Cell Type-Specific Anti-Viral Effects of Novel SARS-CoV-2 Main Protease Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Viral Infection and RNA Quantification
3.2. Cytotoxicity and Cellular Proliferation Assays
3.3. Human Precision-Cut Lung Slices
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef] [PubMed]
- Kemnic, T.R.; Gulick, P.G. HIV Antiretroviral Therapy. In StatPearls; StatPearls Publishing, Treasure Island: Tampa, FL, USA, 2022. [Google Scholar]
- Manns, M.P.; Maasoumy, B. Breakthroughs in hepatitis C research: From discovery to cure. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 533–550. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Peterson, S.; Sedaghat, A.R.; McMahon, M.A.; Callender, M.; Zhang, H.; Zhou, Y.; Pitt, E.; Anderson, K.S.; Acosta, E.P.; et al. Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat. Med. 2008, 14, 762–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breidenbach, J.; Lemke, C.; Pillaiyar, T.; Schäkel, L.; Al Hamwi, G.; Diett, M.; Gedschold, R.; Geiger, N.; Lopez, V.; Mirza, S.; et al. Targeting the main protease of SARS-CoV-2: From the establishment of high throughput screening to the design of tailored inhibitors. Angew. Chem. Int. Ed. Engl. 2021, 60, 10423–10429. [Google Scholar] [CrossRef] [PubMed]
- Citarella, A.; Scala, A.; Piperno, A.; Micale, N. SARS-CoV-2 M(pro): A potential target for peptidomimetics and small-molecule inhibitors. Biomolecules 2021, 11, 607. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Pettersson, H.I.; Huitema, C.; Niu, C.; Yin, J.; James, M.N.; Eltis, L.D.; Vederas, J.C. Design, synthesis, and evaluation of inhibitors for severe acute respiratory syndrome 3C-like protease based on phthalhydrazide ketones or heteroaromatic esters. J. Med. Chem 2007, 50, 1850–1864. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Gong, G.; Grum-Tokars, V.; Mulhearn, D.C.; Baker, S.C.; Coughlin, M.; Prabhakar, B.S.; Sleeman, K.; Johnson, M.E.; Mesecar, A.D. Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 5684–5688. [Google Scholar] [CrossRef] [PubMed]
- Pillaiyar, T.; Flury, P.; Krüger, N.; Su, H.; Schäkel, L.; Barbosa Da Silva, E.; Eppler, O.; Kronenberger, T.; Nie, T.; Luedtke, S.; et al. Small-molecule thioesters as SARS-CoV-2 main protease inhibitors: Enzyme inhibition, structure-activity relationships, antiviral activity, and X-ray structure determination. J. Med. Chem. 2022, 65, 9376–9395. [Google Scholar] [CrossRef] [PubMed]
- Rut, W.; Groborz, K.; Zhang, L.; Sun, X.; Zmudzinski, M.; Pawlik, B.; Wang, X.; Jochmans, D.; Neyts, J.; Mlynarski, W.; et al. SARS-CoV-2 M(pro) inhibitors and activity-based probes for patient-sample imaging. Nat. Chem. Biol. 2021, 17, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Frizler, M.; Lohr, F.; Lülsdorff, M.; Gütschow, M. Facing the gem-dialkyl effect in enzyme inhibitor design: Preparation of homocycloleucine-based azadipeptide nitriles. Chemistry 2011, 17, 11419–11423. [Google Scholar] [CrossRef]
- Jilkova, A.; Horn, M.; Fanfrlik, J.; Küppers, J.; Pachl, P.; Rezacova, P.; Lepsik, M.; Fajtova, P.; Rubesova, P.; Chanova, M.; et al. Azanitrile inhibitors of the SmCB1 protease target are lethal to schistosoma mansoni: Structural and mechanistic insights into chemotype reactivity. ACS Infect. Dis. 2021, 7, 189–201. [Google Scholar] [CrossRef]
- Hoffmann, M.; Mosbauer, K.; Hofmann-Winkler, H.; Kaul, A.; Kleine-Weber, H.; Krüger, N.; Gassen, N.C.; Müller, M.A.; Drosten, C.; Pöhlmann, S. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature 2020, 585, 588–590. [Google Scholar] [CrossRef]
- Zimniak, M.; Kirschner, L.; Hilpert, H.; Geiger, N.; Danov, O.; Oberwinkler, H.; Steinke, M.; Sewald, K.; Seibel, J.; Bodem, J. The serotonin reuptake inhibitor fluoxetine inhibits SARS-CoV-2 in human lung tissue. Sci. Rep. 2021, 11, 5890. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.; Pfeifer, G.; Binder, S.; Aigner, A.; Vollmer Barbosa, P.; Makert, G.R.; Fertey, J.; Ulbert, S.; Bodem, J.; König, E.M.; et al. Selection and validation of siRNAs preventing uptake and replication of SARS-CoV-2. Front. Bioeng. Biotechnol. 2022, 10, 801870. [Google Scholar] [CrossRef] [PubMed]
- Geiger, N.; Kersting, L.; Schlegel, J.; Stelz, L.; Fahr, S.; Diesendorf, V.; Roll, V.; Sostmann, M.; König, E.M.; Reinhard, S.; et al. The acid ceramidase is a SARS-CoV-2 host factor. Cells 2022, 11, 2532. [Google Scholar] [CrossRef] [PubMed]
- Geiger, N.; König, E.M.; Oberwinkler, H.; Roll, V.; Diesendorf, V.; Fähr, S.; Obernolte, H.; Sewald, K.; Wronski, S.; Steinke, M.; et al. Acetylsalicylic acid and salicylic acid inhibit SARS-CoV-2 replication in precision-cut lung slices. Vaccines 2022, 10, 1619. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.F.; Hsueh, P.R.; Liu, Y.Y.; Chen, Y.; Chang, S.Y.; Wang, W.J.; Wu, C.S.; Tsai, Y.M.; Liu, Y.S.; Su, W.C.; et al. Disulfiram blocked cell entry of SARS-CoV-2 via inhibiting the interaction of spike protein and ACE2. Am. J. Cancer Res. 2022, 12, 3333–3346. [Google Scholar] [PubMed]
- Hattori, S.I.; Higshi-Kuwata, N.; Raghavaiah, J.; Das, D.; Bulut, H.; Davis, D.A.; Takamatsu, Y.; Matsuda, K.; Takamune, N.; Kishimoto, N.; et al. GRL-0920, an indole chloropyridinyl ester, completely blocks SARS-CoV-2 infection. mBio 2020, 11, e01833-20. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, N.; Lareau, C.A.; Keshishian, H.; Ganskih, S.; Schneider, C.; Hennig, T.; Melanson, R.; Werner, S.; Wei, Y.; Zimmer, M.; et al. The SARS-CoV-2 RNA-protein interactome in infected human cells. Nat. Microbiol. 2021, 6, 339–353. [Google Scholar] [CrossRef] [PubMed]
Compound Class | Compound | Antiviral Activity a,b | EC50 c [µM] | ||
---|---|---|---|---|---|
Vero | Huh-7 | Calu-3 | |||
Disulfiram | 1.5 ± 0.7 | 2.0 ± 0.4 | 0.2 ± 0.1 | ||
Pyridin-3-yl 1H-indole-2-carboxylates and analogs | 1 | 0.6 ± 0.2 | 0.8 ± 0.2 | n.a. | |
2 | 1.6 ± 0.4 | 2.8 ± 1.3 | tox | ||
3 | 0.2 ± 0.2 | 2.0 ± 0.2 | 1.1 ± 0.4 | ||
4 d | 0.1 ± 0.1 | 0.5 ± 0.3 | n.a. | ||
5 d | 0.1 ± 0.1 | 0.0 | 0.0 | ||
Pyridin-3-yl-1H-indole-4-, 5-, or 7-carboxylates and analogs | 6 | 3.2 ± 0.6 | 4.2 ± 0.0 | 1.0 ± 0.7 | 5.8 |
7 | 2.8 ± 1.0 | 5.3 ± 0.1 | 1.2 ± 0.3 | 9.9 | |
8 | 0.6 ± 0.3 | 2.4 ± 0.1 | 2.0 ± 0.6 | ||
9 | 3.8 ± 0.3 | 3.6 ± 0.5 | 1.7 ± 0.7 | ||
10 e | 0.0 | 0.3 | n.a. | ||
Azapeptide nitriles | 11 | 3.3 ± 1.4 | 3.2 ± 0.8 | 0.0 | |
12 | 4.6 ± 0.2 | tox | 2.4 ± 1.0 | ||
13 | n.a. | tox | tox | ||
14 | n.a. | tox | tox | ||
15 | 0.0 | 0.5 ± 0.1 | 0.0 | ||
16 | 4.1 ± 0.7 | 1.0 ± 0.1 | n.a. | 2.4 | |
17 | 0.0 | 0.0 | 0.0 | ||
18 | 0.0 | 1.6 ± 0.6 | 0.1 | ||
19 | 0.0 | 0.0 | 0.3 | ||
20 | 0.0 | 0.8 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geiger, N.; Diesendorf, V.; Roll, V.; König, E.-M.; Obernolte, H.; Sewald, K.; Breidenbach, J.; Pillaiyar, T.; Gütschow, M.; Müller, C.E.; et al. Cell Type-Specific Anti-Viral Effects of Novel SARS-CoV-2 Main Protease Inhibitors. Int. J. Mol. Sci. 2023, 24, 3972. https://doi.org/10.3390/ijms24043972
Geiger N, Diesendorf V, Roll V, König E-M, Obernolte H, Sewald K, Breidenbach J, Pillaiyar T, Gütschow M, Müller CE, et al. Cell Type-Specific Anti-Viral Effects of Novel SARS-CoV-2 Main Protease Inhibitors. International Journal of Molecular Sciences. 2023; 24(4):3972. https://doi.org/10.3390/ijms24043972
Chicago/Turabian StyleGeiger, Nina, Viktoria Diesendorf, Valeria Roll, Eva-Maria König, Helena Obernolte, Katherina Sewald, Julian Breidenbach, Thanigaimalai Pillaiyar, Michael Gütschow, Christa E. Müller, and et al. 2023. "Cell Type-Specific Anti-Viral Effects of Novel SARS-CoV-2 Main Protease Inhibitors" International Journal of Molecular Sciences 24, no. 4: 3972. https://doi.org/10.3390/ijms24043972
APA StyleGeiger, N., Diesendorf, V., Roll, V., König, E.-M., Obernolte, H., Sewald, K., Breidenbach, J., Pillaiyar, T., Gütschow, M., Müller, C. E., & Bodem, J. (2023). Cell Type-Specific Anti-Viral Effects of Novel SARS-CoV-2 Main Protease Inhibitors. International Journal of Molecular Sciences, 24(4), 3972. https://doi.org/10.3390/ijms24043972