Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (411)

Search Parameters:
Keywords = bactericidal efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10020 KB  
Article
Chitosan/Carboxymethyl Cellulose Nanocomposites Prepared via Electrolyte Gelation–Spray Drying for Controlled Ampicillin Delivery and Enhanced Antibacterial Activity
by Anh Dzung Nguyen, Vinh Nghi Nguyen, Vu Hoa Tran, Huu Hung Dinh, Dinh Sy Nguyen, Thi Huyen Nguyen, Van Bon Nguyen and San Lang Wang
Polymers 2026, 18(3), 319; https://doi.org/10.3390/polym18030319 (registering DOI) - 24 Jan 2026
Abstract
This study reports the fabrication of chitosan/carboxymethyl cellulose (C/M) nanocomposites by electrolyte gelation–spray drying and the evaluation of their antibacterial performance as carriers for the antibiotic ampicillin. Chitosan (C), a cationic biopolymer derived from chitin, was combined with the anionic polysaccharide carboxymethyl cellulose [...] Read more.
This study reports the fabrication of chitosan/carboxymethyl cellulose (C/M) nanocomposites by electrolyte gelation–spray drying and the evaluation of their antibacterial performance as carriers for the antibiotic ampicillin. Chitosan (C), a cationic biopolymer derived from chitin, was combined with the anionic polysaccharide carboxymethyl cellulose (M) at different mass ratios to form stable nanocomposites via electrostatic interactions and then collected in a spray dryer. The resulting particles exhibited mean diameters ranging from 800 to 1500 nm and zeta potentials varying from +90 to −40 mV, depending on the C/M ratio. The optimal formulation (C/M = 2:1 ratio) achieved a high recovery yield (71.1%), lower PDI (0.52), and ampicillin encapsulation efficiency EE (82.4%). Fourier transform infrared spectroscopy (FTIR) confirmed the presence of hydrogen bonding and ionic interactions among C/M, and ampicillin within the nanocomposite matrix. The nanocomposites demonstrated controlled ampicillin release and pronounced antibacterial activity against Staphylococcus aureus, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 3.2 µg/mL and 5.3 µg/mL, respectively, which were lower than those of free ampicillin. These results indicate that the chitosan/carboxymethyl cellulose nanocomposites are promising, eco-friendly carriers for antibiotic delivery and antibacterial applications. Full article
(This article belongs to the Special Issue Valorization of Biopolymer from Renewable Biomass, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 3566 KB  
Article
In Situ Green Synthesis of Red Wine Silver Nanoparticles on Cotton Fabrics and Investigation of Their Antibacterial Effects
by Alexandria Erasmus, Nicole Remaliah Samantha Sibuyi, Mervin Meyer and Abram Madimabe Madiehe
Int. J. Mol. Sci. 2026, 27(2), 952; https://doi.org/10.3390/ijms27020952 - 18 Jan 2026
Viewed by 314
Abstract
Antimicrobial resistance (AMR) is a major global health concern, which complicates treatment of microbial infections and wounds. Conventional therapies are no longer effective against drug resistant microbes; hence, novel antimicrobial approaches are urgently required. Silver nanoparticles (AgNPs) offer stronger antimicrobial activity, and in [...] Read more.
Antimicrobial resistance (AMR) is a major global health concern, which complicates treatment of microbial infections and wounds. Conventional therapies are no longer effective against drug resistant microbes; hence, novel antimicrobial approaches are urgently required. Silver nanoparticles (AgNPs) offer stronger antimicrobial activity, and in situ synthesis improves stability, uniformity, cost efficiency, and bioactivity while minimising contamination. These features make AgNPs well-suited for incorporation into textiles and wound dressings. Red wine extract (RW-E), rich in antioxidant and anti-inflammatory compounds was used to hydrothermally synthesise RW-AgNPs and RW-AgNPs-loaded on cotton (RWALC) by optimising pH and RW-E concentration. Characterisation was performed using UV–Vis spectroscopy, dynamic light scattering (DLS), and High Resolution and Scanning electron microscopy (HR-TEM and SEM). Antibacterial activities were evaluated against human pathogens through agar disc diffusion assay for RWALC and microdilution assay for RW-AgNPs. RWALC showed higher potency against both Gram-negative and Gram-positive bacteria, with inhibition zones of 12.33 ± 1.15 to 23.5 ± 5.15 mm, that surpassed those of ciprofloxacin (10 ± 3 to 19.17 ± 1.39 mm at 10 μg/mL). RW-AgNPs exhibited low minimum inhibitory concentrations (MIC: 0.195–3.125 μg/mL) and minimum bactericidal concentrations (MBC: 0.78–6.25 μg/mL). Preincubation with β-mercaptoethanol (β-ME) inhibited the antibacterial activity of RWALC, suggesting that thiolated molecules are involved in AgNPs-mediated effects. This study demonstrated that green-synthesised RW-AgNPs, incorporated in situ into cotton, conferred strong antibacterial properties, warranting further investigation into their mechanisms of action. Full article
Show Figures

Graphical abstract

15 pages, 2077 KB  
Article
Phage PM16 Therapy Induce Long-Term Protective Immunity Against Proteus mirabilis via Macrophage Priming
by Lina Al Allaf, Anton V. Chechushkov, Vera V. Morozova, Yulia N. Kozlova, Tatiana A. Ushakova and Nina V. Tikunova
Pathogens 2026, 15(1), 99; https://doi.org/10.3390/pathogens15010099 - 16 Jan 2026
Viewed by 142
Abstract
Bacteriophages, traditionally viewed solely as antibacterial agents, are increasingly being studied for their immunomodulatory properties. In this study, we demonstrate that PM16 phage therapy not only effectively controls subcutaneous Proteus mirabilis infection in mice but also induces long-term specific humoral immunity against subsequent [...] Read more.
Bacteriophages, traditionally viewed solely as antibacterial agents, are increasingly being studied for their immunomodulatory properties. In this study, we demonstrate that PM16 phage therapy not only effectively controls subcutaneous Proteus mirabilis infection in mice but also induces long-term specific humoral immunity against subsequent reinfection. This immunomodulatory effect was dose-dependent. In vitro, PM16 directly activates macrophages, leading to increased production of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) and inducible nitric oxide synthase, and enhances macrophage bactericidal activity against P. mirabilis. We assume that the enhancement of the adaptive immune response is mediated not by the phage acting as a classical antigenic adjuvant but by its ability to prime innate immune cells, specifically macrophages. This priming leads to more efficient bacterial clearance, antigen presentation, and the formation of protective immunological memory. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

17 pages, 2910 KB  
Article
Antimicrobial Properties of Polymer-Based Nanocomposites Modified by Nanoparticles Produced by Green Chemistry
by Anna Wasilewska, Magda Bielicka, Urszula Klekotka, Grzegorz Markiewicz, Marek Jałbrzykowski, Wioleta Lewandowska, Izabela Swiecicka and Beata Kalska-Szostko
Materials 2026, 19(2), 251; https://doi.org/10.3390/ma19020251 - 8 Jan 2026
Viewed by 243
Abstract
A significant driving force in nanotechnology development is the environmentally friendly synthesis of nanomaterials using natural extracts as reducing and stabilizing agents. In this study, silver and copper nanoparticles were synthesized and compared using two approaches: (1) a green synthesis pathway employing beetroot [...] Read more.
A significant driving force in nanotechnology development is the environmentally friendly synthesis of nanomaterials using natural extracts as reducing and stabilizing agents. In this study, silver and copper nanoparticles were synthesized and compared using two approaches: (1) a green synthesis pathway employing beetroot extract as a natural bio-reductant and stabilizer, and (2) a conventional chemical reduction method. The resulting nanoparticles were extensively characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, and dynamic light scattering (DLS). The study revealed that the green synthesis route produced nanoparticles with well-defined morphology, high stability, and strong antimicrobial potential, outperforming those obtained via conventional chemical synthesis. Copper nanoparticles synthesized using beetroot extract exhibited particularly enhanced fungicidal and bactericidal properties, demonstrating the effectiveness of plant-based reducing agents in producing functional nanostructures. To further evaluate potential applications, the green-synthesized nanoparticles were incorporated into a polypropylene matrix, confirming their integrity and activity within the composite system. This work emphasizes the role of green synthesis in designing high-performance nanomaterials and highlights the promising capabilities of beetroot extract as a sustainable and efficient reducing and stabilizing medium for silver and copper nanoparticle production. Full article
Show Figures

Graphical abstract

17 pages, 2614 KB  
Article
Bacillus velezensis RF2 Rescued from Citrus Phyllosphere: Dual Mechanisms and Broad-Spectrum Activity for Controlling Citrus Bacterial Canker
by Rui-Fang Luo, Si-Yu Zhang, Ya-Xiao Wu, Zi-Yi Jiao, Min-Li Bao, Yu-Ting Lan, Ting-Ting Zhang, Ru-Yu Zeng, Abdulhamid Yusuf, Yun-Zeng Zhang, Min Li and Shuo Duan
Microorganisms 2026, 14(1), 121; https://doi.org/10.3390/microorganisms14010121 - 6 Jan 2026
Viewed by 262
Abstract
Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), threatens citrus production worldwide. Long-term dependence on copper-based bactericides not only poses environmental risks but also accelerates the emergence of copper-resistant Xcc strains. To develop safe and efficient alternative control [...] Read more.
Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), threatens citrus production worldwide. Long-term dependence on copper-based bactericides not only poses environmental risks but also accelerates the emergence of copper-resistant Xcc strains. To develop safe and efficient alternative control strategies, 72 bacterial strains were isolated from the phyllosphere of citrus plants naturally infected by CBC and identified by 16S rRNA sequencing. Using an Xcc-GFP-based screening method, we systematically screened a highly effective strain, which was identified as Bacillus velezensis RF2 (Bv-RF2). Both inhibition zone assays and bioactivity tests of the crude methanolic extract of Bv-RF2 demonstrated stable antibacterial activity under UV irradiation, protease treatment, high temperature, and across a wide pH range. Whole-genome sequencing and antiSMASH analysis revealed multiple predicted NRPS/PKS-type biosynthetic gene clusters (BGCs). Together with metabolomic profiling, these data provide hypotheses for candidate metabolites that may contribute to antagonism. Bv-RF2 was associated with the induction of PR gene expression in immune-related pathways implicated in CBC responses. In sweet orange leaves, Bv-RF2 infiltration was associated with transient induction of defense-related (PR) genes, consistent with an ISR-like, priming-related response. In addition, Bv-RF2 inhibited the growth of fungal pathogens associated with citrus anthracnose and brown spot in vitro, indicating broad inhibitory potential under the tested conditions. Collectively, Bv-RF2 represents a promising candidate for developing environmentally friendly strategies against CBC and other citrus diseases. Full article
(This article belongs to the Topic Applications of Biotechnology in Food and Agriculture)
Show Figures

Figure 1

22 pages, 4227 KB  
Review
Current Status and Future Prospects of Photocatalytic Technology for Water Sterilization
by Nobuhiro Hanada, Manabu Kiguchi and Akira Fujishima
Catalysts 2026, 16(1), 40; https://doi.org/10.3390/catal16010040 - 1 Jan 2026
Viewed by 409
Abstract
Photocatalytic water sterilization has emerged as a promising sustainable technology for addressing microbial contamination across diverse sectors including healthcare, food production, and environmental management. This review examines the fundamental mechanisms and recent advances in photocatalytic water sterilization, with a particular emphasis on the [...] Read more.
Photocatalytic water sterilization has emerged as a promising sustainable technology for addressing microbial contamination across diverse sectors including healthcare, food production, and environmental management. This review examines the fundamental mechanisms and recent advances in photocatalytic water sterilization, with a particular emphasis on the differential bactericidal pathways against Gram-negative and Gram-positive bacteria. Gram-negative bacteria undergo a two-step inactivation process involving initial outer membrane lipopolysaccharide (LPS) degradation followed by inner membrane disruption, whereas Gram-positive bacteria exhibit simpler kinetics due to direct oxidative attacks on their thick peptidoglycan layer. Escherichia coli has long been used as the gold standard in photocatalytic sterilization studies owing to its aerobic nature and suitability for the colony-counting method. In contrast, Lactobacillus casei, a facultative anaerobe, can be cultured statically and evaluated rapidly using turbidity-based optical density measurements. Therefore, both organisms serve complementary roles depending on the experimental objectives—E. coli for precise quantification and L. casei for rapid, practical assessments of Gram-positive bacterial inactivation under laboratory conditions. We also describe sterilization using light alone while comparing it to photocatalytic sterilization and then discuss two innovative suspension-based photocatalyst systems: polystyrene bead-supported TiO2/SiO2 composites offering balanced reactivity and separability and magnetic TiO2-SiO2/Fe3O4 nanoparticles enabling rapid magnetic recovery. Future research directions should prioritize enhancing visible-light efficiency using metal-doped TiO2 such as Cu-doped systems; improving catalyst durability; developing new applications of photocatalysts, such as protecting RO membranes; and validating scalability across diverse industrial and medical water treatment applications. Full article
Show Figures

Graphical abstract

17 pages, 1817 KB  
Article
Topical Delivery of Autochthonous Lactic Acid Bacteria Using Calcium Alginate Microspheres as a Probiotic Carrier System with Enhanced Therapeutic Potential
by Sigita Jeznienė, Emilija Mikalauskienė, Aistė Jekabsone and Aušra Šipailienė
Pharmaceuticals 2026, 19(1), 66; https://doi.org/10.3390/ph19010066 - 29 Dec 2025
Viewed by 216
Abstract
Background/Objectives: Three distinct strains of lactic acid bacteria (LAB), isolated from naturally fermented bread sourdough and representing the local autochthonous microflora, were selected to evaluate their potential probiotic properties. In addition, we evaluated whether these strains could be used in topical formulations. Methods: [...] Read more.
Background/Objectives: Three distinct strains of lactic acid bacteria (LAB), isolated from naturally fermented bread sourdough and representing the local autochthonous microflora, were selected to evaluate their potential probiotic properties. In addition, we evaluated whether these strains could be used in topical formulations. Methods: We evaluated probiotic properties such as the ability to co-aggregate with pathogens, antimicrobial activity, inhibition of pathogenic biofilms, and ability to adhere to human keratinocyte cells. Further, bacteria were encapsulated in calcium alginate microspheres using the emulsification/external gelation method, and their viability in topical formulations was assessed. Results: LAB significantly inhibited biofilm formation by the tested pathogens with complete inhibition observed in certain cases. The strength and specificity of these probiotic effects varied depending on the LAB strain and the target pathogen. Furthermore, among the tested strains, L. reuteri 182 exhibited the highest adhesion rates, reaching 77.94 ± 1.84%. In the context of potential topical applications, the preservative present in the formulation completely inactivated the planktonic cells of L. reuteri 182. In contrast, encapsulation within a biopolymeric system conferred protection against the preservative’s bactericidal effect. After 35 days of storage at room temperature, viable cell counts reached 5.94 ± 0.06 lg CFU/g. Conclusions: Our findings confirm that local LAB strains, specifically L. reuteri 182 and L. plantarum F1, possess essential probiotic characteristics and can be effectively incorporated into preservative-containing topical formulations via efficient encapsulation strategies. This underscores the potential of these topical probiotics for skin health and highlights the need for clear regulatory guidance to ensure their safe and effective application. Full article
(This article belongs to the Special Issue Advances in Topical and Mucosal Drug Delivery Systems)
Show Figures

Graphical abstract

16 pages, 3852 KB  
Article
ATP-Responsive ZIF-90 Nanocontainers Encapsulating Natural Antifoulants for Intelligent Marine Coatings
by Yanrong Chao, Xingyan Feng, Bingui Wang, Linghong Meng, Peng Qi, Yan Zeng and Peng Wang
Coatings 2026, 16(1), 7; https://doi.org/10.3390/coatings16010007 - 19 Dec 2025
Viewed by 355
Abstract
Marine biofouling presents a persistent challenge for maritime industries, necessitating the development of eco-friendly and intelligent antifouling strategies. In this work, an ATP-responsive nanocontainer was developed by encapsulating a natural organic compound (CS106-10), isolated from Talaromyces trachyspermus in cold seep sediments, together with [...] Read more.
Marine biofouling presents a persistent challenge for maritime industries, necessitating the development of eco-friendly and intelligent antifouling strategies. In this work, an ATP-responsive nanocontainer was developed by encapsulating a natural organic compound (CS106-10), isolated from Talaromyces trachyspermus in cold seep sediments, together with D-phenylalanine (D-Phe) into ZIF-90 nanoparticles (D-Phe/CS106-10@ZIF-90). These nanoparticles were incorporated into zinc acrylate resin to fabricate a novel self-polishing antifouling coating. CS106-10, as a natural antifoulant, provided efficient and environmentally sustainable bactericidal activity, while D-Phe acted as a synergistic adjuvant to inhibit and disrupt biofilm formation. More importantly, the ATP-responsive ZIF-90 framework enabled controlled, on-demand release of antifouling agents in response to local metabolic signals associated with biofilm growth. Laboratory and real-sea evaluations confirmed that the composite coating effectively suppressed biofilm formation and significantly reduced the required dosage of conventional toxic antifoulants. This study integrates a natural antifoulant with an ATP-responsive metal–organic framework, providing new insight for developing antifouling coatings. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

19 pages, 1812 KB  
Article
Evaluation of the In Vitro Synergistic Activity of Ceftazidime/Avibactam Against Stenotrophomonas maltophilia Strains in Planktonic and Biofilm Cell Cultures
by Damla Damar-Çelik, Emel Mataraci-Kara, Ayşe İstanbullu-Tosun, Selin Melis Çakmak, Bilge Sümbül and Berna Özbek-Çelik
Pharmaceuticals 2026, 19(1), 1; https://doi.org/10.3390/ph19010001 - 19 Dec 2025
Viewed by 309
Abstract
Background/Objectives: Stenotrophomonas maltophilia (SM) is a significant cause of hospital-acquired infections in immunocompromised and critical care patients. This study investigates the impact of combining ceftazidime/avibactam (CZA) with conventional antibiotics on SM obtained from various sources in planktonic and biofilm cell cultures. Methods [...] Read more.
Background/Objectives: Stenotrophomonas maltophilia (SM) is a significant cause of hospital-acquired infections in immunocompromised and critical care patients. This study investigates the impact of combining ceftazidime/avibactam (CZA) with conventional antibiotics on SM obtained from various sources in planktonic and biofilm cell cultures. Methods: Using broth microdilution, the MICs of different antibiotics, including CZA, were determined on 37 SM strains. CZA’s bactericidal and synergistic effectiveness were examined through in vitro time–kill curve tests with tigecycline (TGC), chloramphenicol (CHL), levofloxacin (LVX), colistin (CS), and amikacin (AMK). In addition, synergistic activity was investigated against SM biofilm cell cultures, and antibiotic Mutant Prevention Concentrations (MPCs) were tested against SM isolates. Results: Compared to ceftazidime (CAZ), CZA was four times more efficient against 37 SM strains. Unlike TGC and CHL, CS, AMK, and CZA had 2–4 times higher MBCs than MICs. All studied antibiotics were bactericidal at 1× or 4× MIC doses against SM bacteria, except for CZA. The combinations of CZA with LVX and CZA with AMK or CS demonstrated synergistic effects in four out of seven (57%) strains and in three out of seven (43%) strains, respectively, when tested at doses equivalent to the MIC. Moreover, all antibiotic combinations with CZA showed a synergistic effect at dosages four times the MIC. Additionally, CZA and the tested drugs synergistically inhibited SM biofilm formation, and MPC values were 8–16 times the MIC. Conclusions: The results of this study indicate that combining CZA with LVX and CS was more effective against SM strains. These combinations might provide alternatives for treating SM pathogens in both planktonic and biofilm cell cultures. Full article
(This article belongs to the Special Issue Next-Generation Antibiotic Strategies Against Drug-Resistant Bacteria)
Show Figures

Graphical abstract

27 pages, 5610 KB  
Article
In Pursuit of a Better Biocide Composition: Synergistic and Additive Effects of QAC-Based Formulations Against Planktonic and Biofilm Cultures
by Nikita A. Frolov, Mary A. Seferyan, Elena V. Detusheva, Elizabeth Son, Ilya G. Kolmakov and Anatoly N. Vereshchagin
Int. J. Mol. Sci. 2025, 26(24), 12098; https://doi.org/10.3390/ijms262412098 - 16 Dec 2025
Viewed by 392
Abstract
Managing bacterial infections and the spread of microbial resistance is one of the most critical and complex tasks of modern healthcare infrastructures. Antiseptics and disinfectants such as biocides play a significant role in controlling microbial resistance by reducing the microbial load on surfaces, [...] Read more.
Managing bacterial infections and the spread of microbial resistance is one of the most critical and complex tasks of modern healthcare infrastructures. Antiseptics and disinfectants such as biocides play a significant role in controlling microbial resistance by reducing the microbial load on surfaces, skin, and environments, thereby limiting the opportunity for pathogens to proliferate and develop resistance. Herein, we tested the different interactions of quaternary ammonium compound (QAC)-based biocide compositions in pursuit of a better antimicrobial performance. An extensive microbiological analysis was conducted for 12 selected compositions of various combinations of mono-QACs, bis-QACs, and alcohols on 17 strains of bacteria of the ESKAPEE group and fungi, including 11 clinical highly resistant varieties, highlighting synergistic or additive dynamics. The evaluation showed noticeable improvements in activity, with up to 16-fold MBC and 32-fold MBEC reductions for alcohol-based compositions of lead QAC. Moreover, synergistic interactions were detected and confirmed via an optimized checkerboard assay for pyridinium QAC combinations against planktonic Gram-positive S. aureus with a fractional inhibitory concentration index (FICI) and fractional bactericidal concentration index (FBCI) of 0.39–0.5 and Gram-negative A. baumannii biofilms. The studied biocides demonstrated the long-term preservation of antimicrobial efficiency without resistance development during a 40-day period and do not induce QAC-associated cross-resistance for four commercially available antibiotics with similar mechanisms of action. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

31 pages, 5359 KB  
Article
Saccharomyces cerevisiae TAD1 Mutant Strain As Potential New Antimicrobial Agent: Studies on Its Antibacterial Activity and Mechanism of Action
by Yu Zhang, Mengkun Li, Shulei Ji, Liu Cong, Shanshan Mao, Jinyue Wang, Xiao Li, Tao Zhu, Zuobin Zhu and Ying Li
Microorganisms 2025, 13(12), 2848; https://doi.org/10.3390/microorganisms13122848 - 15 Dec 2025
Viewed by 428
Abstract
Human infections caused by pathogenic bacteria remain a major global health concern. Among them, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Salmonella typhi are particularly prevalent and associated with significant morbidity and mortality. While antibiotics have long been the cornerstone [...] Read more.
Human infections caused by pathogenic bacteria remain a major global health concern. Among them, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Salmonella typhi are particularly prevalent and associated with significant morbidity and mortality. While antibiotics have long been the cornerstone of bacterial infection treatment, the widespread and often inappropriate use of these drugs has led to the emergence of multidrug-resistant (MDR) strains. This escalating resistance crisis underscores the urgent need for alternative therapeutic strategies. Amid the escalating global antimicrobial-resistance crisis, a genome-wide screen of 1800 Saccharomyces cerevisiae knockouts identified a TAD1-deficient mutant whose cell-free supernatant (CFS) rapidly eradicates multidrug-resistant E. coli, S. aureus, K. pneumoniae, and S. typhi in vitro. CFS disrupts pathogenic biofilms, downregulates biofilm-associated genes, and exerts bactericidal activity by triggering intracellular reactive oxygen species (ROS) accumulation and compromising envelope integrity. Probiotic profiling revealed robust tolerance to an acidic pH and physiological bile, high auto-aggregation, and efficient co-aggregation with target pathogens. In both Galleria mellonella and murine infectious models, administration of CFS or live yeast significantly increased survival, attenuated intestinal histopathology, and reduced inflammatory infiltration. These data establish the TAD1-knockout strain and its secreted metabolites as dual-function antimicrobial-probiotic entities, offering a sustainable therapeutic alternative to conventional antibiotics against multidrug-resistant bacterial infections. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

24 pages, 15478 KB  
Article
Copper-Modified Mesoporous Silica Nanoparticles for Antimicrobial Applications
by Amaia M. Goitandia, Maialen Argaiz, Miren Blanco, Giorgia Grilli, Elisa Recchia, Alessandra Amoroso, Nathalie Totaro, Andrea Ciammaruconi, Riccardo De Santis, Leire Ruiz Rubio, Fabiana Arduini and Florigio Lista
Nanomaterials 2025, 15(24), 1884; https://doi.org/10.3390/nano15241884 - 15 Dec 2025
Viewed by 520
Abstract
The escalating global crisis of antimicrobial-resistant (AMR) bacterial infections, along with the continuous threat of viral outbreaks, poses a serious risk to public health worldwide and underscores the urgent need for innovative therapeutic strategies. In this study, mesoporous silica nanoparticles (MSNs) were successfully [...] Read more.
The escalating global crisis of antimicrobial-resistant (AMR) bacterial infections, along with the continuous threat of viral outbreaks, poses a serious risk to public health worldwide and underscores the urgent need for innovative therapeutic strategies. In this study, mesoporous silica nanoparticles (MSNs) were successfully synthesized and subsequently functionalized with copper to impart broad-spectrum antimicrobial activity. The oxidation state of copper on the MSN surface was modulated through thermal treatments, allowing the evaluation of its influence on antimicrobial efficacy. The modified MSNs were tested against key bacterial pathogens, including Escherichia coli and Staphylococcus aureus, achieving complete bactericidal activity after 2 h of exposure to E. coli. Moreover, as well as influenza A (H1N1) pdm09, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and MS2 bacteriophage (MS2) were evaluated, reaching an efficiency higher than 80%, 90%, and 97%, respectively. The results indicated that copper-modified MSNs exhibit potent antibacterial and antiviral activity, highlighting their potential as an antibiotic-free alternative for preventing microbial infections while mitigating the development of AMR bacteria. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

14 pages, 1075 KB  
Article
Characterization of a Luminescence-Based Serum Bactericidal Activity Assay for Human Sera Against a Panel of Salmonella Strains
by Maria Grazia Aruta, Luisa Massai, Daniele De Simone, Federica Boretto, Marta Benincasa, Miren Iturriza, Martina Carducci, Francesca Mancini, Rocio Canals, Simona Rondini and Omar Rossi
Microorganisms 2025, 13(12), 2757; https://doi.org/10.3390/microorganisms13122757 - 4 Dec 2025
Viewed by 372
Abstract
Salmonellosis remains a major cause of morbidity and mortality in low- and middle-income countries, despite the availability of effective vaccines against Salmonella enterica serovar Typhi (S. Typhi). In response, substantial efforts have been underway to develop vaccines against the key serovars [...] Read more.
Salmonellosis remains a major cause of morbidity and mortality in low- and middle-income countries, despite the availability of effective vaccines against Salmonella enterica serovar Typhi (S. Typhi). In response, substantial efforts have been underway to develop vaccines against the key serovars responsible for invasive non-typhoidal Salmonella (iNTS) disease, such as S. Typhimurium and S. Enteritidis, as well as against S. Paratyphi A, which, together with S. Typhi, is responsible for enteric fever. The O-antigens (OAg) are considered potential protective antigens; therefore, the most advanced vaccine candidates focus on these moieties. However, no correlate of protection has been identified for either iNTS or paratyphoid fever, highlighting the importance of developing robust functional assays to assess vaccine-induced immunogenicity. In this study, we present the characterization of a high-throughput luminescence-based serum bactericidal assay (L-SBA) against multiple S. enterica serovars, using human sera. The assay was evaluated for repeatability, intermediate precision, linearity, and specificity against a panel of Salmonella strains belonging to serogroups O:4, O:9, and O:2, which were selected for their epidemiological relevance and diversity in OAg expression, quantity, and glucosylation/acetylation patterns. This assay will enable testing of clinical sera from vaccine trials to evaluate the breadth of the functional activity stimulated by current Salmonella vaccine candidates. L-SBA demonstrated an acceptable performance with all the tested strains, resulting in being linear, specific, and precise. This study also provided preliminary evidence that human sera containing antibodies against serogroup-specific OAg can efficiently kill Salmonella strains expressing OAg of the matched serovar, even in the presence of variation in OAg molecular weight, glucosylation, and acetylation. The L-SBA will enable testing of clinical sera from vaccine trials to evaluate the breadth of the functional activity stimulated by current Salmonella vaccine candidates. Full article
(This article belongs to the Special Issue Salmonella Infections: Trends and Updates)
Show Figures

Figure 1

27 pages, 19129 KB  
Article
Green Synthesis of AgNPs from Celtis africana: Biological and Catalytic Insights
by Amna N. Khan
Nanomaterials 2025, 15(23), 1821; https://doi.org/10.3390/nano15231821 - 1 Dec 2025
Viewed by 478
Abstract
Celtis africana, a rare plant native to southwestern Saudi Arabia, was explored for the first time as a source for the green synthesis of silver nanoparticles (AgNPs). Catechol-bearing phenolic amides in the aqueous leaf extract acted as both reducing and capping agents, enabling [...] Read more.
Celtis africana, a rare plant native to southwestern Saudi Arabia, was explored for the first time as a source for the green synthesis of silver nanoparticles (AgNPs). Catechol-bearing phenolic amides in the aqueous leaf extract acted as both reducing and capping agents, enabling eco-friendly AgNP fabrication. The synthesized AgNPs were characterized using SEM, TEM, XRD, UV-Vis, and FTIR, revealing predominantly spherical nanoparticles with an average size of 9.28 ± 0.11 nm, a face-centered cubic crystalline structure, and a pronounced surface plasmon resonance at 424 nm. HPLC analysis confirmed the presence of caffeoyltryamine in the extract, while UV-Vis and FTIR indicated its attachment to the AgNP surface. The AgNPs exhibited broad-spectrum antimicrobial activity against Gram-positive bacteria (S. aureus, MRSA and E. faecalis) and Gram-negative bacteria (E. coli, K. pneumoniae, S. typhimurium, and P. aeruginosa), as well as pathogenic fungi such as C. albicans, C. glabrata, C. parapsilosis, and C. krusei with performance comparable to or exceeding that of AgNPs from Artemisia vulgaris, Moringa oleifera, and Nigella sativa. The MIC and MBC values for S. aureus, MRSA, E. coli, and S. typhimurium were consistently 6.25 µg/mL and 25 µg/mL, respectively, reflecting strong inhibitory and bactericidal effects at low concentrations. MTT assays demonstrated selective cytotoxicity, showing higher viability in normal human skin fibroblasts (HSF) than in MCF-7 breast cancer cells. The AgNPs also displayed strong antioxidant activity (IC50 = 5.41 µg/mL, DPPH assay) and efficient catalytic reduction of 4-nitrophenol (4-NP) and methylene blue (MB), with rate constants of 0.0165 s−1 and 0.0047 s−1, respectively, exceeding most reported values. These findings identify Celtis africana as a promising source for eco-friendly AgNPs with strong antimicrobial, antioxidant, and catalytic properties for broad biological and environmental applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

35 pages, 1690 KB  
Article
The Antibacterial Effect of Eight Selected Essential Oils Against Streptococcus mutans: An In Vitro Pilot Study
by Iulia Muntean, Laura-Cristina Rusu, Lavinia Cosmina Ardelean, Codruta Victoria Tigmeanu, Alexandra Roi, Stefania Dinu and Adina Andreea Mirea
Oral 2025, 5(4), 96; https://doi.org/10.3390/oral5040096 - 1 Dec 2025
Viewed by 1438
Abstract
Background/Objectives: As antimicrobial dental treatments, based on chemical products, long tested for their efficacy, have been lately associated with developing antimicrobial resistance, there is a growing interest to identify and develop efficient alternatives. The aim of this paper is to assess the antimicrobial [...] Read more.
Background/Objectives: As antimicrobial dental treatments, based on chemical products, long tested for their efficacy, have been lately associated with developing antimicrobial resistance, there is a growing interest to identify and develop efficient alternatives. The aim of this paper is to assess the antimicrobial potential of eight selected essential oils (EOs): Cinnamon (Cinnamomum verum), Tea tree (Melaleuca alternifolia), Spearmint (Mentha spicata), Rosemary (Rosmarinus officinalis), Clove (Eugenia caryophyllata), Eucalyptus (Eucalyptus radiata), Cedarwood (Juniperus virginiana), and Lemongrass (Cymbopogon flexuosus), more or less recognized and investigated for this particular therapeutic effect, on Streptococcus mutans (S. mutans), a key pathogen involved in oral pathology. Materials and methods: The chemical constituents of the EOs were identified and quantified by Gas Chromatography-Mass Spectrometry (CG-MS) method. Saliva samples, collected from nine patients with active dental caries, were tested in vitro. To assess the bacterial susceptibility of the selected EOs against S. mutans, the inhibition zones (IZ), minimum inhibitory concentrations (MIC), and minimum bactericidal concentrations (MBC) were determined. Results: All EOs tested showed antimicrobial activity against S. mutans, with IZs over 20 mm. The highest antimicrobial efficacy was observed for spearmint, followed by Eucalyptus, Tea tree, and Lemongrass. The next in descending order were Cinnamon Bark, Clove, Rosemary, and Cedarwood. Considering the mean MIC and MBC values, the spearmint EO proved to be the most effective in inhibiting the growth of S. mutans, as well as in annihilating it, followed by the Eucalyptus EO, Tea tree EO and Lemongrass EO. The less effective were determined to be Cinnamon, Clove, Rosemary and Cedarwood EOs. Conclusions: The eight selected EOs demonstrated antimicrobial activity against S. mutans, with Spearmint and Eucalyptus showing the most significant effects, advocating for their potential in dental caries prevention and treatment, and their potential role in oral hygiene applications. Full article
Show Figures

Figure 1

Back to TopTop