Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,476)

Search Parameters:
Keywords = bacteria biofilm resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1363 KiB  
Article
Rosemary Extract: Phytochemical Composition and Potential for Eliminating Polymicrobial Biofilm of Candida albicans and Multidrug-Resistant Bacteria
by Tuana Mendonça Faria Cintra, Raquel Teles de Menezes, Lara Steffany de Carvalho, Leticia de Miguel Nazario, Leandro Wang Hantao, Maria Cristina Marcucci, Luciane Dias de Oliveira and Vanessa Marques Meccatti-Domiciano
BioTech 2025, 14(3), 61; https://doi.org/10.3390/biotech14030061 - 13 Aug 2025
Viewed by 208
Abstract
Herbal medicines can be promising for the treatment of infections caused by multidrug-resistant microorganisms. This study aimed to evaluate Rosmarinus officinalis (Rosemary) hydroalcoholic extract (RHE) regarding its phytochemical composition and potential for eliminating polymicrobial biofilm of Candida albicans with multidrug-resistant bacteria (Acinetobacter [...] Read more.
Herbal medicines can be promising for the treatment of infections caused by multidrug-resistant microorganisms. This study aimed to evaluate Rosmarinus officinalis (Rosemary) hydroalcoholic extract (RHE) regarding its phytochemical composition and potential for eliminating polymicrobial biofilm of Candida albicans with multidrug-resistant bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa). The extraction and quantification of the extract (flavonoids and phenols) were performed, and its antioxidant activity (DPPH) and the presence of bio-active compounds were investigated using high-performance liquid chromatography with Diode Array Detection (HPLC-DAD) and Gas Chromatography–Mass Spectrometry (GC-MS). The minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) were determined, and the extract’s action on polymicrobial biofilms was evaluated using the MTT assay. Data were analyzed using one-way ANOVA and Tukey’s tests, as well as Kruskal–Wallis and Dunn’s tests, with a significance level of 5%. RHE showed compatible amounts of flavonoids and phenols, with an EC50 of 19.53 µg/mL. Through HPLC-DAD and GC-MS, biomolecules such as rosmarinic acid and α-Pinene were identified. The extract exhibited microbicidal activity and antibiofilm action, with reduction percentages of up to 69.6% (p < 0.05), showing superior performance compared to 0.12% chlorhexidine against C. albicans + A. baumannii. In conclusion, RHE may be a promising therapeutic agent against multidrug-resistant pathogens. Full article
Show Figures

Figure 1

33 pages, 906 KiB  
Review
Parageobacillus and Geobacillus spp.: From Food Spoilage to Beneficial Food Applications
by Maika Salvador, Santiago Condón and Elisa Gayán
Foods 2025, 14(16), 2775; https://doi.org/10.3390/foods14162775 - 9 Aug 2025
Viewed by 438
Abstract
The genera Parageobacillus and Geobacillus comprise thermophilic, spore-forming bacteria. The extraordinary heat resistance of their spores, together with their ability to form biofilms and produce thermostable enzymes, makes them a relevant cause of spoilage in shelf-stable, heat-treated products like dairy and canned foods. [...] Read more.
The genera Parageobacillus and Geobacillus comprise thermophilic, spore-forming bacteria. The extraordinary heat resistance of their spores, together with their ability to form biofilms and produce thermostable enzymes, makes them a relevant cause of spoilage in shelf-stable, heat-treated products like dairy and canned foods. However, these same biological traits offer valuable opportunities for the food industry. In this context, the purpose of this review is to describe the challenges posed by (Para)Geobacillus spp. as food spoilage agents, while also highlighting their existing and prospective applications in the food industry. In terms of food safety, G. stearothermophilus spores are used as biological indicators in commercially available tests to detect antibiotic residues in food within a few hours. Additionally, (Para)Geobacillus can be exploited for the fermentation of agri-food residues to produce high-value compounds such as biofuels, food ingredients and technological adjuvants, and compost. Their thermostable enzymes—such as amylases, xylanases, L-arabinose isomerases, β-galactosidases, lipases, proteases, and L-asparaginases—have potential applications in food processing and ingredient production. However, several challenges persist, including limited knowledge on genetic diversity, physiology, and metabolism, as well as low yields of biomass and target compounds. These issues reinforce the need for further studies to unlock their full potential. Full article
Show Figures

Graphical abstract

17 pages, 854 KiB  
Review
Mycoplasma Biofilms: Characteristics and Control Strategies
by Jingyi Liang, Baoyi Deng, Weihuo Li, Jingjing Qi, Yangshuo Li, Xueyan Wang, Ming Li, Hong Yang and Nan Zhang
Microorganisms 2025, 13(8), 1850; https://doi.org/10.3390/microorganisms13081850 - 7 Aug 2025
Viewed by 248
Abstract
The Mycoplasmataceae are a family of bacteria that typically cause respiratory, arthritic, and genitourinary disease in humans. Mycoplasma spp. of animal origin are also the causative agents of porcine wheezing disease, chronic respiratory disease and arthritis in chickens and other conditions. These diseases [...] Read more.
The Mycoplasmataceae are a family of bacteria that typically cause respiratory, arthritic, and genitourinary disease in humans. Mycoplasma spp. of animal origin are also the causative agents of porcine wheezing disease, chronic respiratory disease and arthritis in chickens and other conditions. These diseases have a significant impact on public health and the economic development of livestock breeding. Clinical prevention and treatment of mycoplasma infections is primarily dependent on the use of antibiotics. However, inappropriate and excessive use of antimicrobials has enabled resistance development that has become a significant clinical concern. Mycoplasma are also robust biofilm producers, and this process is a major factor for the persistence of these infections, especially in conjunction with common antibiotic resistance mechanisms, including target gene mutations and the action of efflux pumps. A mycoplasma biofilm refers to a structured and stable microbial community formed by Mycoplasma spp. adhering to biological or non-biological surfaces under suitable conditions and secreting extracellular polymers (EPS) such as polysaccharides. This process allows the microorganisms to adapt to their surrounding environment and survive during the growth process. These biofilms render bacteria more resistant to antimicrobials than planktonic bacteria, resulting in biofilm-associated infections that are more challenging to eradicate and more likely to recur. The current study reviews progress from the fields of biofilm formation, structure and identification, correlations between biofilms and drug resistance and virulence as well as methods of biofilm prevention and control. Our aim was to provide a reference basis for the subsequent in-depth understanding of the research of mycoplasma biofilms. Full article
Show Figures

Figure 1

17 pages, 704 KiB  
Review
Marine Antimicrobial Peptides: Emerging Strategies Against Multidrug-Resistant and Biofilm-Forming Bacteria
by Rita Magalhães, Dalila Mil-Homens, Sónia Cruz and Manuela Oliveira
Antibiotics 2025, 14(8), 808; https://doi.org/10.3390/antibiotics14080808 - 7 Aug 2025
Viewed by 525
Abstract
The global rise in antimicrobial resistance poses a major threat to public health, with multidrug-resistant bacterial infections expected to surpass cancer in mortality by 2050. As traditional antibiotic pipelines stagnate, novel therapeutic alternatives are critically needed. Antimicrobial peptides (AMPs), particularly those derived from [...] Read more.
The global rise in antimicrobial resistance poses a major threat to public health, with multidrug-resistant bacterial infections expected to surpass cancer in mortality by 2050. As traditional antibiotic pipelines stagnate, novel therapeutic alternatives are critically needed. Antimicrobial peptides (AMPs), particularly those derived from marine organisms, have emerged as promising antimicrobial candidates due to their broad-spectrum activity, structural diversity, and distinctive mechanisms of action. Unlike conventional antibiotics, AMPs can disrupt microbial membranes, inhibit biofilm formation, and even modulate immune responses, making them highly effective against resistant bacteria. This review highlights the potential of marine AMPs as next-generation therapeutics, emphasizing their efficacy against multidrug-resistant pathogens and biofilm-associated infections. Furthermore, marine AMPs show promise in combating persister cells and disrupting quorum sensing pathways, offering new strategies for tackling chronic infections. Despite their potential, challenges such as production scalability and limited clinical validation remain; nevertheless, the use of new technologies and bioinformatic tools is accelerating the discovery and optimization of these peptides, paving the way for bypassing these challenges. This review consolidates current findings on marine AMPs, advocating for their continued exploration as viable tools in the fight against antimicrobial resistance. Full article
(This article belongs to the Section Antimicrobial Peptides)
Show Figures

Figure 1

24 pages, 957 KiB  
Review
Biofilm and Antimicrobial Resistance: Mechanisms, Implications, and Emerging Solutions
by Bharmjeet Singh, Manju Dahiya, Vikram Kumar, Archana Ayyagari, Deepti N. Chaudhari and Jayesh J. Ahire
Microbiol. Res. 2025, 16(8), 183; https://doi.org/10.3390/microbiolres16080183 - 6 Aug 2025
Viewed by 622
Abstract
Biofilms are a spontaneously formed slimy matrix of extracellular polymeric substances (EPS) enveloping miniature bacterial colonies, which aid in pathogen colonization, shielding the bacteria from antibiotics, as well as imparting them resistance towards the same. Biofilms employ a robust communication mechanism called quorum [...] Read more.
Biofilms are a spontaneously formed slimy matrix of extracellular polymeric substances (EPS) enveloping miniature bacterial colonies, which aid in pathogen colonization, shielding the bacteria from antibiotics, as well as imparting them resistance towards the same. Biofilms employ a robust communication mechanism called quorum sensing that serves to keep their population density constant. What is most significant about biofilms is that they contribute to the development of bacterial virulence by providing protection to pathogenic species, allowing them to colonize the host, and also inhibiting the activities of antimicrobials on them. They grow on animate surfaces (such as on teeth and intestinal mucosa, etc.) and inanimate objects (like catheters, contact lenses, pacemakers, endotracheal devices, intrauterine devices, and stents, etc.) alike. It has been reported that as much as 80% of human infections involve biofilms. Serious implications of biofilms include the necessity of greater concentrations of antibiotics to treat common human infections, even contributing to antimicrobial resistance (AMR), since bacteria embedded within biofilms are protected from the action of potential antibiotics. This review explores various contemporary strategies for controlling biofilms, focusing on their modes of action, mechanisms of drug resistance, and innovative approaches to find a solution in this regard. This review interestingly targets the extracellular polymeric matrix as a highly effective strategy to counteract the potential harm of biofilms since it plays a critical role in biofilm formation and significantly contributes to antimicrobial resistance. Full article
Show Figures

Figure 1

14 pages, 589 KiB  
Review
Biofilm Formation and the Role of Efflux Pumps in ESKAPE Pathogens
by Trent R. Sorenson, Kira M. Zack and Suresh G. Joshi
Microorganisms 2025, 13(8), 1816; https://doi.org/10.3390/microorganisms13081816 - 4 Aug 2025
Viewed by 322
Abstract
Nosocomial infections caused by ESKAPE pathogens represent a significant burden to global health. These pathogens may exhibit multidrug resistance (MDR) mechanisms, of which mechanisms such as efflux pumps and biofilm formation are gaining significant importance. Multidrug resistance mechanisms in ESKAPE pathogens have led [...] Read more.
Nosocomial infections caused by ESKAPE pathogens represent a significant burden to global health. These pathogens may exhibit multidrug resistance (MDR) mechanisms, of which mechanisms such as efflux pumps and biofilm formation are gaining significant importance. Multidrug resistance mechanisms in ESKAPE pathogens have led to an increase in the effective costs in health care and a higher risk of mortality in hospitalized patients. These pathogens utilize antimicrobial efflux pump mechanisms and bacterial biofilm-forming capabilities to escape the bactericidal action of antimicrobials. ESKAPE bacteria forming colonies demonstrate increased expression of efflux pump-encoding genes. Efflux pumps not only expel antimicrobial agents but also contribute to biofilm formation by bacteria through (1) transport of molecules and transcription factors involved in biofilm quorum sensing, (2) bacterial fimbriae structure transport for biofilm adhesion to surfaces, and (3) regulation of a transmembrane gradient to survive the difficult conditions of biofilm microenvironments. The synergistic role of these mechanisms complicates treatment outcomes. Given the mechanistic link between biofilms and efflux pumps, therapeutic strategies should focus on targeting anti-biofilm mechanisms alongside efflux pump inactivation with efflux pump inhibitors. This review explores the molecular interplay between efflux pumps and biofilm formation, emphasizing potential therapeutic strategies such as efflux pump inhibitors (EPIs) and biofilm-targeting agents. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

20 pages, 2168 KiB  
Article
Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains
by Andrea Bonfanti, Romano Silvestri, Ettore Novellino, Gian Carlo Tenore, Elisabetta Schiano, Fortuna Iannuzzo, Massimo Reverberi, Luigi Faino, Marzia Beccaccioli, Francesca Sivori, Carlo Giuseppe Rizzello and Cristina Mazzoni
Microorganisms 2025, 13(8), 1804; https://doi.org/10.3390/microorganisms13081804 - 1 Aug 2025
Viewed by 232
Abstract
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of [...] Read more.
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of lactic acid bacteria (LAB), including Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus, alongside diverse heat-resistant yeasts such as Cyberlindnera jadinii. Culture-based isolation identified subdominant lactic acid bacteria strains, not detected by sequencing, belonging to Leuconostoc mesenteroides, Enterococcus faecalis, and Enterococcus durans. These strains were further assessed for their probiotic potential. E. faecalis CW1 and E. durans RCEW2 showed tolerance to acidic pH, bile salts, and lysozyme, as well as a strong biofilm-forming capacity and antimicrobial activity against Bacillus cereus and Staphylococcus aureus. Moreover, bile salt resistance suggests potential functionality in cholesterol metabolism. These findings support the potential use of CW and RCEW as reservoirs of novel, autochthonous probiotic strains and underscore the value of regional dairy by-products in food biotechnology and gut health applications. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
Show Figures

Figure 1

38 pages, 4443 KiB  
Review
The Role of Plant Growth-Promoting Bacteria in Soil Restoration: A Strategy to Promote Agricultural Sustainability
by Mario Maciel-Rodríguez, Francisco David Moreno-Valencia and Miguel Plascencia-Espinosa
Microorganisms 2025, 13(8), 1799; https://doi.org/10.3390/microorganisms13081799 - 1 Aug 2025
Viewed by 970
Abstract
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant [...] Read more.
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant physiology and soil function through diverse molecular mechanisms. PGPB synthesizes indole-3-acetic acid (IAA) to stimulate root development and nutrient uptake and produce ACC deaminase, which lowers ethylene accumulation under stress, mitigating growth inhibition. They also enhance nutrient availability by releasing phosphate-solubilizing enzymes and siderophores that improve iron acquisition. In parallel, PGPB activates jasmonate and salicylate pathways, priming a systemic resistance to biotic and abiotic stress. Through quorum sensing, biofilm formation, and biosynthetic gene clusters encoding antibiotics, lipopeptides, and VOCs, PGPB strengthen rhizosphere colonization and suppress pathogens. These interactions contribute to microbial community recovery, an improved soil structure, and enhanced nutrient cycling. This review synthesizes current evidence on the molecular and physiological mechanisms by which PGPB enhance soil restoration in degraded agroecosystems, highlighting their role beyond biofertilization as key agents in ecological rehabilitation. It examines advances in nutrient mobilization, stress mitigation, and signaling pathways, based on the literature retrieved from major scientific databases, focusing on studies published in the last decade. Full article
Show Figures

Figure 1

29 pages, 3259 KiB  
Review
The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective
by Asma Sassi, Nosiba S. Basher, Hassina Kirat, Sameh Meradji, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(8), 764; https://doi.org/10.3390/antibiotics14080764 - 29 Jul 2025
Viewed by 691
Abstract
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes [...] Read more.
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures—including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions—amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains. Full article
(This article belongs to the Special Issue The Spread of Antibiotic Resistance in Natural Environments)
Show Figures

Figure 1

26 pages, 942 KiB  
Review
The Role of Water as a Reservoir for Antibiotic-Resistant Bacteria
by Sameh Meradji, Nosiba S. Basher, Asma Sassi, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(8), 763; https://doi.org/10.3390/antibiotics14080763 - 29 Jul 2025
Viewed by 650
Abstract
Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, [...] Read more.
Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, hospital effluents, and urban stormwater. We highlight key mechanisms of biofilm formation, horizontal gene transfer, and co-selection by chemical stressors that facilitate persistence and spread. Case studies illustrate widespread detection of clinically meaningful ARB (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and mobile ARGs (e.g., sul1/2, tet, bla variants) in treated effluents, recycled water, and irrigation return flows. The interplay between treatment inefficiencies and environmental processes underscores the need for advanced treatment technologies, integrated monitoring, and policy interventions. Addressing these challenges is critical to curbing the environmental dissemination of resistance and protecting human and ecosystem health. Full article
(This article belongs to the Special Issue The Spread of Antibiotic Resistance in Natural Environments)
Show Figures

Figure 1

16 pages, 317 KiB  
Review
Combination Antibiotic Therapy for Orthopedic Infections
by Eric Bonnet and Julie Lourtet-Hascoët
Antibiotics 2025, 14(8), 761; https://doi.org/10.3390/antibiotics14080761 - 29 Jul 2025
Viewed by 448
Abstract
Background/Objectives: Limited robust data support the use of antibiotic combinations in the treatment of orthopedic infections. However, in certain situations, the combination of antibiotics seems to be beneficial. This review aims to outline the circumstances under which a combination of antibiotics may [...] Read more.
Background/Objectives: Limited robust data support the use of antibiotic combinations in the treatment of orthopedic infections. However, in certain situations, the combination of antibiotics seems to be beneficial. This review aims to outline the circumstances under which a combination of antibiotics may be utilized in the treatment of orthopedic infections. Methods: We reviewed the existing guidelines on orthopedic infections and focused on situations where antibiotic combinations are recommended or proposed optionally. We chose vitro and animal studies that provide evidence for the effectiveness of several widely recommended combinations. Results: The combinations serve multiple purposes: they provide empirical coverage while awaiting microbiological results, offer targeted treatment for difficult-to-treat infections, and facilitate oral treatment primarily for staphylococcal infections. The objectives include enhancing bacterial coverage against Gram-positive and Gram-negative bacteria, achieving synergistic effects with bactericidal agents, and reducing the risk of antibiotic resistance. The review outlines specific combinations for fracture-related infections, periprosthetic joint infections, spinal infections, and anterior cruciate ligament reconstruction infections, emphasizing the importance of tailoring antibiotic choices based on local epidemiology and patient history. The review also addresses potential drawbacks of combination therapy, such as toxicity, higher costs, and drug interactions, underscoring the complexity of managing orthopedic infections effectively. Conclusions: According to the guidelines, several different proposals are made, depending in part on the countries’ epidemiology. In a well-defined situation, various authors propose either monotherapy or a combination of antibiotics. When a combination is suggested, the choice of antibiotics is based on the expected effect: broadening the spectrum, enhancing bactericidal activity, achieving a synergistic effect, or reinforcing biofilm activity to optimize the treatment. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
12 pages, 1013 KiB  
Article
Investigating the Effect of Zinc Salts on Escherichia coli and Enterococcus faecalis Biofilm Formation
by Sara Deumić, Ahmed El Sayed, Mahmoud Hsino, Andrzej Kulesa, Neira Crnčević, Naida Vladavić, Aja Borić and Monia Avdić
Appl. Sci. 2025, 15(15), 8383; https://doi.org/10.3390/app15158383 - 29 Jul 2025
Viewed by 783
Abstract
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion [...] Read more.
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion behavior, and antimicrobial properties. However, the effect of zinc salts, such as zinc sulfate heptahydrate and zinc chloride, on biofilm-forming bacteria, including Escherichia coli and Enterococcus faecalis, is not well established. This study investigates the antibacterial properties of these zinc salts under simulated pipeline conditions using minimum inhibitory concentration assays, biofilm production assays, and antibiotic sensitivity tests. Findings indicate that zinc chloride is more antimicrobial due to its higher solubility and bioavailability of Zn2+ ions. At higher concentrations, zinc salts inhibit the development of a biofilm, whereas sub-inhibitory concentrations enhance the growth of biofilm, suggesting a stress response in bacteria. zinc chloride also enhances antibiotic efficacy against E. coli but induces resistance in E. faecalis. These findings highlight the dual role of zinc salts in preventing biofilm formation and modulating antimicrobial resistance, necessitating further research to optimize material selection for water distribution networks and mitigate biofilm-associated risks in pipeline systems. Full article
Show Figures

Figure 1

23 pages, 1285 KiB  
Review
An Exploratory Review of Microplastic Pollution, Associated Microbiomes and Pathogens in Water
by Paulina Cholewińska, Konrad Wojnarowski, Hanna Moniuszko, Przemysław Pokorny and Dušan Palić
Appl. Sci. 2025, 15(15), 8128; https://doi.org/10.3390/app15158128 - 22 Jul 2025
Viewed by 542
Abstract
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations [...] Read more.
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations of MPs in surface waters across five continents. The findings confirm that MPs are present in both marine and freshwater systems, with concentrations varying by region, hydrology, and proximity to anthropogenic sources. Polyethylene and polypropylene were identified as the most common polymers, often enriched in river mouths, estuaries, and aquaculture zones. A key focus of this review is the plastisphere—microbial biofilms colonizing MPs—which includes both environmental and pathogenic bacteria such as Vibrio, Pseudomonas, and Acinetobacter. Notably, MPs serve as vectors for the spread of antibiotic resistance genes (ARGs), including sul1, tetA and ermF, and β-lactamase genes like blaCTX-M. This highlights their role in enhancing horizontal gene transfer and microbial dissemination. The results emphasize the need for standardized monitoring protocols and further interdisciplinary research. In light of the One Health approach, understanding the microbial dimension of MP pollution is essential for managing risks to environmental and public health. Full article
Show Figures

Figure 1

17 pages, 2234 KiB  
Article
Impact of Live Ligilactobacillus salivarius CCFM1332 and Its Postbiotics on Porphyromonas gingivalis Colonization, Alveolar Bone Resorption and Inflammation in a Rat Model of Periodontitis
by Qing Hong, Yu Ren, Xin Tang, Bingyong Mao, Qiuxiang Zhang, Jianxin Zhao, Shumao Cui and Zhenmin Liu
Microorganisms 2025, 13(7), 1701; https://doi.org/10.3390/microorganisms13071701 - 20 Jul 2025
Viewed by 513
Abstract
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and [...] Read more.
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and mechanisms of different forms of probiotics, including live bacteria and postbiotics, on periodontitis, we first screened and identified Ligilactobacillus salivarius CCFM1332 (L. salivarius CCFM1332) through in vitro antibacterial and anti-biofilm activity assays. Subsequently, we investigated its therapeutic potential in a rat model of experimental periodontitis. The results demonstrated that both live L. salivarius CCFM1332 (PL) and its postbiotics (PP) significantly reduced the gingival index (GI) and probing depth (PD) in rats, while suppressing oral colonization of P. gingivalis. Serum pro-inflammatory cytokine levels were differentially modulated: the PL group exhibited reductions in interleukin-17A (IL-17A), interleukin-6 (IL-6), and interleukin-1β (IL-1β) by 39.31% (p < 0.01), 17.26% (p < 0.05), and 14.74% (p < 0.05), respectively, whereas the PP group showed decreases of 34.79% (p < 0.05), 29.85% (p < 0.01), and 19.74% (p < 0.05). Micro-computed tomography (Micro-CT) analysis demonstrated that compared to the periodontitis model group (PM), the PL group significantly reduced alveolar bone loss (ABL) by 30.1% (p < 0.05) and increased bone volume fraction (BV/TV) by 49.5% (p < 0.01). In contrast, while the PP group similarly decreased ABL by 32.7% (p < 0.05), it resulted in a 40.4% improvement in BV/TV (p > 0.05). Histological assessments via hematoxylin and eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining confirmed that both the PL group and the PP group alleviated structural damage to alveolar bone-supporting tissues and reduced osteoclast-positive cell counts. This study suggests that live L. salivarius CCFM1332 and its postbiotics reduce alveolar bone resorption and attachment loss in rats through antibacterial and anti-inflammatory pathways, thereby alleviating periodontal inflammation in rats. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

15 pages, 3300 KiB  
Article
Study of Class 1, 2, and 3 Integrons, Antibiotic Resistance Patterns, and Biofilm Formation in Clinical Staphylococcus aureus Isolates from Hospital-Acquired Infections
by Eman E. Hegazy, Wageih Salem ElNaghy, Marwa M. Shalaby, Sarah M. Shoeib, Nashwa S. M. Abdeen, Mohamed H. Fouda, Ola A. Elshora, Mohammed H. Elnaggar, Waleed Elrefaey, Rasha Youssef Hagag, Ahmed A. Elhadidy, Mohamed A. Elsebaey, Mohamed A. Eltomey, Ahmed Mohamed El Nakib, Mai Nabil Ageez and Maha S. Elnady
Pathogens 2025, 14(7), 705; https://doi.org/10.3390/pathogens14070705 - 17 Jul 2025
Viewed by 492
Abstract
Antibiotic resistance and biofilm formation complicate Staphylococcus aureus infections, raising concerns for global health. Understanding antimicrobial resistance and biofilm formation in these pathogens is essential for effective infection management. The current research aimed to assess antibiotic resistance patterns, biofilm formation, and the occurrence [...] Read more.
Antibiotic resistance and biofilm formation complicate Staphylococcus aureus infections, raising concerns for global health. Understanding antimicrobial resistance and biofilm formation in these pathogens is essential for effective infection management. The current research aimed to assess antibiotic resistance patterns, biofilm formation, and the occurrence of integron classes 1, 2, and 3 in clinical S. aureus isolates. The disc diffusion method tested antibiotic susceptibility. MRSA strains were identified by cefoxitin disc diffusion, and the mecA gene by PCR. The D-test also assessed macrolide–lincosamide–streptogramin B. A microtiter plate assay assessed biofilm formation. By PCR, integron classes were examined. Of the 63 S. aureus isolates, 25 were MSSA and 38 were MRSA. Pus (39.5%) was the most prevalent clinical source of MRSA isolates, while blood (24%) was the predominant source of MSSA isolates. MRSA isolates were more resistant to clindamycin, ciprofloxacin, ofloxacin, levofloxacin, tetracycline, and doxycycline than MSSA isolates. In total, 76.2% of the isolates produced biofilm. Biofilm-producing isolates were more resistant to cefoxitin and clindamycin. The isolates had 33.3% cMLSB resistance. The intI1 gene was found in 21 S. aureus isolates (33.3%), whereas the intI2 or intI3 genes were not detected. Our findings demonstrate the need for strict infection control to prevent the spread of resistant bacteria. Full article
Show Figures

Figure 1

Back to TopTop