Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = azapeptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7156 KiB  
Article
Selective Azapeptide CD36 Ligand MPE-298 Regulates oxLDL-LOX-1-Mediated Inflammation and Mitochondrial Oxidative Stress in Macrophages
by Mukandila Mulumba, Catherine Le, Emmanuelle Schelsohn, Yoon Namkung, Stéphane A. Laporte, Maria Febbraio, Marc J. Servant, Sylvain Chemtob, William D. Lubell, Sylvie Marleau and Huy Ong
Cells 2025, 14(5), 385; https://doi.org/10.3390/cells14050385 - 6 Mar 2025
Viewed by 1500
Abstract
Macrophage mitochondrial dysfunction, caused by oxidative stress, has been proposed as an essential event in the progression of chronic inflammation diseases, such as atherosclerosis. The cluster of differentiation-36 (CD36) and lectin-like oxLDL receptor-1 (LOX-1) scavenger receptors mediate macrophage uptake of oxidized low-density lipoprotein [...] Read more.
Macrophage mitochondrial dysfunction, caused by oxidative stress, has been proposed as an essential event in the progression of chronic inflammation diseases, such as atherosclerosis. The cluster of differentiation-36 (CD36) and lectin-like oxLDL receptor-1 (LOX-1) scavenger receptors mediate macrophage uptake of oxidized low-density lipoprotein (oxLDL), which contributes to mitochondrial dysfunction by sustained production of mitochondrial reactive oxygen species (mtROS), as well as membrane depolarization. In the present study, the antioxidant mechanisms of action of the selective synthetic azapeptide CD36 ligand MPE-298 have been revealed. After binding to CD36, MPE-298 was rapidly internalized by and simultaneously induced CD36 endocytosis through activation of the Lyn and Syk (spleen) tyrosine kinases. Within this internalized complex, MPE-298 inhibited oxLDL/LOX-1-induced chemokine ligand 2 (CCL2) secretion, abolished the production of mtROS, and prevented mitochondrial membrane potential depolarization in macrophages. This occurred through the inhibition of the multiple-component enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) by oxLDL-activated LOX-1, which was further supported by the reduced recruitment of the p47phox subunit and small GTPase (Rac) 1/2/3 into the plasma membrane. A new mechanism for alleviating oxLDL-induced oxidative stress and inflammation in macrophages is highlighted using the CD36 ligand MPE-298. Full article
Show Figures

Figure 1

13 pages, 5823 KiB  
Article
Influence of Aza-Glycine Substitution on the Internalization of Penetratin
by Karima Tarchoun, Dóra Soltész, Viktor Farkas, Ho-Jin Lee, Ildikó Szabó and Zoltán Bánóczi
Pharmaceutics 2024, 16(4), 477; https://doi.org/10.3390/pharmaceutics16040477 - 30 Mar 2024
Cited by 1 | Viewed by 1819
Abstract
The cell-penetrating peptide (CPP) penetratin has gained much attention over many years due to its potential role as a transporter for a broad range of cargo into cells. The modification of penetratin has been extensively investigated too. Aza-peptides are peptide analogs in which [...] Read more.
The cell-penetrating peptide (CPP) penetratin has gained much attention over many years due to its potential role as a transporter for a broad range of cargo into cells. The modification of penetratin has been extensively investigated too. Aza-peptides are peptide analogs in which one or more of the amino residues are replaced by a semicarbazide. This substitution results in conformational restrictions and modifications in hydrogen bonding properties, which affect the structure and may lead to enhanced activity and selectivity of the modified peptide. In this work, the Trp residues of penetratin were substituted by aza-glycine or glycine residues to examine the effect of these modifications on the cellular uptake and the internalization mechanism. The substitution of Trp48 or Trp48,56 dramatically reduced the internalization, showing the importance of Trp48 in cellular uptake. Interestingly, while aza-glycine in the position of Trp56 increased the cellular uptake, Gly reduced it. The two Trp-modified derivatives showed altered internalization pathways, too. Based on our knowledge, this is the first study about the effect of aza-amino acid substitution on the cell entry of CPPs. Our results suggest that aza-amino acid insertion is a useful modification to change the internalization of a CPP. Full article
Show Figures

Figure 1

14 pages, 3088 KiB  
Article
Computational Investigation of Conformational Properties of Short Azapeptides: Insights from DFT Study and NBO Analysis
by Mouna El Khabchi, Mohammed Mcharfi, Mohammed Benzakour, Asmae Fitri, Adil Touimi Benjelloun, Jong-Won Song, Kang-Bong Lee and Ho-Jin Lee
Molecules 2023, 28(14), 5454; https://doi.org/10.3390/molecules28145454 - 17 Jul 2023
Cited by 1 | Viewed by 2122
Abstract
Azapeptides have gained much attention due to their ability to enhance the stability and bioavailability of peptide drugs. Their structural preferences, essential to understanding their function and potential application in the peptide drug design, remain largely unknown. In this work, we systematically investigated [...] Read more.
Azapeptides have gained much attention due to their ability to enhance the stability and bioavailability of peptide drugs. Their structural preferences, essential to understanding their function and potential application in the peptide drug design, remain largely unknown. In this work, we systematically investigated the conformational preferences of three azaamino acid residues in tripeptide models, Ac-azaXaa-Pro-NHMe [Xaa = Asn (4), Asp (5), Ala (6)], using the popular DFT functionals, B3LYP and B3LYP-D3. A solvation model density (SMD) was used to mimic the solvation effect on the conformational behaviors of azapeptides in water. During the calculation, we considered the impact of the amide bond in the azapeptide models on the conformational preferences of models 46. We analyzed the effect of the HB between the side-chain main chain and main-chain main-chain on the conformational behaviors of azapeptides 46. We found that the predicted lowest energy conformation for the three models differs depending on the calculation methods. In the gas phase, B3LYP functional indicates that the conformers tttANP-1 and tttADP-1 of azapeptides 4 and 5 correspond to the type I of β-turn, the lowest energy conformation with all-trans amide bonds. Considering the dispersion correction, B3LYP-D3 functional predicts the conformers tctANP-2 and tctADP-3 of azapeptide 4 and 5, which contain the cis amide bond preceding the Pro residue, as the lowest energy conformation in the gas phase. The results imply that azaAsx and Pro residues may involve cis-trans isomerization in the gas phase. In water, the predicted lowest energy conformer of azapeptides 4 and 5 differs from the gas phase results and depends on the calculational method. For azapeptide 6, regardless of calculation methods and phases, tttAAP-1 (β-I turn) is predicted as the lowest energy conformer. The results imply that the effect of the side chain that can form HBs on the conformational preferences of azapeptides 4 and 5 may not be negligible. We compared the theoretical results of azaXaa-Pro models with those of Pro-azaXaa models, showing that incorporating azaamino acid residue in peptides at different positions can significantly impact the folding patterns and stability of azapeptides. Full article
(This article belongs to the Topic Theoretical, Quantum and Computational Chemistry)
Show Figures

Graphical abstract

7 pages, 849 KiB  
Communication
Cell Type-Specific Anti-Viral Effects of Novel SARS-CoV-2 Main Protease Inhibitors
by Nina Geiger, Viktoria Diesendorf, Valeria Roll, Eva-Maria König, Helena Obernolte, Katherina Sewald, Julian Breidenbach, Thanigaimalai Pillaiyar, Michael Gütschow, Christa E. Müller and Jochen Bodem
Int. J. Mol. Sci. 2023, 24(4), 3972; https://doi.org/10.3390/ijms24043972 - 16 Feb 2023
Cited by 8 | Viewed by 1974
Abstract
Recently, we have described novel pyridyl indole esters and peptidomimetics as potent inhibitors of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) main protease. Here, we analysed the impact of these compounds on viral replication. It has been shown that some antivirals [...] Read more.
Recently, we have described novel pyridyl indole esters and peptidomimetics as potent inhibitors of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) main protease. Here, we analysed the impact of these compounds on viral replication. It has been shown that some antivirals against SARS-CoV-2 act in a cell line-specific way. Thus, the compounds were tested in Vero, Huh-7, and Calu-3 cells. We showed that the protease inhibitors at 30 µM suppress viral replication by up to 5 orders of magnitude in Huh-7 cells, while in Calu-3 cells, suppression by 2 orders of magnitude was achieved. Three pyridin-3-yl indole-carboxylates inhibited viral replication in all cell lines, indicating that they might repress viral replication in human tissue as well. Thus, we investigated three compounds in human precision-cut lung slices and observed donor-dependent antiviral activity in this patient-near system. Our results provide evidence that even direct-acting antivirals may act in a cell line-specific manner. Full article
(This article belongs to the Special Issue Peptidases: Role and Function in Health and Disease)
Show Figures

Figure 1

13 pages, 1070 KiB  
Review
Azapeptides as an Efficient Tool to Improve the Activity of Biologically Effective Peptides
by Karima Tarchoun, Mo’ath Yousef and Zoltán Bánóczi
Future Pharmacol. 2022, 2(3), 293-305; https://doi.org/10.3390/futurepharmacol2030020 - 11 Aug 2022
Cited by 8 | Viewed by 3404
Abstract
Peptides are highly potent biological active compounds with excellent selectivity and binding, but they have some drawbacks (e.g., low stability in vivo because of the enzymatic degradation, and fast elimination). To overcome their drawbacks, various peptidomimetics have been gaining ground. Different modifications have [...] Read more.
Peptides are highly potent biological active compounds with excellent selectivity and binding, but they have some drawbacks (e.g., low stability in vivo because of the enzymatic degradation, and fast elimination). To overcome their drawbacks, various peptidomimetics have been gaining ground. Different modifications have been examined, such as the modification of peptide backbone. One such seemingly simple modification is the replacement of the CHα group by an N atom. These amino acid derivatives are called azaamino acids, and peptides containing azaamino acid are called azapeptides. This exchange results in both steric and electronic differences from the original amino acids, thus affecting the structure and biological activity of the modified peptide. In this review, the synthesis possibilities of azapeptides and the impact of azaamino acid incorporation on the structure and biological activity are presented through examples. Different synthetic solutions for azaamino acid introduction and the various routes to build in the side chain are summarized to illustrate the improvement of the field of azaamino acid chemistry. The influence of the altered electronic and steric properties of N-atom on the structure is described, too. Finally, some examples are given with potent biological activity. Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology)
Show Figures

Figure 1

25 pages, 6428 KiB  
Review
Synthesis and Biomedical Potential of Azapeptide Modulators of the Cluster of Differentiation 36 Receptor (CD36)
by Caroline Proulx, Jinqiang Zhang, David Sabatino, Sylvain Chemtob, Huy Ong and William D. Lubell
Biomedicines 2020, 8(8), 241; https://doi.org/10.3390/biomedicines8080241 - 23 Jul 2020
Cited by 16 | Viewed by 4934
Abstract
The innovative development of azapeptide analogues of growth hormone releasing peptide-6 (GHRP-6) has produced selective modulators of the cluster of differentiation 36 receptor (CD36). The azapeptide CD36 modulators curb macrophage-driven inflammation and mitigate atherosclerotic and angiogenic pathology. In macrophages activated with Toll-like receptor-2 [...] Read more.
The innovative development of azapeptide analogues of growth hormone releasing peptide-6 (GHRP-6) has produced selective modulators of the cluster of differentiation 36 receptor (CD36). The azapeptide CD36 modulators curb macrophage-driven inflammation and mitigate atherosclerotic and angiogenic pathology. In macrophages activated with Toll-like receptor-2 heterodimer agonist, they reduced nitric oxide production and proinflammatory cytokine release. In a mouse choroidal explant microvascular sprouting model, they inhibited neovascularization. In murine models of cardiovascular injury, CD36-selective azapeptide modulators exhibited cardioprotective and anti-atherosclerotic effects. In subretinal inflammation models, they altered activated mononuclear phagocyte metabolism and decreased immune responses to alleviate subsequent inflammation-dependent neuronal injury associated with retinitis pigmentosa, diabetic retinopathy and age-related macular degeneration. The translation of GHRP-6 to potent and selective linear and cyclic azapeptide modulators of CD36 is outlined in this review which highlights the relevance of turn geometry for activity and the biomedical potential of prototypes for the beneficial treatment of a wide range of cardiovascular, metabolic and immunological disorders. Full article
(This article belongs to the Special Issue Peptide-Based Drug Development)
Show Figures

Graphical abstract

17 pages, 2861 KiB  
Article
Cyst Reduction in a Polycystic Kidney Disease Drosophila Model Using Smac Mimics
by Cassandra Millet-Boureima, Ramesh Chingle, William D. Lubell and Chiara Gamberi
Biomedicines 2019, 7(4), 82; https://doi.org/10.3390/biomedicines7040082 - 18 Oct 2019
Cited by 7 | Viewed by 5383
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited malady affecting 12.5 million people worldwide. Therapeutic options to treat PKD are limited, due in part to lack of precise knowledge of underlying pathological mechanisms. Mimics of the second mitochondria-derived activator of caspases (Smac) [...] Read more.
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited malady affecting 12.5 million people worldwide. Therapeutic options to treat PKD are limited, due in part to lack of precise knowledge of underlying pathological mechanisms. Mimics of the second mitochondria-derived activator of caspases (Smac) have exhibited activity as antineoplastic agents and reported recently to ameliorate cysts in a murine ADPKD model, possibly by differentially targeting cystic cells and sparing the surrounding tissue. A first-in-kind Drosophila PKD model has now been employed to probe further the activity of novel Smac mimics. Substantial reduction of cystic defects was observed in the Malpighian (renal) tubules of treated flies, underscoring mechanistic conservation of the cystic pathways and potential for efficient testing of drug prototypes in this PKD model. Moreover, the observed differential rescue of the anterior and posterior tubules overall, and within their physiologically diverse intermediate and terminal regions implied a nuanced response in distinct tubular regions contingent upon the structure of the Smac mimic. Knowledge gained from studying Smac mimics reveals the capacity for the Drosophila model to precisely probe PKD pharmacology highlighting the value for such critical evaluation of factors implicated in renal function and pathology. Full article
Show Figures

Graphical abstract

12 pages, 2027 KiB  
Article
Aza-Amino Acids Disrupt β-Sheet Secondary Structures
by Michael A. McMechen, Evan L. Willis, Preston C. Gourville and Caroline Proulx
Molecules 2019, 24(10), 1919; https://doi.org/10.3390/molecules24101919 - 18 May 2019
Cited by 12 | Viewed by 5919
Abstract
Cα to N substitution in aza-amino acids imposes local conformational constraints, changes in hydrogen bonding properties, and leads to adaptive chirality at the nitrogen atom. These properties can be exploited in mimicry and stabilization of peptide secondary structures and self-assembly. Here, the effect [...] Read more.
Cα to N substitution in aza-amino acids imposes local conformational constraints, changes in hydrogen bonding properties, and leads to adaptive chirality at the nitrogen atom. These properties can be exploited in mimicry and stabilization of peptide secondary structures and self-assembly. Here, the effect of a single aza-amino acid incorporation located in the upper β-strand at a hydrogen-bonded (HB) site of a β-hairpin model peptide (H-Arg-Tyr-Val-Glu-Val-d-Pro-Gly-Orn-Lys-Ile-Leu-Gln-NH2) is reported. Specifically, analogs in which valine3 was substituted for aza-valine3 or aza-glycine3 were synthesized, and their β-hairpin stabilities were examined using Nuclear Magnetic Resonance (NMR) spectroscopy. The azapeptide analogs were found to destabilize β-hairpin formation compared to the parent peptide. The aza-valine3 residue was more disruptive of β-hairpin geometry than its aza-glycine3 counterpart. Full article
Show Figures

Graphical abstract

22 pages, 3709 KiB  
Article
Azasulfurylpeptide Modulation of CD36-Mediated Inflammation Without Effect on Neovascularization
by Stéphane Turcotte, Katia Mellal, Ramesh Chingle, Mukandila Mulumba, Samy Omri, Lylia Dif-Yaiche, Sylvain Chemtob, Huy Ong and William D. Lubell
Biomedicines 2018, 6(4), 98; https://doi.org/10.3390/biomedicines6040098 - 22 Oct 2018
Cited by 5 | Viewed by 4279
Abstract
Modulation of the cluster of differentiation-36 receptor (CD36) has proven promising for dampening pro-inflammatory macrophage signaling. For example, azapeptides (e.g., 1 and 2) bind CD36 selectively with high affinity, mitigate Toll-like receptor (TLR) agonist-induced overproduction of nitric oxide (NO), and reduce pro-inflammatory [...] Read more.
Modulation of the cluster of differentiation-36 receptor (CD36) has proven promising for dampening pro-inflammatory macrophage signaling. For example, azapeptides (e.g., 1 and 2) bind CD36 selectively with high affinity, mitigate Toll-like receptor (TLR) agonist-induced overproduction of nitric oxide (NO), and reduce pro-inflammatory cytokine and chemokine production in macrophages. Moreover, semicarbazides 1 and 2 inhibit microvascular sprouting mediated through CD36 in the choroid explant. Seeking a selective CD36 modulator that mediated inflammation without influencing neovascularization, a set of azasulfurylpeptides (e.g., 3ae) were synthesized in which the semicarbazide was replaced by an N-aminosulfamide residue using a novel solid-phase approach. Notably, azasulfurylpeptide 3c diminished selectively CD36-mediated TLR-2-triggered inflammatory response without affecting neovascularization. Subtle chemical modification at the peptide backbone from a carbonyl to a sulfuryl residue has had a selective effect on biological activity providing a valuable probe for studying CD36 chemical biology. Full article
(This article belongs to the Special Issue Discovery and Development of Constrained Peptide Ligands)
Show Figures

Graphical abstract

8 pages, 465 KiB  
Article
Examination of the Potential for Adaptive Chirality of the Nitrogen Chiral Center in Aza-Aspartame
by Samir H. Bouayad-Gervais and William D. Lubell
Molecules 2013, 18(12), 14739-14746; https://doi.org/10.3390/molecules181214739 - 28 Nov 2013
Cited by 17 | Viewed by 13265
Abstract
The potential for dynamic chirality of an azapeptide nitrogen was examined by substitution of nitrogen for the α-carbon of the aspartate residue in the sweetener S,S-aspartame. Considering that S,S- and R,S-aspartame possess sweet and [...] Read more.
The potential for dynamic chirality of an azapeptide nitrogen was examined by substitution of nitrogen for the α-carbon of the aspartate residue in the sweetener S,S-aspartame. Considering that S,S- and R,S-aspartame possess sweet and bitter tastes, respectively, a bitter-sweet taste of aza-aspartame 9 could be indicative of a low isomerization barrier for nitrogen chirality inter-conversion. Aza-aspartame 9 was synthesized by a combination of hydrazine and peptide chemistry. Crystallization of 9 indicated a R,S-configuration in the solid state; however, the aza-residue chiral center was considerably flattened relative to its natural amino acid counterpart. On tasting, the authors considered aza-aspartame 9 to be slightly bitter or tasteless. The lack of bitter sweet taste of aza-aspartame 9 may be due to flattening from sp2 hybridization in the urea as well as a high barrier for sp3 nitrogen inter-conversion, both of which may interfere with recognition by taste receptors. Full article
(This article belongs to the Special Issue Dynamic Stereochemistry)
Show Figures

Graphical abstract

Back to TopTop