disorder (ASD). Res. Dev. Disabil. 2018, 72, 79–95. [Google Scholar] [CrossRef]
- Molloy, C.A.; Dietrich, K.N.; Bhattacharya, A. Postural stability in children with autism spectrum disorder. J. Autism Dev. Disord. 2003, 33, 643–652. [Google Scholar] [CrossRef]
- Vanvuchelen, M.; Roeyers, H.; De Weerdt, W. Nature of motor imitation problems in school-aged boys with autism: A motor or a cognitive problem? Autism 2007, 11, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Isenhower, R.W.; Marsh, K.L.; Richardson, M.J.; Helt, M.; Schmidt, R.C.; Fein, D. Rhythmic bimanual coordination is impaired in young children with autism spectrum disorder. Res. Autism Spectr. Disord. 2012, 6, 25–31. [Google Scholar] [CrossRef]
- Ament, K.; Mejia, A.; Buhlman, R.; Erklin, S.; Caffo, B.; Mostofsky, S.; Wodka, E. Evidence for Specificity of Motor Impairments in Catching and Balance in Children with Autism. J. Autism Dev. Disord. 2015, 45, 742–751. [Google Scholar] [CrossRef]
- Maïano, C.; Hue, O.; April, J. Fundamental movement skills in children and adolescents with intellectual disabilities: A systematic review. J. Appl. Res. Intellect. Disabil. 2019, 32, 1018–1033. [Google Scholar] [CrossRef] [PubMed]
- Ayres, K.M.; Mechling, L.; Sansosti, F.J. The use of mobile technologies to assist with life skills/independence of students with moderate/severe intellectual disability and/or Autism Spectrum Disorders: Considerations for the future of school psychology. Psychol. Sch. 2013, 50, 259–271. [Google Scholar] [CrossRef]
- Courchesne, E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr. Opin. Neurobiol. 1997, 7, 269–278. [Google Scholar] [CrossRef]
- MacDonald, M.; Lord, C.; Ulrich, D.A. The relationship of motor skills and social communicative skills in school-aged children with autism spectrum disorder, Adapt. Phys. Activ. Q. 2013, 30, 271–282. [Google Scholar]
- Atun-Einy, O.; Amir-Kawas, S.; Krasovsky, T. Methodological considerations in the use of standardized motor assessment tools for children with autism spectrum disorder: A scoping review. Res. Autism. Spectr. Disord. 2022, 99, 102064. [Google Scholar] [CrossRef]
- Alotaibi, M.; Long, T.; Kennedy, E.; Bavishi, S. The efficacy of GMFM-88 and GMFM-66 to detect changes in gross motor function in children with cerebral palsy (CP): A literature review. Disabil. Rehabil. 2013, 36, 617–627. [Google Scholar] [CrossRef]
- Blank, R.; Barnett, A.L.; Cainey, J. International clinical practice recommendations on the definition, diagnosis, assessment, intervention, and psychosocial aspects of developmental coordination disorder. Develop. Med. Child Neur. 2019, 61, 242–285. [Google Scholar] [CrossRef] [PubMed]
- Chojnicka, I.; Pisula, E. Adaptation and Validation of the ADOS-2, Polish Version. Front. Psychol. 2017, 8, 1916. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.L.; Henderson, S.E. Discriminative validity of Movement ABC-2 Test: Preformance of children with Developmental Coordination Disorder. In Movement Assessment Battery for Children-2; Henderson, S.E., Sugden, D.A., Barnett, A.L., Eds.; Pearson Assessment: London, UK, 2007. [Google Scholar]
- Wilson, B.N.; Crawford, S.G.; Green, D.; Roberts, G.; Aylott, A.; Kaplan, B.J. Psychometric properties of the revised Developmental Coordination Disorder Questionnaire. Phys. Occup. Ther. Pediatr. 2009, 29, 182–202. [Google Scholar] [CrossRef]
- Ellinoudis, T.; Kourtessis, T.; Kiparissis, M.; Kampas, A.; Mavromatis, G. Movement Assessment Battery for Children (MABC): Measuring the construct validity for Greece in a sample of elementary school aged children. Int. J. Health Sci. 2008, 1, 56–60. [Google Scholar]
- Lee, K.; Jung, T.; Lee, D.K.; Lim, J.C.; Lee, E.; Jung, Y.; Lee, Y. A comparison of using the DSM-5 and MABC-2 for estimating the developmental coordination disorder prevalence in Korean children. Res. Dev. Disabil. 2019, 94, 103459. [Google Scholar] [CrossRef]
- Reindal, L.; Nærland, T.; Sund, A.M.; Glimsdal, B.A.; Andreassen, O.A.; Weidle, B. The co-occurrence of motor and language impairments in children evaluated for autism spectrum disorder. An explorative study from Norway. Res. Dev. Disabil. 2022, 127, 104256. [Google Scholar] [CrossRef]
- Fu, C.P.; Tseng, M.H.; Cermak, S.; Chung, T.H.; Chen, Y.L.; Lu, L.; Shieh, J.Y.; Rihtman, T. Psychometric Properties of the Little Developmental Coordination Disorder Questionnaire-Taiwan. Am. J. Occup. Ther. 2022, 76, 7602205050. [Google Scholar] [CrossRef]
- Sartori, R.F.; Valentini, N.C.; Fonseca, R.P. Executive function in children with and without developmental coordination disorder: A comparative study. Child Care Health Dev. 2020, 46, 294–302. [Google Scholar] [CrossRef]
- Hotham, E.; Haberfield, M.; Hillier, S.; White, J.M.; Todd, G. Upper limb function in children with attention-deficit/hyperactivity disorder (ADHD). J. Neural Transm. 2018, 125, 713–726. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Vargas, J.M.; Melguizo-Ibáñez, E.; Puertas-Molero, P.; Salvador-Pérez, F.; Ubago-Jiménez, J.L. Relationship between Learning and Psychomotor Skills in Early Childhood Education. Int. J. Environ. Res Public Health 2022, 19, 16835. [Google Scholar] [CrossRef] [PubMed]
- Wuang, Y.P.; Su, J.H.; Su, C.Y. Reliability and responsiveness of the Movement Assessment Battery for Children-Second Edition Test in children with developmental coordination disorder. Dev. Med. Child. Neurol. 2012, 54, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Keunen, K.; Išgum, I.; van Kooij, B.J.; Anbeek, P.; van Haastert, I.C.; Koopman-Esseboom, C.; Fieret-van Stam, P.C.; Nievelstein, R.A.; Viergever, M.A.; de Vries, L.S.; et al. Brain Volumes at Term-Equivalent Age in Preterm Infants: Imaging Biomarkers for Neurodevelopmental Outcome through Early School Age. J. Pediatr. 2016, 172, 88–95. [Google Scholar] [CrossRef]
- Setänen, S.; Lehtonen, L.; Parkkola, R.; Matomäki, J.; Haataja, L. The motor profile of preterm infants at 11 y of age. Pediatr. Res. 2016, 80, 389–394. [Google Scholar] [CrossRef]
- Belaire, A.; Colomer, C.; Maravé-Vivas, M.; Chiva-Bartoll, O. Analysis of the motor performance of children with ASD and its relationship with personal and contextual variables. Int. J. Dev. Disabil. 2020, 68, 558–566. [Google Scholar] [CrossRef]
- Odeh, C.E.; Gladfelter, A.L.; Stoesser, C.; Roth, S. Comprehensive motor skills assessment in children with autism spectrum disorder yields global deficits. Int. J. Dev. Disabil. 2020, 68, 290–300. [Google Scholar] [CrossRef]
- Griffiths, A.; Toovey, R.; Morgan, P.E.; Spittle, A.J. Psychometric properties of gross motor assessment tools for children: A systematic review. BMJ Open 2018, 8, e021734. [Google Scholar] [CrossRef]
- Valentini, N.C.; Ramalho, M.H.; Oliveira, M.A. Movement assessment battery for children-2: Translation, reliability, and validity for Brazilian children. Res. Dev. Disabil. 2014, 35, 733–740. [Google Scholar] [CrossRef]
- Valentini, N.C.; Rudisill, M.E.; Bandeira, P.F.R.; Hastie, P.A. The development of a short form of the Test of Gross Motor Development-2 in Brazilian children: Validity and reliability. Child Care Health Dev. 2018, 44, 759–765. [Google Scholar] [CrossRef]
- Schoemaker, M.M.; Niemeijer, A.S.; Flapper, B.C.; Smits-Engelsman, B.C. Validity and reliability of the movement assessment battery for children-2 checklist for children with and without motor impairments. Dev. Med. Child Neurol. 2012, 54, 368–375. [Google Scholar] [CrossRef]
- Capistrano, R.; Pinheiro Ferrari, E.; de Souza, L.P.; Beltrame, T.S.; Cardoso, F.L. Concurrent validation of the MABC-2 Motor Tests and MABC-2 checklist according to the Developmental Coordination Disorder Questionnaire-BR Motriz. Rev. de Educacao Fisica 2015, 21, 100–106. [Google Scholar] [CrossRef]
- Psotta, R.; Abdollahipour, R. Factorial Validity of the Movement Assessment Battery for Children—2nd Edition (MABC-2) in 7-16-Year-Olds. Percept Mot Ski. 2017, 124, 1051–1068. [Google Scholar] [CrossRef] [PubMed]
- Emerson, R.W.; Adams, C.; Nishino, T.; Hazlett, H.C.; Wolff, J.J.; Zwaigenbaum, L.; Constantino, J.N.; Shen, M.D.; Swanson, M.R.; Elison, J.T.; et al. Functional neuroimaging of high-risk 6- month-old infants predicts a diagnosis of autism at 24 months of age. Sci. Transl. Med. 2017, 9, eaag288265. [Google Scholar] [CrossRef] [PubMed]
- Iverson, J.M.; Shic, F.; Wall, C.A.; Chawarska, K.; Curtin, S.; Estes, A.; Gardner, J.M.; Hutman, T.; Landa, R.J.; Levin, A.R.; et al. Early motor abilities in infants at heightened versus low risk for ASD: A Baby Siblings Research Consortium (BSRC) study. J. Abnorm. Psychol. 2019, 128, 69–80. [Google Scholar] [CrossRef]
- Heathcock, J.C.; Tanner, K.; Robson, D.; Young, R.; Lane, A.E. Retrospective analysis of motor development in infants at high and low risk for autism spectrum disorder. Am. J. Occup. Ther. 2015, 69, 6905185070p1–6905185070p9. [Google Scholar] [CrossRef]
- Ozonoff, S.; Young, G.S.; Landa, R.J.; Brian, J.; Bryson, S.; Charman, T.; Chawarska, K.; Macari, S.L.; Messinger, D.; Stone, W.L.; et al. Diagnostic stability in young children at risk for autism spectrum disorder: A baby siblings research consortium study. J. Child Psychol. Psychiatry 2015, 56, 988–998. [Google Scholar] [CrossRef]
- Serdarevic, F.; Ghassabian, A.; van Batenburg-Eddes, T.; White, T.; Blanken, L.M.; Jaddoe, V.W.; Verhulst, F.C.; Tiemeier, H. Infant muscle tone and childhood autistic traits: A longitudinal study in the general population. Autism Res. 2017, 10, 757–768. [Google Scholar] [CrossRef]
- St John, T.; Estes, A.M.; Dager, S.R.; Kostopoulos, P.; Wolff, J.J.; Pandey, J.; Elison, J.T.; Paterson, S.J.; Schultz, R.T.; Botteron, K.; et al. Emerging executive functioning and motor development in infants at high and low risk for autism spectrum disorder. Front. Psychol. 2016, 7, 1016. [Google Scholar] [CrossRef]
- Kihara, H.; Nakamura, T. Early standard development assessment characteristics in very low birth weight infants later classified with autism spectrum disorder. Early Hum. Dev. 2015, 91, 357–359. [Google Scholar] [CrossRef]
- Li, T.; Li, Y.; Hu, Y.; Wang, Y.; Lam, C.M.; Ni, W.; Wang, X.; Yi, L. Heterogeneity of Visual Preferences for Biological and Repetitive Movements in Children With Autism Spectrum Disorder. Autism Res. 2021, 14, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.E.; Sugden, D.A.; Barnett, A.L. Movement Assessment Battery for Children–Second Edition (MABC-2): Examiner’s Manual; Harcourt Assessment: London, UK, 2007. [Google Scholar]
- Henderson, S.E.; Sugden, D.A. Movement Assessment Battery for Children: Manual; Psychological Corporation: London, UK, 1992. [Google Scholar]
- Engel-Yeger, B.; Rosenblum, S.; Josman, N. Movement Assessment Battery for Children (M-ABC): Establishing construct validity for Israeli children. Res. Develop. Disab. 2010, 31, 87–96. [Google Scholar] [CrossRef]
- Van Waelvelde, H.; Peersman, W.; Lenoir, M.; Engelsman, B.C. Convergent validity between two motor tests: Movement-ABC and PDMS-2. Adapt. Physl. Activ. Q. 2007, 24, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Rösblad, B.; Gard, L. The assessment of children with developmental coordination disorders in Sweden: A preliminary investigation of the suitability of the movement ABC. Hum. Mov. Sci. 1998, 17, 711–719. [Google Scholar] [CrossRef]
- Staples, K.L.; Reid, G. Fundamental movement skills and autism spectrum disorders. J. Autism Dev. Disord. 2010, 40, 209–217. [Google Scholar] [CrossRef]
- Liu, T.; Breslin, C.M. The effect of a picture activity schedule on performance of the MABC-2 for children with autism spectrum disorder. Res. Q. Exerc. Sport 2013, 84, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.; Patla, A.; Prince, F.; Ishac, M.; Gielo-Perczak, K. Stiffness control of balance in quiet standing. J. Neurophysiol. 1998, 80, 1211–1221. [Google Scholar] [CrossRef]
- Takakusaki, K. Functional Neuroanatomy for Posture and Gait Control. J. Mov. Disord. 2017, 10, 1–17. [Google Scholar] [CrossRef]
- Bowler, A.; Arichi, T.; Austerberry, C.; Fearon, P.; Ronald, A. A systematic review and meta-analysis of the associations between motor milestone timing and motor development in neurodevelopmental conditions. Neurosci. Biobehav. Rev. 2024, 167, 105825. [Google Scholar] [CrossRef]
- Rival, C.; Ceyte, H.; Olivier, I. Developmental changes of static standing balance in children. Neurosci. Lett. 2005, 376, 133–136. [Google Scholar] [CrossRef]
- Ferronato, M.; Barela, J.A. Age-related changes in postural control: Rambling and trembling trajectories. Motor Control 2011, 15, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Kita, Y.; Suzuki, K.; Hirata, S.; Sakihara, K.; Inagaki, M.; Nakai, A. Applicability of the Movement Assessment Battery for Children-Second Edition to Japanese children: A study of the Age Band 2. Brain Dev. 2016, 38, 706–713. [Google Scholar] [CrossRef]
- Ke, L.; Du, W.; Wang, Y.; Duan, W.; Hua, J.; Barnett, A.L. The Movement ABC-2 Test in China: Comparison with UK norms for 3–10 year olds. Res. Dev. Disabil. 2020, 105, 103742. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Kelly, J.; Davis, L.; Zamora, K. Nutrition, BMI and Motor Competence in Children with Autism Spectrum Disorder. Medicina 2019, 55, 135. [Google Scholar] [CrossRef]
- Junaid, K.; Harris, S.R.; Fulmer, K.A.; Carswell, A. Teachers’ use of the MABC checklist to identify children with motor coordination difficulties. Pediatr. Phys. Ther. 2000, 12, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Siaperas, P.; Holland, T.; Ring, H. Discriminative validity of the movement ABC Test and checklist for use with children with Asperger Syndrome. In Movement Assessment Battery for Children-2; Henderson, S.E., Sugden, D.A., Barnett, A.L., Eds.; Pearson Assessment: London, UK, 2007. [Google Scholar]
- Najafabadi, M.; Saghaei, B.; Shariat, A.; Ingle, L.; Babazadeh-Zavieh, S.S.; Shojaei, M.; Daneshfar, A. Validity and reliability of the movement assessment battery second edition test in children with and without motor impairment: A prospective cohort study. Ann. Med. Surg. 2022, 77, 103672. [Google Scholar] [CrossRef]
- Ray-Kaeser, S.; Thommen, E.; Martini, R.; Jover, M.; Gurtner, B.; Bertrand, A.M. Psychometric assessment of the French European Developmental Coordination Disorder Questionnaire (DCDQ-FE). PLoS ONE 2019, 14, e0217280. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, G.; Mao, S. The impact of physical exercise interventions on social, behavioral, and motor skills in children with autism: A systematic review and meta-analysis of randomized controlled trials. Front. Pediatr. 2025, 13, 1475019. [Google Scholar] [CrossRef]
- Li, X.; Wei, Y.; Yin, J.; Liu, Y. Effects of motor skills and physical activity interventions on motor development in children with autism spectrum disorder: A systematic review. Healthcare 2023, 13, 489. [Google Scholar]
Component | Sex/Total | ASD Group (n = 71; 100%) | Control Group (n = 95; 100%) | Group Comparison Test Result | Effect Size ES |
---|---|---|---|---|---|
MD Standard Score Mdn; (Q1; Q3) | Female | 9.0; (7.0; 11.0) | 12.0; (10.5; 14.0) | p < 0.00001/# | rG = 0.66 |
Male | 7.0; (5.0; 10.0) | 12.0; (10.0; 13.0) | p < 0.00001/# | rG = 0.68 | |
Test Result of Comparing Results for Sex Type in Group | NS (p = 0.10)/# | NS (p = 0.22)/# | --- | ||
Total | 8.0; (5.0; 10.0) | 12.0; (10.0; 14.0) | p < 0.00001/# | rG = 0.68 | |
AC Standard Score Mdn; (Q1; Q3) | Female | 8.0; (5.0; 10.5) | 12.0; (10.0; 14.5) | p < 0.00001/# | rG = 0.66 |
Male | 9.0; (5.0; 12.0) | 13.0; (12.0; 15.0) | p < 0.00001/# | rG = 0.57 | |
Test Result of Comparing Results for Sex Type in Group | NS (p = 0.39)/# | NS (p = 0.10)/# | --- | ||
Total | 8.0; (5.0; 12.0) | 13.0; (11.0; 15.0) | p < 0.00001/# | rG = 0.58 | |
Bal Standard Score Mdn; (Q1; Q3) | Female | 10.0; (7.5; 11.5) | 11.0; (9.0; 14.0) | NS (p = 0.06)/# | |
Male | 9.0; (6.0; 10.0) | 10.0; (9.0; 11.0) | p = 0.002/# | rG = 0.37 | |
Test Result of Comparing Results for Sex Type in Group | NS (p = 0.22)/# | NS (p = 0.12)/# | --- | ||
Total | 9.0; (6.0; 10.0) | 11.0; (9.0; 14.0) | p = 0.00005/# | rG = 0.37 | |
Total Result of MABC-2 Test Standard Score Mdn; (Q1; Q3) | Female | 9.0; (7.0; 11.0) | 13.0; (11.0; 15.0) | p < 0.00001/# | rG = 0.75 |
Male | 8.0; (4.0; 10.0) | 13.0; (11.0; 15.0) | p < 0.00001/# | rG = 0.70 | |
Test Result of Comparing Results for Sex Type in Group | NS (p = 0.33)/# | NS (p = 0.67)/# | --- | ||
Total | 8.0; (5.0; 11.0) | 13.0; (11.0; 15.0) | p < 0.00001/# | rG = 0.73 |
Component | Age Group | ASD Group (n = 71; 100%) | Control Group (n = 95; 100%) | Group Comparison Test Result | Effect size ES |
---|---|---|---|---|---|
MD Standard Score Mdn; (Q1; Q3) | I (5–6 years old) | 5.0; (4.0; 8.0) | 12.0; (11.0; 15.5) | p = 0.0003/# | rG = 0.84 |
II (7–10 years old) | 9.0; (6.0; 11.0) | 12.0; (10.0; 14.0) | p < 0.00001/# | rG = 0.56 | |
III (11–12 years old) | 8.0; (6.0; 9.0) | 12.0; (10.5; 14.0) | p < 0.00001/# | rG = 0.86 | |
Test Result of Comparing Results in Group | NS (p = 0.15)/& | NS (p = 0.43)/& | --- | ||
AC Standard Score Mdn; (Q1; Q3) | I (5–6 years old) | 11.0; (6.0; 13.0) | 12.5; (12.0; 13.5) | p = 0.05/# | rG = 0.46 |
II (7–10 years old) | 8.0; (5.0; 12.0) | 13.0; (10.0; 15.0) | p < 0.00001/# | rG = 0.54 | |
III (11–12 years old) | 9.0; (7.0; 11.0) | 15.0; (13.0; 15.5) | P < 0.00001/# | rG = 0.85 | |
Test Result of Comparing Results in Group | NS (p = 0.28)/& | p = 0.01/& ES: ε2 = 0,09 | --- | ||
Bal Standard Score Mdn; (Q1; Q3) | I (5–6 years old) | 8.0; (6.0; 10.0) | 11.0; (9.5; 14.0) | p = 0.004/# | rG = 0.68 |
II (7–10 years old) | 9.5; (8.0; 11.0) | 11.0; (9.0; 14.0) | p = 0.003/# | rG = 0.34 | |
III (11–12 years old) | 8.5; (6.0; 10.0) | 9.0; (9.0; 9.5) | NS (p = 0.17)/# | --- | |
Test Result of Comparing Results in Group | NS (p = 0.28)/& | p = 0.001/& ES: ε2 = 0.14 | --- | ||
Total Result of MABC-2 Test Standard Score Mdn; (Q1; Q3) | I (5–6 years old) | 8.0; (4.0; 9.0) | 13.0; (12.0; 15.0) | p = 0.00005/# | rG = 0.94 |
II (7–10 years old) | 8.5; (6.0; 11.0) | 13.0; (11.0; 15.0) | p < 0.00001/# | rG = 0.61 | |
III (11–12 years old) | 7.5; (4.0; 10.0) | 13.0; (12.0; 14.0) | p < 0.00001/# | rG = 0.84 | |
Test Result of Comparing Results in Group | NS (p = 0.51)/& | NS (p = 0.48)/& | --- |
Symptom | MABC-2 Test (n = 23; 100%) | MABC-2 Questionnaire (n = 92; 100%) | DCDQ Questionnaire (n = 56; 100%) |
---|---|---|---|
C.1. Disorganization | 15 (65.22%) | 54 (58.70%) | 35 (62.50%) |
C.2. Forgetfulness | 19 (82.61%) | 72 (78.26%) | 49 (87.50%) |
C.3. Inactivity | 14 (60.87%) | 37 (40.22%) | 28 (50.00%) |
C.4. Timidness | 8 (34.78%) | 38 (41.30%) | 28 (50.00%) |
C.5. Anxiety | 12 (52.17%) | 54 (58.70%) | 38 (67.86%) |
C.6. Impulsiveness | 17 (73.91%) | 68 (73.91%) | 42 (75.00%) |
C.7. Inattentiveness | 21 (91.30%) | 75 (81.52%) | 48 (85.71%) |
C.8. Hyperactivity | 18 (78.26%) | 63 (68.48%) | 39 (69.64%) |
C.9. Overestimating own capabilities | 12 (52.17%) | 38 (41.30%) | 23 (41.07%) |
C.10. Underestimating own capabilities | 17 (73.91%) | 60 (65.22%) | 36 (64.29%) |
C.11. Lack of persistence | 20 (86.96%) | 68 (71.74%) | 45 (80.36%) |
C.12. Frustration with failure | 16 (69.57%) | 64 (69.57%) | 40 (71.43%) |
C.13. Lack of satisfaction with success | 7 (30.43%) | 17 (18.48%) | 14 (25.00%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stachura, K.; Emich-Widera, E.; Kazek, B.; Stania, M. Coordination, Balance and Fine Motor Skills Deficities in Children with Autism Spectrum Disorder Without Co-Occuring Conditions—Application of MABC-2 Test in Pilot Study Among Polish Children. J. Clin. Med. 2025, 14, 4946. https://doi.org/10.3390/jcm14144946
Stachura K, Emich-Widera E, Kazek B, Stania M. Coordination, Balance and Fine Motor Skills Deficities in Children with Autism Spectrum Disorder Without Co-Occuring Conditions—Application of MABC-2 Test in Pilot Study Among Polish Children. Journal of Clinical Medicine. 2025; 14(14):4946. https://doi.org/10.3390/jcm14144946
Chicago/Turabian StyleStachura, Katarzyna, Ewa Emich-Widera, Beata Kazek, and Magdalena Stania. 2025. "Coordination, Balance and Fine Motor Skills Deficities in Children with Autism Spectrum Disorder Without Co-Occuring Conditions—Application of MABC-2 Test in Pilot Study Among Polish Children" Journal of Clinical Medicine 14, no. 14: 4946. https://doi.org/10.3390/jcm14144946
APA StyleStachura, K., Emich-Widera, E., Kazek, B., & Stania, M. (2025). Coordination, Balance and Fine Motor Skills Deficities in Children with Autism Spectrum Disorder Without Co-Occuring Conditions—Application of MABC-2 Test in Pilot Study Among Polish Children. Journal of Clinical Medicine, 14(14), 4946. https://doi.org/10.3390/jcm14144946