Characterization of a Luminescence-Based Serum Bactericidal Activity Assay for Human Sera Against a Panel of Salmonella Strains
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Reagents, and Sera
2.2. Luminescent SBA (L-SBA)
3. Results
3.1. Precision, Limit of Detection, and Limit of Quantification
3.2. Linearity
3.3. Specificity
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balasubramanian, R.; Im, J.; Lee, J.S.; Jeon, H.J.; Mogeni, O.D.; Kim, J.H.; Rakotozandrindrainy, R.; Baker, S.; Marks, F. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum. Vaccin. Immunother. 2019, 15, 1421–1426. [Google Scholar] [CrossRef]
- Typhoid, G.B.D.; Paratyphoid, C. The global burden of typhoid and paratyphoid fevers: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 369–381. [Google Scholar] [CrossRef]
- Manesh, A.; Meltzer, E.; Jin, C.; Britto, C.; Deodhar, D.; Radha, S.; Schwartz, E.; Rupali, P. Typhoid and paratyphoid fever: A clinical seminar. J. Travel Med. 2021, 28, taab012. [Google Scholar] [CrossRef]
- Tennant, S.M.; MacLennan, C.A.; Simon, R.; Martin, L.B.; Khan, M.I. Nontyphoidal salmonella disease: Current status of vaccine research and development. Vaccine 2016, 34, 2907–2910. [Google Scholar] [CrossRef]
- Antillon, M.; Warren, J.L.; Crawford, F.W.; Weinberger, D.M.; Kurum, E.; Pak, G.D.; Marks, F.; Pitzer, V.E. The burden of typhoid fever in low- and middle-income countries: A meta-regression approach. PLoS Negl. Trop. Dis. 2017, 11, e0005376. [Google Scholar] [CrossRef]
- Deen, J.; von Seidlein, L.; Andersen, F.; Elle, N.; White, N.J.; Lubell, Y. Community-acquired bacterial bloodstream infections in developing countries in south and southeast Asia: A systematic review. Lancet Infect. Dis. 2012, 12, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Collaborators, G.T. Estimating the subnational prevalence of antimicrobial resistant Salmonella enterica serovars Typhi and Paratyphi A infections in 75 endemic countries, 1990–2019: A modelling study. Lancet Glob. Health 2024, 12, e406–e418. [Google Scholar] [CrossRef]
- Mogasale, V.; Maskery, B.; Ochiai, R.L.; Lee, J.S.; Mogasale, V.V.; Ramani, E.; Kim, Y.E.; Park, J.K.; Wierzba, T.F. Burden of typhoid fever in low-income and middle-income countries: A systematic, literature-based update with risk-factor adjustment. Lancet Glob. Health 2014, 2, e570–e580, Erratum in Lancet Glob. Health 2014, 2, e696. [Google Scholar] [CrossRef] [PubMed]
- Feasey, N.A.; Dougan, G.; Kingsley, R.A.; Heyderman, R.S.; Gordon, M.A. Invasive non-typhoidal salmonella disease: An emerging and neglected tropical disease in Africa. Lancet 2012, 379, 2489–2499. [Google Scholar] [CrossRef] [PubMed]
- Marchello, C.S.; Birkhold, M.; Crump, J.A.; Vacc-iNTS Consortium Collaborators. Complications and mortality of non-typhoidal salmonella invasive disease: A global systematic review and meta-analysis. Lancet Infect. Dis. 2022, 22, 692–705. [Google Scholar] [CrossRef]
- Robbins, J.D.; Robbins, J.B. Reexamination of the protective role of the capsular polysaccharide (Vi antigen) of Salmonella typhi. J. Infect. Dis. 1984, 150, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Micoli, F.; Rondini, S.; Pisoni, I.; Proietti, D.; Berti, F.; Costantino, P.; Rappuoli, R.; Szu, S.; Saul, A.; Martin, L.B. Vi-CRM 197 as a new conjugate vaccine against Salmonella Typhi. Vaccine 2011, 29, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Rondini, S.; Micoli, F.; Lanzilao, L.; Gavini, M.; Alfini, R.; Brandt, C.; Clare, S.; Mastroeni, P.; Saul, A.; MacLennan, C.A. Design of glycoconjugate vaccines against invasive African Salmonella enterica serovar Typhimurium. Infect. Immun. 2015, 83, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- Goh, Y.S.; Clare, S.; Micoli, F.; Saul, A.; Mastroeni, P.; MacLennan, C.A. Monoclonal Antibodies of a Diverse Isotype Induced by an O-Antigen Glycoconjugate Vaccine Mediate In Vitro and In Vivo Killing of African Invasive Nontyphoidal Salmonella. Infect. Immun. 2015, 83, 3722–3731. [Google Scholar] [CrossRef]
- Watson, D.C.; Robbins, J.B.; Szu, S.C. Protection of mice against Salmonella typhimurium with an O-specific polysaccharide-protein conjugate vaccine. Infect. Immun. 1992, 60, 4679–4686. [Google Scholar] [CrossRef]
- Mastroeni, P.; Rossi, O. Immunology, epidemiology and mathematical modelling towards a better understanding of invasive non-typhoidal Salmonella disease and rational vaccination approaches. Expert Rev. Vaccines 2016, 15, 1545–1555. [Google Scholar] [CrossRef]
- MacLennan, C.A. Vaccines for low-income countries. Semin. Immunol. 2013, 25, 114–123. [Google Scholar] [CrossRef][Green Version]
- Rondini, S.; Lanzilao, L.; Necchi, F.; O’Shaughnessy, C.M.; Micoli, F.; Saul, A.; MacLennan, C.A. Invasive African Salmonella Typhimurium induces bactericidal antibodies against O-antigens. Microb. Pathog. 2013, 63, 19–23. [Google Scholar] [CrossRef]
- McSorley, S.J.; Jenkins, M.K. Antibody is required for protection against virulent but not attenuated Salmonella enterica serovar typhimurium. Infect. Immun. 2000, 68, 3344–3348. [Google Scholar] [CrossRef]
- Skidmore, P.D.; Canals, R.; Ramasamy, M.N. The iNTS-GMMA vaccine: A promising step in non-typhoidal Salmonella vaccine development. Expert Rev. Vaccines 2023, 22, 918–920. [Google Scholar] [CrossRef]
- Mancini, F.; Micoli, F.; Necchi, F.; Pizza, M.; Berlanda Scorza, F.; Rossi, O. GMMA-Based Vaccines: The Known and The Unknown. Front. Immunol. 2021, 12, 715393. [Google Scholar] [CrossRef]
- Boerth, E.M.; Gong, J.; Roffler, B.; Thompson, C.M.; Song, B.; Malley, S.F.; Hirsch, A.; MacLennan, C.A.; Zhang, F.; Malley, R.; et al. Induction of Broad Immunity against Invasive Salmonella Disease by a Quadrivalent Combination Salmonella MAPS Vaccine Targeting Salmonella Enterica Serovars Typhimurium, Enteritidis, Typhi, and Paratyphi A. Vaccines 2023, 11, 1671. [Google Scholar] [CrossRef]
- Zhang, F.; Boerth, E.M.; Gong, J.; Ma, N.; Lucas, K.; Ledue, O.; Malley, R.; Lu, Y.J. A Bivalent MAPS Vaccine Induces Protective Antibody Responses against Salmonella Typhi and Paratyphi A. Vaccines 2022, 11, 91. [Google Scholar] [CrossRef]
- Alfini, R.; Carducci, M.; Massai, L.; De Simone, D.; Mariti, M.; Rossi, O.; Rondini, S.; Micoli, F.; Giannelli, C. Design of a Glycoconjugate Vaccine Against Salmonella Paratyphi A. Vaccines 2024, 12, 1272. [Google Scholar] [CrossRef] [PubMed]
- Baliban, S.M.; Yang, M.; Ramachandran, G.; Curtis, B.; Shridhar, S.; Laufer, R.S.; Wang, J.Y.; Van Druff, J.; Higginson, E.E.; Hegerle, N.; et al. Development of a glycoconjugate vaccine to prevent invasive Salmonella Typhimurium infections in sub-Saharan Africa. PLoS Negl. Trop. Dis. 2017, 11, e0005493. [Google Scholar] [CrossRef]
- Baliban, S.M.; Curtis, B.; Toema, D.; Tennant, S.M.; Levine, M.M.; Pasetti, M.F.; Simon, R. Immunogenicity and efficacy following sequential parenterally-administered doses of Salmonella Enteritidis COPS:FliC glycoconjugates in infant and adult mice. PLoS Negl. Trop. Dis. 2018, 12, e0006522. [Google Scholar] [CrossRef]
- Micoli, F.; Rondini, S.; Alfini, R.; Lanzilao, L.; Necchi, F.; Negrea, A.; Rossi, O.; Brandt, C.; Clare, S.; Mastroeni, P.; et al. Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal Salmonella. Proc. Natl. Acad. Sci. USA 2018, 115, 10428–10433. [Google Scholar] [CrossRef] [PubMed]
- Higginson, E.E.; Panda, A.; Toapanta, F.R.; Terzi, M.C.; Jones, J.A.; Sen, S.; Permala-Booth, J.; Pasetti, M.F.; Sztein, M.B.; DeTolla, L.; et al. Immunogenicity and Efficacy of Live-Attenuated Salmonella Typhimurium Vaccine Candidate CVD 1926 in a Rhesus Macaque Model of Gastroenteritis. Infect. Immun. 2021, 89, e0008721. [Google Scholar] [CrossRef]
- Halder, P.; Maiti, S.; Banerjee, S.; Das, S.; Dutta, M.; Dutta, S.; Koley, H. Bacterial ghost cell based bivalent candidate vaccine against Salmonella Typhi and Salmonella Paratyphi A: A prophylactic study in BALB/c mice. Vaccine 2023, 41, 5994–6007. [Google Scholar] [CrossRef] [PubMed]
- Raqib, R. Bivalent conjugate vaccines for typhoid and paratyphoid fever. Lancet 2024, 403, 1516–1517. [Google Scholar] [CrossRef]
- Hanumunthadu, B.; Demissie, T.; Greenland, M.; Skidmore, P.; Tanha, K.; Crocker-Buque, T.; Owino, N.; Scire, A.S.; Crispino, C.; De Simone, D.; et al. Safety and immunogenicity of the invasive non-typhoidal Salmonella (iNTS)-GMMA vaccine: A first-in-human, randomised, dose escalation trial. eBioMedicine 2025, 119, 105903. [Google Scholar] [CrossRef]
- Chen, W.H.; Barnes, R.S.; Sikorski, M.J.; Datar, R.; Sukhavasi, R.; Liang, Y.; Rapaka, R.R.; Pasetti, M.F.; Sztein, M.B.; Wahid, R.; et al. A combination typhoid and non-typhoidal Salmonella polysaccharide conjugate vaccine in healthy adults: A randomized, placebo-controlled phase 1 trial. Nat. Med. 2025. [Google Scholar] [CrossRef]
- MacLennan, C.A.; Stanaway, J.; Grow, S.; Vannice, K.; Steele, A.D. Salmonella Combination Vaccines: Moving Beyond Typhoid. Open Forum Infect. Dis. 2023, 10, S58–S66. [Google Scholar] [CrossRef]
- McCann, N.; Paganotti Vicentine, M.; Kim, Y.C.; Pollard, A.J. The use of controlled human infection models to identify correlates of protection for invasive Salmonella vaccines. Front. Immunol. 2024, 15, 1457785. [Google Scholar] [CrossRef] [PubMed]
- Mastroeni, P.; Rossi, O. Antibodies and Protection in Systemic Salmonella Infections: Do We Still Have More Questions than Answers? Infect. Immun. 2020, 88, e00219-2. [Google Scholar] [CrossRef] [PubMed]
- Rossi, O.; Coward, C.; Goh, Y.S.; Claassens, J.W.C.; MacLennan, C.A.; Verbeek, S.J.; Mastroeni, P. The essential role of complement in antibody-mediated resistance to Salmonella. Immunology 2019, 156, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Aruta, M.G.; De Simone, D.; Dale, H.; Chirwa, E.; Kadwala, I.; Mbewe, M.; Banda, H.; Gordon, M.; Pizza, M.; Berlanda Scorza, F.; et al. Development and Characterization of a Luminescence-Based High-Throughput Serum Bactericidal Assay (L-SBA) to Assess Bactericidal Activity of Human Sera against Nontyphoidal Salmonella. Methods Protoc. 2022, 5, 100. [Google Scholar] [CrossRef]
- Carducci, M.; Massai, L.; Lari, E.; Semplici, B.; Grappi, S.; Maria, N.; Jones, E.; Conti, V.; Piu, P.; Scorza, F.B.; et al. Development and characterization of high-throughput serological assays to measure magnitude and functional immune response against S. Paratyphi A in human samples. Front. Immunol. 2024, 15, 1443137. [Google Scholar] [CrossRef]
- Pinto, M.; Durante, S.; Carducci, M.; Massai, L.; Alfini, R.; Mylona, E.; Karkey, A.; Baker, S.; Micoli, F.; Giannelli, C.; et al. The Salmonella Paratyphi A O-Antigen Glycoconjugate Vaccine Is Able to Induce Antibodies with Bactericidal Activity Against a Panel of Clinical Isolates. Vaccines 2025, 13, 122. [Google Scholar] [CrossRef]
- De Simone, D.; Pinto, M.; Aruta, M.G.; Benincasa, M.; Carducci, M.; Di Benedetto, R.; Citiulo, F.; Iturriza, M.; Mylona, E.; Baker, S.; et al. GMMA-based vaccine candidates against invasive nontyphoidal salmonellosis elicit bactericidal antibodies against a panel of epidemiologically relevant Salmonellae. Front. Immunol. 2025, 16, 1610067. [Google Scholar] [CrossRef]
- Kingsley, R.A.; Msefula, C.L.; Thomson, N.R.; Kariuki, S.; Holt, K.E.; Gordon, M.A.; Harris, D.; Clarke, L.; Whitehead, S.; Sangal, V.; et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 2009, 19, 2279–2287. [Google Scholar] [CrossRef]
- Van Puyvelde, S.; de Block, T.; Sridhar, S.; Bawn, M.; Kingsley, R.A.; Ingelbeen, B.; Beale, M.A.; Barbe, B.; Jeon, H.J.; Mbuyi-Kalonji, L.; et al. A genomic appraisal of invasive Salmonella Typhimurium and associated antibiotic resistance in sub-Saharan Africa. Nat. Commun. 2023, 14, 6392. [Google Scholar] [CrossRef]
- Canals, R.; Hammarlof, D.L.; Kroger, C.; Owen, S.V.; Fong, W.Y.; Lacharme-Lora, L.; Zhu, X.; Wenner, N.; Carden, S.E.; Honeycutt, J.; et al. Adding function to the genome of African Salmonella Typhimurium ST313 strain D23580. PLoS Biol. 2019, 17, e3000059. [Google Scholar] [CrossRef]
- Tindall, B.J.; Grimont, P.A.D.; Garrity, G.M.; Euzeby, J.P. Nomenclature and taxonomy of the genus Salmonella. Int. J. Syst. Evol. Microbiol. 2005, 55, 521–524. [Google Scholar] [CrossRef]
- Judicial Commission Of The International Committee On Systematics Of, P. The type species of the genus Salmonella Lignieres 1900 is Salmonella enterica (ex Kauffmann and Edwards 1952) Le Minor and Popoff 1987, with the type strain LT2T, and conservation of the epithet enterica in Salmonella enterica over all earlier epithets that may be applied to this species. Opinion 80. Int. J. Syst. Evol. Microbiol. 2005, 55, 519–520. [Google Scholar] [CrossRef]
- Mylona, E.; Pereira-Dias, J.; Keane, J.A.; Karkey, A.; Dongol, S.; Khokhar, F.; Tran, T.A.; Cormie, C.; Higginson, E.; Baker, S. Phenotypic variation in the lipopolysaccharide O-antigen of Salmonella Paratyphi A and implications for vaccine development. Vaccine 2024, 42, 126404. [Google Scholar] [CrossRef]
- Rossi, O.; Caboni, M.; Negrea, A.; Necchi, F.; Alfini, R.; Micoli, F.; Saul, A.; MacLennan, C.A.; Rondini, S.; Gerke, C. Toll-Like Receptor Activation by Generalized Modules for Membrane Antigens from Lipid A Mutants of Salmonella enterica Serovars Typhimurium and Enteritidis. Clin. Vaccine Immunol. 2016, 23, 304–314. [Google Scholar] [CrossRef]
- Gasperini, G.; Alfini, R.; Arato, V.; Mancini, F.; Aruta, M.G.; Kanvatirth, P.; Pickard, D.; Necchi, F.; Saul, A.; Rossi, O.; et al. Salmonella Paratyphi A Outer Membrane Vesicles Displaying Vi Polysaccharide as a Multivalent Vaccine against Enteric Fever. Infect. Immun. 2021, 89, e00699-2. [Google Scholar] [CrossRef]
- Gasperini, G.; Massai, L.; De Simone, D.; Raso, M.M.; Palmieri, E.; Alfini, R.; Rossi, O.; Ravenscroft, N.; Kuttel, M.M.; Micoli, F. O-Antigen decorations in Salmonella enterica play a key role in eliciting functional immune responses against heterologous serovars in animal models. Front. Cell Infect. Microbiol. 2024, 14, 1347813. [Google Scholar] [CrossRef]
- De Benedetto, G.; Alfini, R.; Cescutti, P.; Caboni, M.; Lanzilao, L.; Necchi, F.; Saul, A.; MacLennan, C.A.; Rondini, S.; Micoli, F. Characterization of O-antigen delivered by Generalized Modules for Membrane Antigens (GMMA) vaccine candidates against nontyphoidal Salmonella. Vaccine 2017, 35, 419–426. [Google Scholar] [CrossRef]
- Necchi, F.; Saul, A.; Rondini, S. Development of a high-throughput method to evaluate serum bactericidal activity using bacterial ATP measurement as survival readout. PLoS ONE 2017, 12, e0172163. [Google Scholar] [CrossRef]
- Rossi, O.; Molesti, E.; Saul, A.; Giannelli, C.; Micoli, F.; Necchi, F. Intra-Laboratory Evaluation of Luminescence Based High-Throughput Serum Bactericidal Assay (L-SBA) to Determine Bactericidal Activity of Human Sera against Shigella. High-Throughput 2020, 9, 14. [Google Scholar] [CrossRef]
- Martin, L.B.; Khanam, F.; Qadri, F.; Khalil, I.; Sikorski, M.J.; Baker, S. Vaccine value profile for Salmonella enterica serovar Paratyphi A. Vaccine 2023, 41 (Suppl. 2), S114–S133. [Google Scholar] [CrossRef]
- MacLennan, C.A.; Gondwe, E.N.; Msefula, C.L.; Kingsley, R.A.; Thomson, N.R.; White, S.A.; Goodall, M.; Pickard, D.J.; Graham, S.M.; Dougan, G.; et al. The neglected role of antibody in protection against bacteremia caused by nontyphoidal strains of Salmonella in African children. J. Clin. Investig. 2008, 118, 1553–1562. [Google Scholar] [CrossRef]
- Nyirenda, T.S.; Gilchrist, J.J.; Feasey, N.A.; Glennie, S.J.; Bar-Zeev, N.; Gordon, M.A.; MacLennan, C.A.; Mandala, W.L.; Heyderman, R.S. Sequential acquisition of T cells and antibodies to nontyphoidal Salmonella in Malawian children. J. Infect. Dis. 2014, 210, 56–64. [Google Scholar] [CrossRef]
- de Alwis, R.; Tu, L.T.P.; Quynh, N.L.T.; Thompson, C.N.; Anders, K.L.; Van Thuy, N.T.; Hieu, N.T.; Vi, L.L.; Chau, N.V.V.; Duong, V.T.; et al. The Role of Maternally Acquired Antibody in Providing Protective Immunity Against Nontyphoidal Salmonella in Urban Vietnamese Infants: A Birth Cohort Study. J. Infect. Dis. 2019, 219, 295–304. [Google Scholar] [CrossRef]
- Schager, A.E.; Dominguez-Medina, C.C.; Necchi, F.; Micoli, F.; Goh, Y.S.; Goodall, M.; Flores-Langarica, A.; Bobat, S.; Cook, C.N.L.; Arcuri, M.; et al. IgG Responses to Porins and Lipopolysaccharide within an Outer Membrane-Based Vaccine against Nontyphoidal Salmonella Develop at Discordant Rates. mBio 2018, 9, e02379-1. [Google Scholar] [CrossRef]



| Serogroup | Strain/Isolate ID | Strain/Isolate ID (Abbreviated) | OAg Features (* Oac %) [Ref] | OAg Features (* Glc %) [Ref] |
|---|---|---|---|---|
| O:2 | S. Paratyphi A ED199 | SPa ED199 | 61 [39] | 78 [39] |
| O:2 | S. Paratyphi A 02TY187 | SPa 02TY187 | 54 [39] | 51 [39] |
| O:2 | S. Paratyphi A ED766 | SPa ED766 | 100 [39] | 79 [39] |
| O:2 | S. Paratyphi A ATCC9150 | SPa ATCC9150 | 17 [39] | 57 [39] |
| O:4 | S. Typhimurium D23580 | STm D23580 | 129 [40] | 18 [40] |
| O:4 | S. Typhimurium ST4/74 | STm ST4/74 | 118 [40] | 62 [40] |
| O:4 | S. Typhimurium 10433_3 | STm 10433_3 | 120 [40] | 39 [40] |
| O:9 | S. Enteritidis CMCC4314 | SEn CMCC4314 | <8 [40] | 16 [40] |
| O:9 | S. Enteritidis A1636 | SEn A1636 | 28 [40] | 13 [40] |
| O:9 | S. Enteritidis D7795 | SEn D7795 | 23 [40] | 21 [40] |
| O:4 | S. Derby ATCC6960 | SDe ATCC6960 | <28 [40] | 18 [40] |
| O:9 | S. Dublin ATCC39184 | SDu ATCC39184 | 60 [40] | 18 [40] |
| Serogroup O:4 | Serogroup O:9 | Serogroup O:2 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| STm ST4/74 | STm 10433_3 | SDe ATCC6960 | SEn A1636 | SEn D7795 | SDu ATCC39184 | SPa 02TY187 | SPa ED766 | SPa ATCC9150 | |
| Repeatability (CV% on Log10-transformed data) | 2.20 | 2.22 | 3.35 | 6.06 | 9.46 | 1.86 | 2.73 | 3.12 | 3.03 |
| Intermediate Precision (CV% on Log10-transformed data) | 3.32 | 2.44 | 7.43 | 7.14 | 10.37 | 4.63 | 3.90 | 3.84 | 4.84 |
| Serogroup O:4 | ||||
|---|---|---|---|---|
| Strain | STm D23580 | STm ST4/74 | STm 10433_3 | SDe ATCC6960 |
| LoD (IC50) | 4.7 | 5.7 | 7.3 | 9.3 |
| LoQ (IC50) | 6.4 | 11.7 | 24.2 | 51.7 |
| Serogroup O:9 | ||||
| Strain | SEn CMCC4314 | SEn A1636 | SEn D7795 | SDu ATCC39184 |
| LoD (IC50) | 10.0 | 8.4 | 9.8 | 6.3 |
| LoQ (IC50) | 63.5 | 37.7 | 59.5 | 15.7 |
| Serogroup O:2 | ||||
| Strain | SPa ED199 | SPa 02TY187 | SPa ED766 | SPa ATCC9150 |
| LoD (IC50) | 5.4 | 6.1 | 4.5 | 6.8 |
| LoQ (IC50) | 10.1 | 14.3 | 5.7 | 19.7 |
| Slope (CI 95% Limits) | Intercept (CI 95% Limits) | ||
|---|---|---|---|
| Serogroup O:4 | STm ST4/74 | 1.08 | −0.04 |
| (0.91; 1.25) | (−0.91; 0.15) | ||
| STm 10433_3 | 1.07 | −0.02 | |
| (0.99; 1.14) | (−0.42; 0.01) | ||
| SDe ATCC6960 | 1.03 | −0.20 | |
| (0.86; 1.19) | (−0.75; 0.35) | ||
| Serogroup O:9 | SEn A1636 | 0.94 | −0.02 |
| (0.47; 1.41) | (−1.32; 1.3) | ||
| SEn D7795 | 0.71 | 0.76 | |
| (−0.02; 1.4) | (−1.39; 2.89) | ||
| SDu ATCC39184 | 1.01 | −0.06 | |
| (0.74; 1.28) | (−0.97; 0.84) | ||
| Serogroup O:2 | SPa 02TY187 | 0.95 | 0.08 |
| (0.78; 1.12) | (−0.31; 0.47) | ||
| SPa ED766 | 0.94 | 0.18 | |
| (0.84; 1.05) | (−0.08; 0.45) | ||
| SPa ATCC9150 | 1.08 | −0.23 | |
| (0.97; 1.19) | (−0.51; 0.04) | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aruta, M.G.; Massai, L.; De Simone, D.; Boretto, F.; Benincasa, M.; Iturriza, M.; Carducci, M.; Mancini, F.; Canals, R.; Rondini, S.; et al. Characterization of a Luminescence-Based Serum Bactericidal Activity Assay for Human Sera Against a Panel of Salmonella Strains. Microorganisms 2025, 13, 2757. https://doi.org/10.3390/microorganisms13122757
Aruta MG, Massai L, De Simone D, Boretto F, Benincasa M, Iturriza M, Carducci M, Mancini F, Canals R, Rondini S, et al. Characterization of a Luminescence-Based Serum Bactericidal Activity Assay for Human Sera Against a Panel of Salmonella Strains. Microorganisms. 2025; 13(12):2757. https://doi.org/10.3390/microorganisms13122757
Chicago/Turabian StyleAruta, Maria Grazia, Luisa Massai, Daniele De Simone, Federica Boretto, Marta Benincasa, Miren Iturriza, Martina Carducci, Francesca Mancini, Rocio Canals, Simona Rondini, and et al. 2025. "Characterization of a Luminescence-Based Serum Bactericidal Activity Assay for Human Sera Against a Panel of Salmonella Strains" Microorganisms 13, no. 12: 2757. https://doi.org/10.3390/microorganisms13122757
APA StyleAruta, M. G., Massai, L., De Simone, D., Boretto, F., Benincasa, M., Iturriza, M., Carducci, M., Mancini, F., Canals, R., Rondini, S., & Rossi, O. (2025). Characterization of a Luminescence-Based Serum Bactericidal Activity Assay for Human Sera Against a Panel of Salmonella Strains. Microorganisms, 13(12), 2757. https://doi.org/10.3390/microorganisms13122757

