Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (170)

Search Parameters:
Keywords = axial-torsion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 3195 KiB  
Article
A Stress Analysis of a Thin-Walled, Open-Section, Beam Structure: The Combined Flexural Shear, Bending and Torsion of a Cantilever Channel Beam
by David W. A. Rees
Appl. Sci. 2025, 15(15), 8470; https://doi.org/10.3390/app15158470 - 30 Jul 2025
Viewed by 151
Abstract
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. [...] Read more.
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. The latter is coupled with a further superposition between axial stress arising from bending and from the constraint placed on free warping imposed at the fixed end. Closed solutions for design are tabulated for the net shear stress and the net axial stress at points around any section within the length. Stress distributions thus derived serve as a benchmark structure for alternative numerical solutions and for experimental investigations. The conversion of the transverse free end-loading applied to a thin-walled cantilever channel into the shear and axial stress that it must bear is outlined. It is shown that the point at which this loading is applied within the cross-section is crucial to this stress conversion. When a single force is applied to an arbitrary point at the free-end section, three loading effects arise generally: bending, flexural shear and torsion. The analysis of each effect requires that this force’s components are resolved to align with the section’s principal axes. These forces are then considered in reference to its centroid and to its shear centre. This shows that axial stress arises directly from bending and from the constraint imposed on free warping at the fixed end. Shear stress arises from flexural shear and also from torsion with a load offset from the shear centre. When the three actions are combined, the net stresses of each action are considered within the ability of the structure to resist collapse from plasticity and buckling. The novelty herein refers to the presentation of the shear flow calculations within a thin wall as they arise from an end load offset from the shear centre. It is shown how the principle of superposition can be applied to individual shear flow and axial stress distributions arising from flexural bending, shear and torsion. Therein, the new concept of a ‘trans-moment’ appears from the transfer in moments from their axes through centroid G to parallel axes through shear centre E. The trans-moment complements the static equilibrium condition, in which a shift in transverse force components from G to E is accompanied by torsion and bending about the flexural axis through E. Full article
Show Figures

Figure 1

20 pages, 7660 KiB  
Article
Influences of the Stiffness and Damping Parameters on the Torsional Vibrations’ Severity in Petroleum Drilling Systems
by Mohamed Zinelabidine Doghmane
Energies 2025, 18(14), 3701; https://doi.org/10.3390/en18143701 - 14 Jul 2025
Viewed by 307
Abstract
The torsional, lateral, and axial vibrations that occur during drilling operations have negative effects on the drilling equipment. These negative effects can cause huge economic impacts, as the failure of drilling tools results in wasted materials, non-productive time, and substantial expenses for equipment [...] Read more.
The torsional, lateral, and axial vibrations that occur during drilling operations have negative effects on the drilling equipment. These negative effects can cause huge economic impacts, as the failure of drilling tools results in wasted materials, non-productive time, and substantial expenses for equipment repairs. Many researchers have tried to reduce these vibrations and have tested several models in their studies. In most of these models, the drill string used in oil wells behaves like a rotating torsion pendulum (mass spring), represented by different discs. The top drive (with the rotary table) and the BHA (with the drill pipes) have been considered together as a linear spring with constant torsional stiffness and torsional damping coefficients. In this article, three models with different degrees of freedom are considered, with the aim of analyzing the effect of variations in the stiffness and damping coefficients on the severity of torsional vibrations. A comparative study has been conducted between the three models for dynamic responses to parametric variation effects. To ensure the relevance of the considered models, the field data of torsional vibrations while drilling were used to support the modeling assumption and the designed simulation scenarios. The main novelty of this work is its rigorous comparative analysis of how the stiffness and damping coefficients influence the severity of torsional vibrations based on field measurements, which has a direct application in operational energy efficiency and equipment reliability. The results demonstrated that the variation of the damping coefficient does not significantly affect the severity of the torsional vibrations. However, it is highly recommended to consider all existing frictions in the tool string to obtain a reliable torsional vibration model that can reproduce the physical phenomenon of stick–slip. Furthermore, this study contributes to the improvement of operational energy efficiency and equipment reliability in fossil energy extraction processes. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

63 pages, 988 KiB  
Article
Effective Lagrangian for the Macroscopic Motion of Weyl Fermions in 3He-A
by Maik Selch and Mikhail Zubkov
Symmetry 2025, 17(7), 1045; https://doi.org/10.3390/sym17071045 - 2 Jul 2025
Viewed by 169
Abstract
We consider the macroscopic motion of the normal component of superfluid 3He-A in global thermodynamic equilibrium within the context of the Zubarev statistical operator method. We formulate the corresponding effective theory in the language of the functional integral. The effective Lagrangian comprising [...] Read more.
We consider the macroscopic motion of the normal component of superfluid 3He-A in global thermodynamic equilibrium within the context of the Zubarev statistical operator method. We formulate the corresponding effective theory in the language of the functional integral. The effective Lagrangian comprising macroscopic motion of fermionic excitations is calculated explicitly for the emergent relativistic fermions of the superfluid 3He-A phase immersed in a non-trivial bosonic background due to a space- and time-dependent matrix-valued vierbein featuring nonzero torsion as well as the Nieh–Yan anomaly. We do not consider the dynamics of the superfluid component itself and thereby its backreaction effects due to normal component macroscopic flow. It is treated as an external background within which the emergent relativistic fermions of the normal component move. The matrix-valued vierbein formulation comprises an additional two-dimensional internal spin space for the two axially charged Weyl fermions living at the Fermi points, which may be replaced by one featuring a Dirac fermion doublet with a real-valued vierbein, an axial Abelian gauge field, and a spin connection gauge field mixing the Dirac and internal spin spaces. We carry out this change of description in detail and determine the constraints on the superfluid background as well as the the normal component motion as determined from the Zubarev statistical operator formalism in global thermodynamic equilibrium. As an application of the developed theory, we consider macroscopic rotation around the axis of pure integer mass vortices. The corresponding thermodynamic quantities of the normal component are analyzed. Our formulation incorporates both superfluid background flow and macroscopic motion flow of the normal component and thereby enables an analysis of their interrelation. Full article
(This article belongs to the Special Issue Topological Aspects of Quantum Gravity and Quantum Information Theory)
Show Figures

Figure 1

23 pages, 3708 KiB  
Article
Natural Frequency Analysis of a Stepped Drill String in Vertical Oil Wells Subjected to Coupled Axial–Torsional–Lateral Vibrations
by Mohamed Zinelabidine Doghmane
Energies 2025, 18(13), 3492; https://doi.org/10.3390/en18133492 - 2 Jul 2025
Viewed by 338
Abstract
Drilling oil and gas wells is a complex process that requires a combination of several parameters to dig into the ground. Inappropriate drilling parameter settings and reaction forces can lead to unwanted vibrations, which can negatively impact the drill string and cause damage [...] Read more.
Drilling oil and gas wells is a complex process that requires a combination of several parameters to dig into the ground. Inappropriate drilling parameter settings and reaction forces can lead to unwanted vibrations, which can negatively impact the drill string and cause damage to drill bits. To reduce unwanted oscillations, drilling vibration modeling is the first approach used to determine the behavior of the drill string under various conditions. Natural frequencies, one of the modal characteristics of a vibrating drill string, can be estimated by analytical or numerical models. However, as the field conditions become more complicated, analytical models become increasingly difficult to use, and alternative approaches must be adopted. The main objective of this paper is to investigate the natural frequencies of drill strings with real geometry under coupled vibration modes using both analytical and finite element methods. This study bridges the literature gap in modeling stepped drill string geometries, which are usually represented as uniform beams. This paper used analytical and finite element models to determine the drill string’s lateral, axial, and torsional natural frequencies under varying lengths of drill pipes and drill collars. To assess the reliability of finite element models under complex geometry, the drill string was approximated as a stepped beam rather than a uniform beam. Then, a comparison was made with analytical models. The results showed that the length of drill pipes has a pronounced effect on the natural frequencies of the overall drill string for the three vibrational modes, while drill collar length only has a notable impact on the torsional mode. These findings contribute to drilling systems’ reliability and efficiency in the oil and gas energy sector. Full article
Show Figures

Figure 1

18 pages, 33781 KiB  
Article
New Experimental Single-Axis Excitation Set-Up for Multi-Axial Random Fatigue Assessments
by Luca Campello, Vivien Denis, Raffaella Sesana, Cristiana Delprete and Roger Serra
Machines 2025, 13(7), 539; https://doi.org/10.3390/machines13070539 - 20 Jun 2025
Viewed by 247
Abstract
Fatigue failure, generated by local multi-axial random state stress, frequently occurs in many engineering fields. Therefore, it is customary to perform experimental vibration tests for a structural durability assessment. Over the years, a number of testing methodologies, which differ in terms of the [...] Read more.
Fatigue failure, generated by local multi-axial random state stress, frequently occurs in many engineering fields. Therefore, it is customary to perform experimental vibration tests for a structural durability assessment. Over the years, a number of testing methodologies, which differ in terms of the testing machines, specimen geometry, and type of excitation, have been proposed. The aim of this paper is to describe a new testing procedure for random multi-axial fatigue testing. In particular, the paper presents the experimental set-up, the testing procedure, and the data analysis procedure to obtain the multi-axial random fatigue life estimation. The originality of the proposed methodology consists in the experimental set-up, which allows performing multi-axial fatigue tests with different normal-to-shear stress ratios, by choosing the proper frequency range, using a single-axis exciter. The system is composed of a special designed specimen, clamped on a uni-axial shaker. On the specimen tip, a T-shaped mass is placed, which generates a tunable multi-axial stress state. Furthermore, by means of a finite element model, the system dynamic response and the stress on the notched specimen section are estimated. The model is validated through a harmonic acceleration base test. The experimental tests validate the numerical simulations and confirm the presence of bending–torsion coupled loading. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

12 pages, 4125 KiB  
Article
Dynamic Compression Mechanical Behavior of Three-Dimensional Chiral Mechanical Metamaterials: Effects of Geometric Parameters and Size
by Shidi Qin, Zhenyang Huang, Weidong Cao, Xiaofei Cao and Yongshui Lin
Materials 2025, 18(11), 2584; https://doi.org/10.3390/ma18112584 - 1 Jun 2025
Viewed by 475
Abstract
The coupled compression–torsion effects of three-dimensional chiral mechanical metamaterials have attracted widespread attention from researchers in recent years. However, the deformation rules and mechanisms through which geometric parameters and size affect their quasi-static and low-speed dynamic compression behavior are still unclear. This paper [...] Read more.
The coupled compression–torsion effects of three-dimensional chiral mechanical metamaterials have attracted widespread attention from researchers in recent years. However, the deformation rules and mechanisms through which geometric parameters and size affect their quasi-static and low-speed dynamic compression behavior are still unclear. This paper numerically investigates the quasi-static and low-speed dynamic compression mechanical behavior of three-dimensional chiral mechanical metamaterials, and the effects of geometric parameters and size are discussed. The numerical results are validated by their comparison with the experimental data. The testing results indicate that the geometric parameters as well as number of arrays in different directions have a significant effect on the quasi-static and dynamic compression twist angle per axial strain and the effective modulus. Interestingly, the values of the twist angle per axial strain under static and dynamic compression are almost the same under the same strain, but the effective modulus decreases more sharply under dynamic loading conditions, which may be due to inertia. Our work elucidates the mechanism through which geometric parameters and size affect the quasi-static and dynamic deformation behavior of three-dimensional chiral mechanical metamaterials, which provides design references for their practical engineering applications. Full article
(This article belongs to the Special Issue Bioinspired Materials: From Concepts to Applications)
Show Figures

Figure 1

17 pages, 3625 KiB  
Article
Nonlinear Response of a Polycarbonate in Post-Yield Cyclic Tests
by David Trejo Carrillo and Alberto Díaz Díaz
Polymers 2025, 17(11), 1535; https://doi.org/10.3390/polym17111535 - 31 May 2025
Viewed by 463
Abstract
This paper aims to investigate the mechanical behavior of a polycarbonate through cyclic tensile, compression, and torsiontests atstrain rates that reduce viscous effects for this material. Measurements included axial and transverse strains for uniaxial tests and shear strains for torsion. Tensile tests exhibited [...] Read more.
This paper aims to investigate the mechanical behavior of a polycarbonate through cyclic tensile, compression, and torsiontests atstrain rates that reduce viscous effects for this material. Measurements included axial and transverse strains for uniaxial tests and shear strains for torsion. Tensile tests exhibited nonlinear elasticity, ratcheting, and plasticity, accompanied by an increase in volumetric strain. Compression tests revealed nonlinear elasticity, with the surprising result of positive plastic axial and volumetric strains, accompanied by marginal transverse strains. Torsional tests showed an elastic but nonlinear relationship between shear stress and strain. In these latter tests, positive plastic volumetric strains were observed, which suggests that deviatoric stress can also induce volumetric plastic strains. These findings are of great importance for developing mathematical models of glassy amorphous polymers, and the observations contribute to understanding the complex behavior of such materials. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

26 pages, 6044 KiB  
Article
Drill-String Vibration Suppression Using Hybrid Magnetorheological Elastomer-Fluid Absorbers
by Jasem M. Kamel, Asan G. A. Muthalif and Abdulazim H. Falah
Actuators 2025, 14(6), 273; https://doi.org/10.3390/act14060273 - 30 May 2025
Viewed by 1233
Abstract
Rotary drilling systems with PDC bits, commonly used for drilling deep wells in the production and exploration of oil and natural gas, frequently encounter severe vibrations. These vibrations can cause significant damage to the drilling system, particularly its downhole components, leading to drilling [...] Read more.
Rotary drilling systems with PDC bits, commonly used for drilling deep wells in the production and exploration of oil and natural gas, frequently encounter severe vibrations. These vibrations can cause significant damage to the drilling system, particularly its downhole components, leading to drilling performance inefficiencies, notably reducing the rate of penetration and incurring high costs. This paper presents a parametric study on a proposed new axial semi-active tool designed to mitigate these unwanted vibrations. The tool, an axial absorber with tunable stiffness and damping coefficients over a wide range, composed of a hybrid magnetorheological elastomer-fluid (MRE-F), is installed above the PDC bit. In this study, the lumped parameter model considering axial and torsional vibrations is followed to assess the effectiveness of including the proposed absorber in the drill-string system’s behavior and to estimate the optimal coefficient values for achieving high-efficiency drilling. The drilling system response shown in this study indicates that, with optimal axial absorber coefficient values, the bit dynamically stabilizes, and unwanted vibrations are minimized, effectively eliminating the occurrence of bit-bounce and stick–slip, even when operating at critical frequencies. The proposed semi-active control tool has been proven to significantly reduce maintenance time, reduce the costs associated with severe vibrations, extend the lifespan of bottom-hole assembly components, and achieve smoother drilling with a simple addition to the drilling system. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

18 pages, 3900 KiB  
Article
Mechanism of Isotropic Behavior in Titanium Alloy Plates Formed by Axial Closed Die Rolling
by Jungang Nan, Dong Liu, Yonghao Zhang, Yu Zhang and Jianguo Wang
Materials 2025, 18(11), 2528; https://doi.org/10.3390/ma18112528 - 27 May 2025
Viewed by 369
Abstract
The torsional behavior during the deformation process of the axial closed die rolling the axial closed rolling (ACDR) forming is studied in this paper using a numerical simulation technique on TC11 titanium alloy. The axial and radial pinch angles, as well as the [...] Read more.
The torsional behavior during the deformation process of the axial closed die rolling the axial closed rolling (ACDR) forming is studied in this paper using a numerical simulation technique on TC11 titanium alloy. The axial and radial pinch angles, as well as the degree of specimen torsion, increased with the amount of deformation. The orientation distribution function (ODF) maps of the α-phase and β-phase were obtained by Electron Back Scatter Diffraction (EBSD) treatment of the TC11 titanium alloy. It can be noticed that there were different types of texture with different strengths in the ACDR samples, and in the xz and yz planes, textures in the direction of the column were predominantly of {0001} <21¯1¯0> and {011¯0} <21¯1¯0>; the weaker the texture was, the closer to the edge of the sample. In the xy plane, the texture structure was mainly distributed along the cone direction, and the textures were {1¯21¯0} <101¯0> and {011¯0} <21¯1¯0>. However, the closer to the edge position of the specimen, the higher the intensity of the texture, and the texture was {12¯12¯} <12¯16>. The β-phase is mainly distributed as {001} <100>, {110} <11¯0>, and {110} <001> textures within the specimen, and the texture strength is about 8.5 times. However, owing to the small proportion of the β-phase content in the specimen, the distribution pattern of its texture has a weak impact on the texture distribution of the overall specimen. A high degree of isotropy in the radial and tangential tensile properties, with a strength isotropy of over 99 percent and a plasticity isotropy of over 95 percent, resulted from the distribution of texture types with varying strengths and orientations within the ACDR specimens, which weakened the TC11 discs’ overall orientation. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

20 pages, 4919 KiB  
Article
Analytical and Finite Element Solution for Functionally Graded Pressure Vessels Subjected to Finite Strain Coupled Axial and Torsional Deformations
by Mohammad Shojaeifard, Arash Valiollahi, Davood Rahmatabadi, Ali Taheri, Eunsoo Choi, Alireza Ostadrahimi and Mostafa Baghani
Materials 2025, 18(9), 2136; https://doi.org/10.3390/ma18092136 - 6 May 2025
Viewed by 528
Abstract
This study presents an analytical solution to examine the mechanical behavior of an incompressible, functionally graded hyperelastic cylinder under combined extension and torsion. The exp-exp strain energy density function characterizes the hyperelastic material, with parameters varying exponentially along the radial direction. To validate [...] Read more.
This study presents an analytical solution to examine the mechanical behavior of an incompressible, functionally graded hyperelastic cylinder under combined extension and torsion. The exp-exp strain energy density function characterizes the hyperelastic material, with parameters varying exponentially along the radial direction. To validate the solution, finite element simulations using a custom UHYPER in ABAQUS are performed. The analytical and numerical results show strong agreement across different stretch and twist levels. The stress distribution and maximum stress are significantly influenced by the exponential parameter governing material gradients. Unlike axial stretch, torsion induces a more intricate longitudinal stress distribution, with large twisting producing two extrema that shift toward the cylinder’s center and outer surface. Longitudinal stress primarily governs von Mises stress and strain energy density variations across the radial direction. A critical axial stretch is identified, below which torsion-induced axial force transitions to compression, elongating the cylinder during twisting. Beyond this stretch, the axial force shifts from tensile to compressive with increasing twist, causing initial shortening before further elongation. Full article
(This article belongs to the Special Issue Modelling of Deformation Characteristics of Materials or Structures)
Show Figures

Figure 1

13 pages, 3416 KiB  
Article
Modification of a Two-Part Cancellous Locking Screw: A Pilot Study on Increasing Resistance to Axial Pullout Strength
by Chia-Hao Hsu, Nin-Chieh Hsu, Sung-Yen Lin, Cheng-Chang Lu, Yin-Chih Fu, Hsuan-Ti Huang, Chung-Hwan Chen and Pei-Hsi Chou
Bioengineering 2025, 12(5), 444; https://doi.org/10.3390/bioengineering12050444 - 23 Apr 2025
Viewed by 487
Abstract
Background/Objectives: The pullout failure of conventional locking screws (LSs, screws with a locking mechanism) may occur in patients with osteoporosis, particularly when inserted near joints or across periarticular fractures (e.g., proximal humerus). The two-part locking cancellous screw modification (TP-LCS, screws composed of two [...] Read more.
Background/Objectives: The pullout failure of conventional locking screws (LSs, screws with a locking mechanism) may occur in patients with osteoporosis, particularly when inserted near joints or across periarticular fractures (e.g., proximal humerus). The two-part locking cancellous screw modification (TP-LCS, screws composed of two parts) in metaphyseal cancellous bone is hypothesized to increase bone purchase and holding power. This study aimed to test the hypothesized advantages of TP-LCS over LSs. Methods: An MTS 370 series frame with an axial/torsional load cell was used to test driving torque and axial pullout strength, following ASTM F543-07 standards. The TP-LCS group featured a newly modified screw design made from titanium alloy (Ti6Al4V), while conventional LSs (Synthes) were used for the control group. Statistical significance was assessed for selected comparisons relevant to the research objectives, including driving torque and axial pullout strength. Results: The driving torque test showed that TP-LCS had a significantly higher maximum insertion torque (4.9 ± 0.4 N·cm) compared to LSs (4.2 ± 0.4 N·cm) (p = 0.0269), although no significant difference was found in maximum removal torque (p = 0.1046). The axial pullout test revealed that TP-LCS had significantly higher pullout strength (223.5 ± 12.2 N) compared to LSs (203.5 ± 11.5 N) (p = 0.0284). Failure during the axial pullout test often involved cracking of the test block material around the screw threads, causing the screw to pull out. Conclusions: These results support the hypothesis that TP-LCS may offer improved axial pullout resistance compared to LSs, making it a potentially beneficial modification for LSs in osteoporotic metaphyseal regions or near joints. This study provides biomechanical insights into the advantages of the modified screw design over conventional LSs. Full article
(This article belongs to the Special Issue Medical Devices and Implants, 2nd Edition)
Show Figures

Graphical abstract

8 pages, 4501 KiB  
Proceeding Paper
Parametric Investigation of Fatigue-Cracked Tubular T-Joint Repair Using Composite Reinforcement
by Muhammad Hazim, Saravanan Karuppanan and Mohsin Iqbal
Eng. Proc. 2025, 87(1), 38; https://doi.org/10.3390/engproc2025087038 - 8 Apr 2025
Viewed by 253
Abstract
Circular hollow sections (CHSs) are widely used in offshore jacket structures due to their excellent compressive strength, torsional resistance, and direction-independent stiffness. However, CHS joints are prone to fatigue-induced cracking caused by complex geometries, environmental loading, and aging. Fatigue crack propagation, governed by [...] Read more.
Circular hollow sections (CHSs) are widely used in offshore jacket structures due to their excellent compressive strength, torsional resistance, and direction-independent stiffness. However, CHS joints are prone to fatigue-induced cracking caused by complex geometries, environmental loading, and aging. Fatigue crack propagation, governed by the stress intensity factor (SIF), threatens structural integrity if the SIF exceeds fracture toughness. Composite reinforcement has emerged as a promising solution for mitigating crack propagation and enhancing joint performance. This study presents a numerical parametric investigation of fatigue-cracked tubular T-joints, focusing on the effects of crack size, crack location, and composite reinforcement on the SIF under various loading conditions. The highest SIF was consistently observed at the saddle point in T-joints under axial and out-of-plane bending (OPB) loads. However, in T-joints subjected to in-plane bending (IPB) loads, the highest SIF was found between the crown and saddle points. The SIF increased with the size and diameter of the cracks. The application of CFRP wrapping was found to reduce the SIF by more than 50% across all loading conditions, with the most significant reductions observed when the reinforcement was oriented along the chord axis. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

17 pages, 10920 KiB  
Article
Effect of Twist Angle Regulation via Flexible Variable-Twist Blades on External Characteristics of Axial-Flow Pumps
by Jiayuan Liang, Weidong Liu, Xiaocui Chen and Yongjian Wang
Water 2025, 17(7), 1085; https://doi.org/10.3390/w17071085 - 5 Apr 2025
Viewed by 499
Abstract
In the field of marine resource development, conventional axial-flow adjustable-blade pumps rely on the monolithic rotation of rigid blades for operational condition regulation, a mechanism constrained by simplistic angular adjustments that inadequately adapt to the dynamic and complex marine operational environment. To address [...] Read more.
In the field of marine resource development, conventional axial-flow adjustable-blade pumps rely on the monolithic rotation of rigid blades for operational condition regulation, a mechanism constrained by simplistic angular adjustments that inadequately adapt to the dynamic and complex marine operational environment. To address this limitation, this study proposes a novel angle-adjustment scheme utilizing flexible variable-twist blades, where operational condition regulation is achieved through active blade twisting, enabling refined and adaptive angle modulation. Four typical blade profiles were selected for the variable-twist blades at distinct angular positions (−1°, +1°, −2°, and +2°), corresponding to the four conventional angle-adjustment positions of axial-flow adjustable-blade pumps. Numerical simulations were conducted to investigate the hydraulic performance impacts of the proposed flexible variable-twist blades compared to traditional rigid blades under identical angular configurations. The results demonstrate that under high-flow conditions (1.2 Q), the torsion-based angle-adjustment strategy exhibits superior efficiency across all four angular positions: −1° configuration: 11.1% efficiency improvement; +1° configuration: comparable efficiency; −2° configuration: 78% efficiency improvement; and +2° configuration: 3.2% efficiency improvement. Moreover, at equivalent angular settings, the variable-twist blades significantly enhance hydraulic performance and expand the high-efficiency operating range of the pump compared to conventional rigid blades. The implementation of flexible variable-twist blade technology not only advances the performance of axial-flow pumps in marine engineering applications but also provides a new approach for high-efficiency research on axial-flow pumps. Full article
Show Figures

Figure 1

10 pages, 3691 KiB  
Article
The Effect of Overall Limb Torsion on Functional Femoral Version and Its Functional and Biomechanical Implications on Lower Limb Axial Anatomy: A Study on CT and EOS Imaging
by Loïc Vercruysse, Michele Palazzuolo, Riza Gultekin and Lachlan Milne
J. Clin. Med. 2025, 14(7), 2448; https://doi.org/10.3390/jcm14072448 - 3 Apr 2025
Viewed by 536
Abstract
Background: Variations in femoral version are increasingly recognized as contributing factors to the development of symptomatic femoroacetabular impingement (FAI) and ischiofemoral impingement (IFI). Despite having implications for both hip arthroplasty and hip preservation surgery, functional femoral version (FFV) and overall limb torsion (OLT) [...] Read more.
Background: Variations in femoral version are increasingly recognized as contributing factors to the development of symptomatic femoroacetabular impingement (FAI) and ischiofemoral impingement (IFI). Despite having implications for both hip arthroplasty and hip preservation surgery, functional femoral version (FFV) and overall limb torsion (OLT) are understudied. This study was conducted with the primary aim of defining and measuring FFV as a function of OLT. Methods: A cohort of 106 patients scheduled for primary hip arthroplasty underwent detailed retrospective assessment through CT and EOS imaging. Femoral torsion, transmalleolar axis, tibial torsion, trochanteric station and limb torsion were measured. The trochanteric station distance was also defined on both CT as well as on the lateral standing EOS. Statistical analyses examined the relationships between FFV, OLT, and other measurements. Results: Findings indicate a strong correlation between OLT and FFV. Agreement between CT and EOS imaging for trochanteric station was 0.88. Conclusions: The study reveals that OLT offers a more comprehensive assessment of impingement risk than anatomical femoral version alone. As OLT correlates with FFV, it highlights the role of axial limb alignment in hip joint biomechanics. Understanding the interplay between FFV and OLT can guide more individualized surgical techniques, potentially improving patient outcomes. Full article
(This article belongs to the Special Issue Hip Surgery: Clinical Treatment and Management: 2nd Edition)
Show Figures

Figure 1

14 pages, 3272 KiB  
Article
Research on Multi-Objective Optimization of Helical Gear Shaping Based on an Improved Genetic Algorithm
by Shengmao Zhou and Dehai Zhang
Machines 2025, 13(4), 295; https://doi.org/10.3390/machines13040295 - 2 Apr 2025
Viewed by 439
Abstract
Traditional design and shaping methods of helical gears may have difficulties in meeting the requirements of multiple performance indicators simultaneously, such as tooth surface accuracy, load-carrying capacity, and transmission efficiency. This study attempts to overcome these limitations through a multi-objective optimization method and [...] Read more.
Traditional design and shaping methods of helical gears may have difficulties in meeting the requirements of multiple performance indicators simultaneously, such as tooth surface accuracy, load-carrying capacity, and transmission efficiency. This study attempts to overcome these limitations through a multi-objective optimization method and achieve the comprehensive optimization of multiple performance indicators. This paper aims to boost gear system power transmission and cut vibration and noise. It assesses gear shaping impacts via normal load per unit length of the helical gear surface and gear vibration amplitude. Traditional gear shaping schemes were first determined using classic theories and formulas. Then, an improved genetic algorithm was applied to seek optimal helical gear shaping parameters. An eight-degree-of-freedom lumped mass model of the helical gear transmission system, considering bending–torsion–axial coupling, was developed based on Newton’s second law and solved via the fourth-order Runge–Kutta method. Comparisons showed that the traditional shaping scheme reduced the maximum normal load per unit length by 20.6% and the system’s vibration amplitude by 18.3%. In contrast, the improved genetic algorithm achieved greater reductions of 26.34% and 27.2%, respectively. Both methods effectively decreased the maximum normal load per unit length and system vibration amplitude, with the improved genetic algorithm yielding superior results. This work offers a key theoretical basis and reference for enhancing load transmission, reducing costs, and mitigating vibration and noise in gear transmission systems. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

Back to TopTop