Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = bamboo-activated carbon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4676 KiB  
Article
Adsorption of Pb2+ and Cd2+ from Aqueous Solutions by Porous Carbon Foam Derived from Biomass Phenolic Resin
by Jianwei Ling, Yu Gao, Ruiling Wang, Shiyu Lu, Xuemei Li, Shouqing Liu and Jianxiang Liu
Int. J. Mol. Sci. 2025, 26(15), 7302; https://doi.org/10.3390/ijms26157302 - 28 Jul 2025
Viewed by 215
Abstract
Due to its lightweight and superior adsorption properties, carbon foam is frequently employed for the removal of heavy metal pollutants from aqueous solutions. In this study, a novel modified carbon foam (M-CF) was successfully synthesized for the effective removal of Pb2+ and [...] Read more.
Due to its lightweight and superior adsorption properties, carbon foam is frequently employed for the removal of heavy metal pollutants from aqueous solutions. In this study, a novel modified carbon foam (M-CF) was successfully synthesized for the effective removal of Pb2+ and Cd2+ from water. The synthesis involved partially substituting phenol with the liquefaction product of bamboo powder, followed by modification with a silane coupling agent (KH560) and foaming with n-hexane-loaded activated carbon (H/AC). The prepared carbon foam was comprehensively characterized, and its adsorption performance and mechanism for Pb2+ and Cd2+ in aqueous solution were investigated. The results showed that M-CF possessed a uniform and well-developed spherical pore structure and demonstrated excellent removal capacity for Cd2+ and Pb2+. The adsorption process conformed to the Sips isotherm model and the pseudo-second-order kinetic equation, with maximum adsorption capacities of 22.15 mg·g−1 and 61.59 mg·g−1 for Cd2+ and Pb2+, respectively. Mechanistic analysis revealed that the removal of Cd2+ and Pb2+ was a result of the synergistic effect of physisorption and chemisorption, accompanied by complexation. Furthermore, precipitates formed during the adsorption process were found to be mainly composed of hydroxides, carbonates, and PbS. This research demonstrates the efficacy of carbon foam prepared from bamboo powder waste as a partial phenol substitute for the efficient removal of Pb2+ and Cd2+ from water, thus expanding the preparation pathways for novel heavy metal adsorption materials. Full article
Show Figures

Figure 1

14 pages, 2930 KiB  
Article
Bi-Interfacial Electron Modulation in Co9S8/FeCoS2 Heterostructures Anchored on Bamboo-Derived Carbon Quasi-Aerogel for High-Performance Hydrogen Evolution
by Wenjing He, Jianliang Cao, Xinliang Zhou, Ning Zhang, Yuzhu Qi, Jin Li, Naiteng Wu and Xianming Liu
Gels 2025, 11(6), 390; https://doi.org/10.3390/gels11060390 - 25 May 2025
Viewed by 360
Abstract
Hydrogen energy as a sustainable alternative to fossil fuels necessitates the development of cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER). While transition metal sulfides have shown promise, their practical application is hindered by insufficient active sites, poor conductivity, and suboptimal [...] Read more.
Hydrogen energy as a sustainable alternative to fossil fuels necessitates the development of cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER). While transition metal sulfides have shown promise, their practical application is hindered by insufficient active sites, poor conductivity, and suboptimal hydrogen adsorption kinetics. Herein, we present a heterointerface engineering strategy to construct Co9S8/FeCoS2 heterojunctions anchored on bamboo fiber-derived nitrogen-doped porous carbon (Co9S8/FeCoS2/BFPC) through hydrothermal synthesis and subsequent carbonization. BFPC carbon quasi-aerogel support not only offers a high surface area and conductive pathways but also enables uniform dispersion of active sites through nitrogen doping, which simultaneously optimizes electron transfer and mass transport. Experimental results demonstrate exceptional HER performance in alkaline media, achieving a low overpotential of 86.6 mV at 10 mA cm−2, a Tafel slope of 68.87 mV dec−1, and remarkable stability over 73 h of continuous operation. This work highlights the dual advantages of heterointerface design and carbon substrate functionalization, providing a scalable template for developing noble metal-free electrocatalysts for energy conversion technologies. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

17 pages, 3690 KiB  
Article
Impacts of Ecological Restoration Projects on Ecosystem Carbon Storage of Tongluo Mountain Mining Area, Chongqing, in Southwest China
by Lei Ma, Manyi Li, Chen Wang, Hongtao Si, Mingze Xu, Dongxue Zhu, Cheng Li, Chao Jiang, Peng Xu and Yuhe Hu
Land 2025, 14(6), 1149; https://doi.org/10.3390/land14061149 - 25 May 2025
Viewed by 584
Abstract
Surface mining activities cause severe disruption to ecosystems, resulting in the substantial destruction of surface vegetation, the loss of soil organic carbon stocks, and a decrease in the ecosystem’s ability to sequester carbon. The ecological restoration of mining areas has been found to [...] Read more.
Surface mining activities cause severe disruption to ecosystems, resulting in the substantial destruction of surface vegetation, the loss of soil organic carbon stocks, and a decrease in the ecosystem’s ability to sequester carbon. The ecological restoration of mining areas has been found to significantly enhance the carbon storage capacity of ecosystems. This study evaluated ecological restoration strategies in Chongqing’s Tongluo Mountain mining area by integrating GF-6 satellite multispectral data (2 m panchromatic/8 m multispectral resolution) with ground surveys across 45 quadrats to develop a quadratic regression model based on vegetation indices and the field-measured biomass. The methodology quantified carbon storage variations among engineered restoration (ER), natural recovery (NR), and unmanaged sites (CWR) while identifying optimal vegetation configurations for karst ecosystems. The methodology combined the high-spatial-resolution satellite imagery for large-scale vegetation mapping with field-measured biomass calibration to enhance the quantitative accuracy, enabling an efficient carbon storage assessment across heterogeneous landscapes. This hybrid approach overcame the limitations of traditional plot-based methods by providing spatially explicit, cost-effective monitoring solutions for mining ecosystems. The results demonstrate that engineered restoration significantly enhances carbon sequestration, with the aboveground vegetation biomass reaching 5.07 ± 1.05 tC/ha, a value 21% higher than in natural recovery areas (4.18 ± 0.23 tC/ha) and 189% greater than at unmanaged sites (1.75 ± 1.03 tC/ha). In areas subjected to engineered restoration, both the vegetation and soil carbon storage showed an upward trend, with soil carbon sequestration being the primary form, contributing to 81% of the total carbon storage, and with engineered restoration areas exceeding natural recovery and unmanaged zones by 17.6% and 106%, respectively, in terms of their soil carbon density (40.41 ± 9.99 tC/ha). Significant variations in the carbon sequestration capacity were observed across vegetation types. Bamboo forests exhibited the highest carbon density (25.8 tC/ha), followed by tree forests (2.54 ± 0.53 tC/ha), while grasslands showed the lowest values (0.88 ± 0.52 tC/ha). For future restoration initiatives, it is advisable to select suitable vegetation types based on the local dominant species for a comprehensive approach. Full article
Show Figures

Figure 1

17 pages, 2402 KiB  
Article
Effects of Different Vegetation Types on Soil Quality in Golden Huacha (Camellia petelotii) National Nature Reserve
by Yong Jiang, Sheng Xu, Weiwei Gu, Siqi Wu, Jian Qiu, Wenxu Zhu and Nanyan Liao
Forests 2025, 16(5), 865; https://doi.org/10.3390/f16050865 - 21 May 2025
Viewed by 343
Abstract
Natural and planted forests differentially regulate soil quality through vegetation–soil interactions. The effects of four types of planting covers on soil nutrients, enzyme activities, and microbial communities in the Guangxi Camellia nitidissima National Nature Reserve were studied, revealing the multi-dimensional influences of natural [...] Read more.
Natural and planted forests differentially regulate soil quality through vegetation–soil interactions. The effects of four types of planting covers on soil nutrients, enzyme activities, and microbial communities in the Guangxi Camellia nitidissima National Nature Reserve were studied, revealing the multi-dimensional influences of natural (broadleaf, shrubland) and planted forests (bamboo, pine) on soil quality. Surface soils (0–10 cm depth) were characterized for physicochemical properties (pH, TC, TN, NO3-N, AP), enzyme activities (α-amylase, urease, phosphatase, β-glucosidase), and microbial composition (using 16S rRNA and ITS region sequencing). Mantel tests and PLS–PM modeling were employed to investigate interactions among vegetation, soil variables, and microbes. Natural forests exhibited higher pH, nitrate nitrogen, and enzymatic activities (urease, phosphatase, β-glucosidase) alongside enhanced carbon–nitrogen accumulation and reduced acidification. Planted forests showed elevated available phosphorus and nutrient supply but lower organic matter retention. Microbial communities displayed higher similarity within natural forests, with fungal composition strongly linked to total carbon/nitrogen (p < 0.05). Vegetation type positively influenced bacterial diversity but negatively affected fungal communities. Natural forests maintained critical soil–microbe–plant interactions supporting ecosystem resilience through carbon–nitrogen cycling, while planted forests fostered divergent microbial functionality despite short-term nutrient benefits. These findings underscore natural forests’ unique role in preserving ecological stability and reveal fundamental limitations of artificial systems in mimicking microbially-mediated biogeochemical processes. Conservation policy should prioritize the protection of natural forests while simultaneously integrating microbial community management with vegetation restoration efforts to enhance long-term ecosystem functionality and nutrient cycling efficiency. Full article
Show Figures

Figure 1

17 pages, 2142 KiB  
Article
Response of Soil Enzyme and Plant Stoichiometry to Root Interactions: Insights from Mixed Plantings of Moso Bamboo
by Yilin Ning, Jie Zhang, Anke Wang, Qifeng Wu, Qunfang Yu, Kaiwen Huang, Yufang Bi and Xuhua Du
Forests 2025, 16(5), 722; https://doi.org/10.3390/f16050722 - 23 Apr 2025
Viewed by 452
Abstract
Root interactions are crucial in regulating soil microbial metabolism and plant nutrient allocation strategies, especially in mixed plantings. However, the effects of mixed planting and direct root contact on soil properties and plant nutrient allocation remain unclear. Thus, we established potted plants with [...] Read more.
Root interactions are crucial in regulating soil microbial metabolism and plant nutrient allocation strategies, especially in mixed plantings. However, the effects of mixed planting and direct root contact on soil properties and plant nutrient allocation remain unclear. Thus, we established potted plants with Moso bamboo (Phyllostachys edulis) and Phoebe chekiangensis and created a physical barrier to the root system without blocking chemical communication using four treatments: mixed planting with root segregation (MT), mixed planting without root segregation (MS), pure Moso bamboo with root segregation (BT), and pure Moso bamboo without root segregation (BS). We investigated changes in soil and Moso bamboo nutrient content, soil enzyme activity, and microbial metabolic limitation. The results show that mixed planting and root segregation significantly affected soil and plant nutrient content and soil enzyme activities. Compared to the two pure Moso bamboo treatments, mixed planting increased microbial carbon limitation but decreased microbial nitrogen limitation. Physical segregation between roots increased microbial carbon use efficiency (CUE) compared to no segregation. Random forest analyses revealed that the best predictors of soil C and N limitations and CUE were microbial biomass and dissolved organic nitrogen (DON), respectively. Partial least squares path modeling indicated that mixed planting and root separation, directly and indirectly, affected soil microbial metabolic limitation through their effects on soil nutrients, microbial biomass, and enzyme activities. Carbon limitation significantly increased plant nutrient contents. Our study provides further insights into factors influencing nutrient limitation, CUE, and plant nutrient allocation strategies in mixed Moso bamboo plantations. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 5398 KiB  
Article
Activated Carbon from Selected Wood-Based Waste Materials
by Małgorzata Kajda-Szcześniak, Anna Mainka, Waldemar Ścierski, Mirosława Pawlyta, Dariusz Łukowiec, Krzysztof Matus, Kalina Turyła, Daniel Lot, Weronika Barańska and Anna Jabłońska
Sustainability 2025, 17(7), 2995; https://doi.org/10.3390/su17072995 - 27 Mar 2025
Viewed by 526
Abstract
Extended producer responsibility (EPR) and the circular economy can address the growing challenge of managing wood-based waste in the context of sustainability. This research explores pyrolysis as an effective method for converting wood-based waste, i.e., bamboo flooring (BF) and high-density fiberboard floor panels [...] Read more.
Extended producer responsibility (EPR) and the circular economy can address the growing challenge of managing wood-based waste in the context of sustainability. This research explores pyrolysis as an effective method for converting wood-based waste, i.e., bamboo flooring (BF) and high-density fiberboard floor panels (HDF), into valuable products, particularly char. Char samples were activated through two distinct methods: (1) thermal activation at 700 and 850 °C and (2) chemical activation with KOH. Analytical techniques, including elemental and heavy metals analysis, FTIR, Raman spectroscopy, SEM, and TEM were used to assess the chemical composition and surface characteristics of the produced chars. Elemental analysis showed a notable rise in the amount of carbon to 81% and 75% in BF and HDF, respectively. The nitrogen content was relatively high in HDF at 5.12%. Heavy metals analysis revealed total metal contents ranging from 3632 to 9494 ppm in BF chars and 1717 to 7426 ppm in HDF chars. Raman spectra exhibited characteristic D and G bands, with ID/IG ratios of 0.83 for BF and 0.85 for HDF after activation. SEM and TEM analyses revealed heterogeneous porous structures with dominant carbon elements. The high carbon content, low toxicity, and advantageous elemental composition of the chars make them suitable for environmental applications. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Environmental Sustainability)
Show Figures

Figure 1

15 pages, 4809 KiB  
Article
Recovery of Waste-Activated Carbon for Synthesizing High-Efficiency ORR Electrocatalyst
by Ziyu Tang, Haowen Li, Xiaojing Jia, Fawei Lin and Kai Li
Energies 2025, 18(7), 1666; https://doi.org/10.3390/en18071666 - 27 Mar 2025
Viewed by 365
Abstract
Activated carbon used to adsorb organic pollutants and heavy metals in wastewater is often used to prepare precursor materials to avoid re-polluting the environment. Non-precious metal and heteroatom co-doped electrocatalysts have emerged as promising alternatives to Pt-based catalysts due to their high catalytic [...] Read more.
Activated carbon used to adsorb organic pollutants and heavy metals in wastewater is often used to prepare precursor materials to avoid re-polluting the environment. Non-precious metal and heteroatom co-doped electrocatalysts have emerged as promising alternatives to Pt-based catalysts due to their high catalytic activity and remarkable stability. This has greatly developed the ORR process in the field of energy storage, which is restricted due to the high price of Pt-based catalysts. In this study, bamboo shavings were pre-activated to synthesize carbon materials, which were subsequently mixed with an oil phase to simulate “waste-activated carbon”. The results demonstrate that the modified waste-activated carbon exhibits a high specific surface area, a well-developed porous structure, and characteristic element doping, which collectively contribute to the effective construction of active sites. Furthermore, the material displays ORR electrocatalytic performance that surpasses that of commercial Pt/C catalysts. In this study, a high-performance ORR electrocatalyst was successfully synthesized through the retreatment of “waste-activated carbon”. Building on this achievement, this study offers a novel perspective and contributes to advancing research on the resource utilization and sustainable treatment of waste-activated carbon. Full article
Show Figures

Figure 1

19 pages, 5720 KiB  
Article
Short-Term Effects of Three Tree Species on Soil Physicochemical Properties and Microbial Communities During Land-Use Change from Farmland to Forests
by Yi Jian, Jing Lin, Changlong Mu, Yuqi Wang, Zhenyang He, Gang Chen and Wei Ding
Forests 2025, 16(2), 362; https://doi.org/10.3390/f16020362 - 17 Feb 2025
Cited by 2 | Viewed by 624
Abstract
In recent decades, much of China’s farmland has been transformed into forests due to the Conversion of Farmland to Forests and Grasses Project. While past research has mainly examined soil nutrients and water conservation, less attention has been given to soil microbial communities. [...] Read more.
In recent decades, much of China’s farmland has been transformed into forests due to the Conversion of Farmland to Forests and Grasses Project. While past research has mainly examined soil nutrients and water conservation, less attention has been given to soil microbial communities. This study examined the effects of converting farmland to forests of Pleioblastus amarus (PA), Populus deltoides (PD), or Zanthoxylum bungeanum (ZB) on the soil physiochemical properties, enzymes, and microbial communities, using abandoned land (AL) as the control, over a period of five years. The results showed that PA increased the soil organic carbon (SOC) content, although not significantly, while significantly boosting the C:N and C:P ratios and urease activity compared to the AL. PD notably reduced the amylase and cellulase activities, as well as the fungal Shannon index. Additionally, the beta diversity of both the bacterial and fungal communities in the PA stand was clearly distinct from that of the AL and the other tree species. The SOC content, total potassium content, and cellulase activity showed significant correlations with bacterial communities. Moreover, the bacterial community changes in the PD and ZB stands were mainly driven by the genera Steroidobacter, Roseisolibacter, and Serendipita, and were negatively correlated with the SOC content, C:N and C:P ratios, and cellulase activity. In contrast, the fungal community changes in the PA stand were primarily influenced by the order Capnodiales, family Capnodiaceae, genus Chaetocapnodium, and species Chaetocapnodium philippinense, which were positively correlated with the soil pH, C:N and C:P ratios, and cellulase activity. Furthermore, “Metabolism” was identified as the primary bacterial function, and converting farmland to forest altered the fungal nutritional type from Saprotroph to Pathotroph–Saprotroph–Symbiotroph, particularly in the PA stand. These findings indicate that converting farmland to forest, particularly with bamboo P. amarus, significantly impacts the bacterial and fungal communities in the soil and changes the fungal trophic type due to the carbon source and cellulase activity of this tree species. Full article
Show Figures

Figure 1

23 pages, 3563 KiB  
Article
Approximate Adsorption Performance Indicator in Evaluating Sustainable Bamboo-Derived Adsorbents for Biogas Upgrading
by Khaled Abou Alfa, Nour Abou Saleh, Adrian Beda, Camélia Matei Ghimbeu, Grace Iragena Dushime, Frederic Marias, Laurent Moynault, Vincent Platel and Cecile Hort
Sustainability 2025, 17(4), 1445; https://doi.org/10.3390/su17041445 - 10 Feb 2025
Cited by 2 | Viewed by 1030
Abstract
Purifying biogas by removing contaminants and carbon dioxide (CO2) to produce biomethane enhances its energy content, making it suitable as fuel and for injection into natural gas grids. Bamboo-derived adsorbents Bamboo-500 (pyrolyzed at 500 °C), Bamboo-700 (pyrolyzed at 700 °C), and [...] Read more.
Purifying biogas by removing contaminants and carbon dioxide (CO2) to produce biomethane enhances its energy content, making it suitable as fuel and for injection into natural gas grids. Bamboo-derived adsorbents Bamboo-500 (pyrolyzed at 500 °C), Bamboo-700 (pyrolyzed at 700 °C), and Bamboo-A-900 (activated with CO2 at 900 °C) were synthesized and characterized to evaluate their performance for CO2 and CH4 adsorption. Increasing pyrolysis temperature from 500 °C to 700 °C and further CO2 activation at 900 °C enhanced adsorption capacities of CO2 and CH4 due to improved surface area and micropore structure. In this study, the novel Approximate Adsorption Performance Indicator (AAPI) approach is introduced, offering an efficient method for evaluating adsorbent performance, particularly in biogas upgrading. AAPI results suggest Bamboo-500 is suitable for biogas upgrading at very low pressures (<0.12 MPa) with low regeneration energy and acceptable CO2 capacity (1.9 ± 0.2 mol kg−1). However, Bamboo-A-900 excelled at medium and high pressures by its highest CO2 adsorption capacity (8.0 ± 0.3 mol kg−1) promoted by the high surface area (1220 m2g−1) and calcium oxide presence. Finally, Bamboo-A-900 shows promise for enhancing CO2 adsorption and biogas upgrading. Bamboo-derived adsorbents offer a sustainable solution for biogas upgrading, supporting Sustainable Development Goals by promoting clean energy transitions. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

48 pages, 9639 KiB  
Review
Clean and Green Bamboo Magic: Recent Advances in Heavy Metal Removal from Water by Bamboo Adsorbents
by Monika Negi, Vinju Thankachan, Arya Rajeev, M. Vairamuthu, S. Arundhathi and P. V. Nidheesh
Water 2025, 17(3), 454; https://doi.org/10.3390/w17030454 - 6 Feb 2025
Cited by 5 | Viewed by 3328
Abstract
Adsorbents derived from bamboo, such as biochar, charcoal, activated carbon, and chemically modified bamboo, are recognized for their efficiency and cost-effectiveness in removing heavy metals from water. Despite this, there remains a gap in applying bamboo-based adsorbents for treating heavy metal-contaminated water sources, [...] Read more.
Adsorbents derived from bamboo, such as biochar, charcoal, activated carbon, and chemically modified bamboo, are recognized for their efficiency and cost-effectiveness in removing heavy metals from water. Despite this, there remains a gap in applying bamboo-based adsorbents for treating heavy metal-contaminated water sources, particularly regarding their physicochemical properties, adsorption mechanisms, and modifications. This review highlights the influence of factors such as specific surface area, pore distribution, pH, cation exchange capacity, elemental composition, and surface functional groups on the ability of bamboo adsorbents to adsorb heavy metals. It also discusses recent advancements in enhancing the properties of bamboo adsorbents through physical and chemical modifications and examines how variables like adsorbent dosage, water pH, temperature, initial concentrations of cations, and heavy metals affect heavy metal removal. The review categorizes the mechanisms of heavy metal adsorption into surface complexation, physical adsorption, electrostatic interaction, ion exchange, precipitation, and redox effect. While bamboo-based adsorbents have shown higher sorption capacity in laboratory settings, there is a need for more comprehensive studies to optimize their performance, scalability, and cost-effectiveness in real-world applications. Full article
Show Figures

Graphical abstract

18 pages, 6059 KiB  
Article
Moso Bamboo’s Survival Strategy Against Chilling Stress in Signaling Dynamics
by Xiong Jing, Chunju Cai, Pengfei Geng and Yi Wang
Forests 2024, 15(12), 2132; https://doi.org/10.3390/f15122132 - 2 Dec 2024
Cited by 1 | Viewed by 1035
Abstract
Phyllostachys edulis, an economically and ecologically significant bamboo species, has substantial research value in applications as a bamboo substitute for plastic and in forest carbon sequestration. However, frequent seasonal low-temperature events due to global climate change affect the growth, development, and productivity [...] Read more.
Phyllostachys edulis, an economically and ecologically significant bamboo species, has substantial research value in applications as a bamboo substitute for plastic and in forest carbon sequestration. However, frequent seasonal low-temperature events due to global climate change affect the growth, development, and productivity of P. edulis. Calcium signaling, serving as a versatile second messenger, is involved in various stress responses and nitrogen metabolism. In this study, we analyzed the calcium signaling dynamics and regulatory strategies in P. edulis under chilling stress. Differentially expressed genes (DEGs) from the CBF families, AMT families, NRT families, and Ca2+ sensor families, including CaM, CDPK, and CBL, were identified using transcriptomics. Additionally, we explored the law of Ca2+ flux and distribution in the roots of P. edulis under chilling stress and validated these findings by assessing the content or activity of Ca2+ sensor proteins and nitrogen transport proteins in the roots. The results indicated that the Ca2+ sensor families of CaM, CDPK, and CBL in P. edulis exhibited significant transcriptional changes under chilling stress. Notably, PH02Gene03957, PH02Gene42787, and PH02Gene19300 were significantly upregulated, while the expressions of PH02Gene08456, PH02Gene01209, and PH02Gene37879 were suppressed. In particular, the expression levels of the CBF family gene PH02Gene14168, a downstream target gene of the calcium channels, increased significantly. P. edulis exhibited an influx of Ca2+ at the root, accompanied by oscillating negative peaks under chilling stress. Spatially, the cytosolic calcium concentration ([Ca2+]cyt) within the root cells increased. The CIPK family genes, interacting with Ca2+-CBL in downstream signaling pathways, showed significant differential expressions. In addition, the expressions of the NRT and AMT family genes changed correspondingly. Our study demonstrates that Ca2+ signaling is involved in the regulatory network of P. edulis under chilling stress. [Ca2+]cyt fluctuations in the roots of P. edulis are induced by chilling stress, reflecting an influx of extracellular Ca2+. Upon binding to Ca2+, downstream target genes from the CBF family are activated. Within the Ca2+–CBL–CIPK signaling network, the CIPK family plays a crucial role in nitrogen metabolism pathways. Full article
Show Figures

Figure 1

22 pages, 7222 KiB  
Article
Karst Ecosystem: Moso Bamboo Intercropping Enhances Soil Fertility and Microbial Diversity in the Rhizosphere of Giant Lily (Cardiocrinum giganteum)
by Jie Zhang, Haoyu Wu, Guibin Gao, Yuwen Peng, Yilin Ning, Zhiyuan Huang, Zedong Chen, Xiangyang Xu and Zhizhuang Wu
Forests 2024, 15(11), 2004; https://doi.org/10.3390/f15112004 - 13 Nov 2024
Viewed by 903
Abstract
Intercropping affects soil microbial community structure significantly; however, the effects on understory medicinal plants in karst areas remain unclear. We investigated the effects of four intercropping systems (Moso bamboo, Chinese fir, bamboo-fir mixed forest, and forest gap) on the rhizosphere microbial communities of [...] Read more.
Intercropping affects soil microbial community structure significantly; however, the effects on understory medicinal plants in karst areas remain unclear. We investigated the effects of four intercropping systems (Moso bamboo, Chinese fir, bamboo-fir mixed forest, and forest gap) on the rhizosphere microbial communities of giant lily (Cardiocrinum giganteum), an economically important medicinal plant in China. We assessed the intercropping impact on rhizosphere microbial diversity, composition, and co-occurrence networks and identified key soil properties driving the changes. Bacterial and fungal diversity were assessed by 16S rRNA and ITS gene sequencing, respectively; soil physicochemical properties and enzyme activities were measured. Moso bamboo system had the highest fungal diversity, with relatively high bacterial diversity. It promoted a distinct microbial community structure with significant Actinobacteria and saprotrophic fungi enrichment. Soil organic carbon, total nitrogen, and available potassium were the most influential drivers of microbial community structure. Co-occurrence network analysis revealed that the microbial network in the Moso bamboo system was the most complex and highly interconnected, with a higher proportion of positive interactions and a greater number of keystone taxa. Thus, integrating Moso bamboo into intercropping systems can enhance soil fertility, microbial diversity, and ecological interactions in the giant lily rhizosphere in karst forests. Full article
(This article belongs to the Special Issue Ecological Research in Bamboo Forests)
Show Figures

Figure 1

20 pages, 6028 KiB  
Article
Evaluation of Kinetic and Thermodynamic Parameters of Pyrolysis and Combustion Processes for Bamboo Using Thermogravimetric Analysis
by Jialiu Lei, Yao Wang, Qihui Wang, Shiru Deng and Yongjun Fu
Processes 2024, 12(11), 2458; https://doi.org/10.3390/pr12112458 - 6 Nov 2024
Cited by 5 | Viewed by 2015
Abstract
As a typical forestry waste, bamboo has gained increasing attention for its potential applications. In order to optimize its valorization, understanding the kinetic and thermodynamic parameters of bamboo pyrolysis and combustion is crucial. In this study, thermogravimetric analysis (TGA) was employed to examine [...] Read more.
As a typical forestry waste, bamboo has gained increasing attention for its potential applications. In order to optimize its valorization, understanding the kinetic and thermodynamic parameters of bamboo pyrolysis and combustion is crucial. In this study, thermogravimetric analysis (TGA) was employed to examine bamboo powder’s pyrolysis and combustion behaviors under different temperature ramps in nitrogen and air environments, and the kinetic and thermodynamic parameters were evaluated using the Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), and Starink (STR) model-free approaches. The main findings are as follows. (1) The thermogravimetry (TG) and derivative thermogravimetry (DTG) (DTG) curves reveal that bamboo pyrolysis occurs in three distinct stages: drying, devolatilization, and carbonization. Similarly, combustion also proceeds through three stages: drying, devolatilization, and char combustion. Notable differences in the temperature ranges of the key stages were observed between pyrolysis and combustion. (2) The activation energies during the oxidative devolatilization stage of combustion are notably lower compared to those during pyrolysis devolatilization. The disparity in activation energy is even more pronounced in the third stage. (3) Thermodynamic analysis shows that the pyrolysis and combustion of bamboo are endothermic and non-spontaneous. It can be stably converted into value-added energy through the pyrolysis or combustion process. This study provides essential data to aid in designing and scaling up the thermochemical conversion processes for bamboo and promote its efficient valorization of bioenergy. Full article
(This article belongs to the Topic Advances in Biomass Conversion, 2nd Edition)
Show Figures

Figure 1

15 pages, 4192 KiB  
Article
Performance and Mechanism of Porous Carbons Derived from Biomass as Adsorbent for Removal of Cr(VI)
by Bingbing Mi and Yuanjie Wang
Processes 2024, 12(10), 2229; https://doi.org/10.3390/pr12102229 - 13 Oct 2024
Cited by 2 | Viewed by 1319
Abstract
To solve the problem of heavy metal hexavalent chromium (Cr(VI)) pollution in water bodies, this study was carried out to prepare nitrogen-doped porous carbon by using bamboo shoots as the raw material and KHCO3 as the activator, which has a good ability [...] Read more.
To solve the problem of heavy metal hexavalent chromium (Cr(VI)) pollution in water bodies, this study was carried out to prepare nitrogen-doped porous carbon by using bamboo shoots as the raw material and KHCO3 as the activator, which has a good ability to remove Cr(VI) from water bodies. The prepared N-doped carbon materials were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and scanning electron microscopy (SEM). The results showed that the prepared carbon material had hierarchical pore structures and abundant functional groups, which is conducive to the adsorption of Cr(VI). The effects of various factors on the adsorption performance of Cr(VI), such as the carbon materials prepared under different conditions, the pH of the initial solution, the concentration of the initial solution, and the contact time between the carbon and Cr(VI), were explored. The results showed that the bamboo shoot-based nitrogen-doped carbon materials, especially BSNC-800 (prepared at 800 °C with a mass ratio of KHCO3 to bamboo shoot of 4:1), performed well in removing Cr(VI) from a water solution. The maximum adsorption of Cr(VI) by BSNC-800 under equilibrium conditions was 385.8 mg g−1 (conditions: at the pH of 2 with the initial concentration of 400 mg L−1). The adsorption kinetics and isotherms were analyzed, and the adsorption mechanism was discussed. It can be found that the adsorption of Cr(VI) by BSNC-800 fits better with the Langmuir isotherm model and the pseudo-second-order kinetic model. The adsorption mechanism between the Cr(VI)-containing solution and BSNC-800 was controlled by membrane diffusion and chemisorption. The results broaden the ways of utilizing biomass resources as precursors of carbon materials, which is significant and helpful for applying biomass carbon materials as adsorbents for wastewater treatment. Full article
(This article belongs to the Special Issue Biochar Pyrolysis Process and Carbon Emission)
Show Figures

Figure 1

17 pages, 2569 KiB  
Article
Impact of Nitrogen Fertilizer Application on Soil Organic Carbon and Its Active Fractions in Moso Bamboo Forests
by Haoyu Chu, Wenhui Su, Shaohui Fan, Xianxian He and Zhoubin Huang
Forests 2024, 15(9), 1483; https://doi.org/10.3390/f15091483 - 24 Aug 2024
Cited by 7 | Viewed by 1611
Abstract
Soil organic carbon (SOC) is a crucial indicator of soil quality and fertility. However, excessive nitrogen (N) application, while increasing Moso bamboo yield, may reduce SOC content, potentially leading to soil quality issues. The impact of N on SOC and its active fraction [...] Read more.
Soil organic carbon (SOC) is a crucial indicator of soil quality and fertility. However, excessive nitrogen (N) application, while increasing Moso bamboo yield, may reduce SOC content, potentially leading to soil quality issues. The impact of N on SOC and its active fraction in Moso bamboo forests remains underexplored. Investigating these effects will elucidate the causes of soil quality decline and inform effective N management strategies. Four N application gradients were set: no nitrogen (0 kg·hm−2·yr−1, N0), low nitrogen (242 kg·hm−2·yr−1, N1), medium nitrogen (484 kg·hm−2·yr−1, N2), and high nitrogen (726 kg·hm−2·yr−1, N3), with no fertilizer application as the control (CK). We analyzed the changes in SOC, active organic carbon components, and the Carbon Pool Management Index (CPMI) under different N treatments. The results showed that SOC and its active organic carbon components in the 0~10 cm soil layer were more susceptible to N treatments. The N0 treatment significantly increased microbial biomass carbon (MBC) content but had no significant effect on SOC, particulate organic carbon (POC), dissolved organic carbon (DOC), and readily oxidizable organic carbon (ROC) contents. The N1, N2, and N3 treatments reduced SOC content by 29.36%, 21.85%, and 8.67%, respectively. Except for POC, N1,N2 and N3 treatments reduced MBC, DOC, and ROC contents by 46.29% to 71.69%, 13.98% to 40.4%, and 18.64% to 48.55%, respectively. The MBC/SOC ratio can reflect the turnover rate of SOC, and N treatments lowered the MBC/SOC ratio, with N1 < N2 < N3, indicating the slowest SOC turnover under the N1 treatment. Changes in the Carbon Pool Management Index (CPMI) illustrate the impact of N treatments on soil quality and SOC sequestration capacity. The N1 treatment increased the CPMI, indicating an improvement in soil quality and SOC sequestration capacity. The comprehensive evaluation index of carbon sequestration capacity showed N3 (−0.69) < N0 (−0.13) < CK (−0.05) < N2 (0.24) < N1 (0.63), with the highest carbon sequestration capacity under the N1 treatment and a gradual decrease with increasing N fertilizer concentration. In summary, although the N1 treatment reduced the SOC content, it increased the soil CPMI and decreased the SOC turnover rate, benefiting soil quality and SOC sequestration capacity. Therefore, the reasonable control of N fertilizer application is key to improving soil quality and organic carbon storage in Moso bamboo forests. Full article
Show Figures

Figure 1

Back to TopTop