Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = axial flux machine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1970 KiB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 - 1 Aug 2025
Viewed by 204
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

18 pages, 6739 KiB  
Article
Analytical Modeling of an Ironless Axial Flux Machine for Sizing Purposes
by Víctor Ballestín-Bernad, Guillermo Sanz-Sánchez, Jesús Sergio Artal-Sevil and José Antonio Domínguez-Navarro
Electronics 2025, 14(14), 2901; https://doi.org/10.3390/electronics14142901 - 20 Jul 2025
Viewed by 209
Abstract
This paper presents a novel analytical model of a double-stator single-rotor (DSSR) ironless axial flux machine (IAFM), with no iron either in the rotor or in the stator, that has cylindrical magnets in the rotor. The model is based on sizing equations that [...] Read more.
This paper presents a novel analytical model of a double-stator single-rotor (DSSR) ironless axial flux machine (IAFM), with no iron either in the rotor or in the stator, that has cylindrical magnets in the rotor. The model is based on sizing equations that include the peak no-load flux density as a determining parameter, and then static simulations using the finite element method show that the 3D magnetic field created by cylindrical magnets can be generally fitted with an empirical function. The analytical model is validated throughout this work with finite element simulations and experiments over a prototype, showing a good agreement. It is stated that the integration of the magnetic field for different rotor positions, using the empirical approach presented here, gives accurate results regarding the back-electromotive force waveform and harmonics, with a reduced computation time and effort compared to the finite element method and avoiding complex formulations of previous analytical models. Moreover, this straightforward approach facilitates the design and comparison of IAFMs with other machine topologies, as sizing equations and magnetic circuits developed for conventional electrical machines are not valid for IAFMs, because, here, the magnetic field circulates entirely through air due to the absence of ferromagnetic materials. Furthermore, the scope of this paper is limited to a DSSR-IAFM, but the method can be directly applied to single-sided IAFMs and could be refined to deal with single-stator double-rotor IAFMs. Full article
(This article belongs to the Special Issue Advanced Design in Electrical Machines)
Show Figures

Figure 1

18 pages, 1951 KiB  
Article
Comparison of Eddy Current Loss Calculation Techniques for Axial Flux Motors with Printed Circuit Board Windings
by Andreas Bauer, Daniel Dieterich and Sven Urschel
Energies 2025, 18(10), 2603; https://doi.org/10.3390/en18102603 - 17 May 2025
Cited by 2 | Viewed by 652
Abstract
In slotless machines, the winding conductors are exposed to the magnetic air gap field, which causes additional eddy current losses, thus decreasing efficiency and affecting thermal utilization. This is the case, inter alia, for axial flux motors equipped with printed circuit board windings, [...] Read more.
In slotless machines, the winding conductors are exposed to the magnetic air gap field, which causes additional eddy current losses, thus decreasing efficiency and affecting thermal utilization. This is the case, inter alia, for axial flux motors equipped with printed circuit board windings, where the winding is made of copper–fiberglass epoxy laminations and located in the air gap. The dominant influencing factors are primarily the width of the conducting tracks and the magnetic air gap flux density and frequency. The evaluation time is a crucial constraint when calculating thousands of different designs for design space exploration or performing multi-objective optimizations. Finite element simulations can achieve very precise results, but unlike semi-analytical approximation functions, they are very time-consuming and therefore not the method of choice for design space exploration. This publication provides a comprehensive overview of a selection of different eddy current loss calculation techniques that are applicable for rectangular tracks and round wire windings. A comparison of the calculated results for a finite element simulation is presented for a slotless axial flux machine with printed circuit board windings and rectangular tracks. The calculation time consumed is also compared. The current density distribution of planar conductors of air gap windings differs from that in electrical steel sheets. In contrast to the methods based on steel sheets, only the adapted methods for conductors in air gaps offer acceptable accuracy. A recommendation is provided for the method that offers the best balance between accuracy and computation time for the early-stage design of slotless axial flux machines. Full article
(This article belongs to the Special Issue Advances in Permanent Magnet Synchronous Generator)
Show Figures

Figure 1

14 pages, 3592 KiB  
Article
A Permanent-Magnet Eddy-Current Loss Analytical Model for Axial Flux Permanent-Magnet Electric Machine Accounting for Stator Saturation
by Hao Liu, Jin Tian, Guofeng He and Xiaopeng Li
Energies 2025, 18(10), 2462; https://doi.org/10.3390/en18102462 - 11 May 2025
Viewed by 416
Abstract
This paper introduces a hybrid analytical model (HAM) for the evaluation of permanent-magnet (PM) eddy-current loss in dual-stator single-rotor axial flux permanent-magnet machine (AFPMM), accounting for stator saturation. The proposed model integrates the magnetic equivalent circuit (MEC) with an analytical model based on [...] Read more.
This paper introduces a hybrid analytical model (HAM) for the evaluation of permanent-magnet (PM) eddy-current loss in dual-stator single-rotor axial flux permanent-magnet machine (AFPMM), accounting for stator saturation. The proposed model integrates the magnetic equivalent circuit (MEC) with an analytical model based on scalar magnetic potential, enabling simultaneous consideration of different rotor positions and stator slotting effects. The three-dimensional finite element method (3D-FEM) validates the no-load and armature reaction magnetic field calculated by HAM, as well as the PM eddy-current loss under both no-load and load conditions. Compared to 3D-FEM, the proposed model reduces the calculation time by more than 98% with an error of no more than 18%, demonstrating a significant advantage in terms of computational time. Based on the proposed model, the effects of air-gap length and slot opening width on PM eddy-current loss are analyzed; the results indicate that reducing the slot opening width can effectively mitigate PM eddy-current loss for AFPMM. Full article
(This article belongs to the Special Issue Design, Analysis, Optimization and Control of Electric Machines)
Show Figures

Figure 1

29 pages, 10065 KiB  
Article
Experimental Determination of a Spoke-Type Axial-Flux Permanent Magnet Motor’s Lumped Parameters
by Andre Mrad, Jean-François Llibre, Yvan Lefèvre and Mohamad Arnaout
Electricity 2025, 6(2), 24; https://doi.org/10.3390/electricity6020024 - 1 May 2025
Viewed by 1123
Abstract
This study focuses on the experimental determination of the lumped parameters of a Spoke-Type Axial-Flux Permanent Magnet (STAFPM) motor. This type of motor offers high specific torque and is well-suited for transportation applications. The studied STAFPM motor uses Ferrite magnets, which are more [...] Read more.
This study focuses on the experimental determination of the lumped parameters of a Spoke-Type Axial-Flux Permanent Magnet (STAFPM) motor. This type of motor offers high specific torque and is well-suited for transportation applications. The studied STAFPM motor uses Ferrite magnets, which are more environmentally friendly and economical than rare earth magnets. The identification of the lumped electromechanical model parameters is carried out using static torque measurements on a dedicated test bench. The torque measurements are performed in two stages: with and without magnets mounted in the rotor. The no-load flux is determined separately by no-load tests. Together, these tests identify the key parameters of the lumped parameter model, such as self- and mutual inductances, cogging torque, and no-load flux. These parameters are then used to complement the DQ model, commonly used in electric motor analysis. While the DQ model predicts average torque well, it cannot reproduce torque ripples. The lumped parameter model, validated by three-phase DC testing, provides an accurate representation of the motor’s behavior, including torque ripples. This study also applies Maximum Torque Per Ampere (MTPA) control strategies and offers a practical alternative to 3D Finite Element Analysis (FEA), thus aiding the design of STAFPM motors. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the ESCI Coverage)
Show Figures

Figure 1

35 pages, 43715 KiB  
Review
Reducing Rare-Earth Magnet Reliance in Modern Traction Electric Machines
by Oliver Mitchell Lee and Mohammadali Abbasian
Energies 2025, 18(9), 2274; https://doi.org/10.3390/en18092274 - 29 Apr 2025
Cited by 1 | Viewed by 1260
Abstract
Currently, electric machines predominantly rely on costly rare-earth NdFeB magnets, which pose both economic and environmental challenges due to rising demand. This research explores recent advancements in machine topologies and magnetic materials to identify and assess promising solutions to this issue. The study [...] Read more.
Currently, electric machines predominantly rely on costly rare-earth NdFeB magnets, which pose both economic and environmental challenges due to rising demand. This research explores recent advancements in machine topologies and magnetic materials to identify and assess promising solutions to this issue. The study investigates two alternative machine topologies to the conventional permanent magnet synchronous machine (PMSM): the permanent magnet-assisted synchronous reluctance machine (PMaSynRM), which reduces magnet usage, and the wound-field synchronous machine (WFSM), which eliminates magnets entirely. Additionally, the potential of ferrite and recycled NdFeB magnets as substitutes for primary NdFeB magnets is evaluated. Through detailed simulations, the study compares the performance and cost-effectiveness of these solutions against a reference permanent magnet synchronous machine (PMSM). Given their promising performance characteristics and potential to reduce or eliminate the use of rare-earth materials in next-generation electric machines, it is recommended that future research should focus on novel topologies like hybrid-excitation, axial-flux, and switched reluctance machines with an emphasis on manufacturability and also novel magnetic materials such as FeN and MnBi that are currently seeing synthesis challenges. Full article
Show Figures

Figure 1

46 pages, 21569 KiB  
Article
Deep Learning-Based Fault Diagnosis via Multisensor-Aware Data for Incipient Inter-Turn Short Circuits (ITSC) in Wind Turbine Generators
by Qinglong Wang, Shihao Cui, Entuo Li, Jianhua Du, Na Li and Jie Sun
Sensors 2025, 25(8), 2599; https://doi.org/10.3390/s25082599 - 20 Apr 2025
Viewed by 740
Abstract
Wind energy is a vital pillar of modern sustainable power generation, yet wind turbine generators remain vulnerable to incipient inter-turn short-circuit (ITSC) faults in their stator windings. These faults can cause fluctuations in the output voltage, frequency, and power of wind turbines, eventually [...] Read more.
Wind energy is a vital pillar of modern sustainable power generation, yet wind turbine generators remain vulnerable to incipient inter-turn short-circuit (ITSC) faults in their stator windings. These faults can cause fluctuations in the output voltage, frequency, and power of wind turbines, eventually leading to overheating, equipment damage, and rising maintenance costs if not detected early. Although significant progress has been made in condition monitoring, the current methods still fall short of the robustness required for early fault diagnosis in complex operational settings. To address this gap, this study presents a novel deep learning framework that involves traditional baseline machine-learning algorithms and advanced deep network architectures to diagnose seven distinct ITSC fault types using signals from current, vibration, and axial magnetic flux sensors. Our approach is rigorously evaluated using metrics such as confusion matrices, accuracy, recall, average precision (AP), mean average precision (mAP), hypothesis testing, and feature visualization. The experimental results demonstrate that deep learning models outperform machine learning algorithms in terms of precision and stability, achieving an mAP of 99.25% in fault identification, with three-phase current signals emerging as the most reliable indicator of generator faults compared to vibration and electromagnetic data. It is recommended to combine three-phase current sensors with deep learning frameworks for the precise identification of various types of incipient ITSC faults. This study offers a robust and efficient pipeline for condition monitoring and ITSC fault diagnosis, enabling the intelligent operation of wind turbines and maintenance of their operating states. Ultimately, it contributes to providing a practical way forward in enhancing turbine reliability and lifespan. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

16 pages, 2000 KiB  
Proceeding Paper
The Utilization of Printed Circuit Boards (PCBs) in Axial Flux Machines: A Systematic Review
by Isiaka Shuaibu, Eric Ho Tatt Wei, Ramani Kannan and Yau Alhaji Samaila
Eng. Proc. 2025, 87(1), 13; https://doi.org/10.3390/engproc2025087013 - 6 Mar 2025
Viewed by 1488
Abstract
The rapid advancement of technology has increased our reliance on axial flux permanent magnet machines (AFPMMs), making Printed Circuit Boards (PCBs) essential for modern, lightweight designs. This study reviews PCB roles in AFPMMs for low- and high-power applications by examining research from 2019 [...] Read more.
The rapid advancement of technology has increased our reliance on axial flux permanent magnet machines (AFPMMs), making Printed Circuit Boards (PCBs) essential for modern, lightweight designs. This study reviews PCB roles in AFPMMs for low- and high-power applications by examining research from 2019 to 2024. Using the PRISMA methodology, 38 articles from IEEE Xplore and Web of Science were analyzed. This review focuses on advancements in PCB manufacturing, defect mitigation, winding topologies, software tools, and optimization methods. A structured Boolean search strategy (“Printed Circuit Board” OR “PCB” AND “axial flux permanent magnet machine” OR “AFPM”) guided the literature retrieval process. Articles were meticulously screened using the Rayyan software for titles, abstracts, and content, with duplicate removal performed via the Mendeley software V2.120.0. Findings show significant progress in lightweight AFPMMs with PCBs, improving power quality and performance. Research activity over the 6 years showed inconsistent growth, with concentrated trapezoidal winding emerging as the dominant configuration, followed by distributed winding designs. These configurations were particularly applied in single stator double rotor (SSDR) coreless AFPM machines, characterized by minimal defects, minimal losses, and optimized single-layer winding designs utilizing tools such as ANSYS and COMSOL. Growing interest in double stator single rotor (DSSR) and multi-disk configurations highlights opportunities for innovative designs and advanced optimization techniques. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

17 pages, 8859 KiB  
Article
A New Multi-Axial Flux Pm Motor–Generator System for Flywheel Energy Storage
by Engin Hüner
Appl. Sci. 2025, 15(5), 2524; https://doi.org/10.3390/app15052524 - 26 Feb 2025
Viewed by 922
Abstract
This study presents a flywheel energy storage system utilizing a new multi-axial flux permanent magnet (MAFPM) motor–generator for coil launchers. The traditional winding structure of the flywheel is effective for energy recovery over several minutes. However, because the projectile is launched from coil [...] Read more.
This study presents a flywheel energy storage system utilizing a new multi-axial flux permanent magnet (MAFPM) motor–generator for coil launchers. The traditional winding structure of the flywheel is effective for energy recovery over several minutes. However, because the projectile is launched from coil launchers in less than one second, the traditional winding structure experiences insulation deterioration and winding damage due to the high current. This study proposes a winding structure made of an 8 × 0.5 mm conductor with eight turns to meet the energy requirements of coil launchers. Furthermore, the motor winding was divided into two sections, which were compared using both series and parallel connection methods as described in the literature. The proposed system produces energy that is 29.96%, 85.63%, and 81.11% lower than the A winding (where A and B are identical), the A + B winding (series connected), and A//B winding (parallel connected) at the same speed. However, as the speed increases by 258.26%, the energy output rises by 215.88%. The flywheel motor–generator’s series-parallel winding structure reaches its current carrying capacity at 1188 rpm. By utilizing a separate winding instead of the traditional motor–generator winding, a current of 38.4 A is achieved, ensuring that the winding’s current carrying capacity remains within the design parameters. Experimental data have proven that the proposed multi-wire winding structure is an innovative solution for coil launchers, surpassing various combinations of motor–generator windings found in the literature. Furthermore, the placement of the proposed winding in a single slot in the design ensures a compact structure. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

24 pages, 16715 KiB  
Article
Comparative Study of Dual-Rotor Permanent Magnet Machines with Series and Parallel Magnetic Circuits
by Zhitong Ran, Zi-Qiang Zhu and Dawei Liang
World Electr. Veh. J. 2025, 16(1), 12; https://doi.org/10.3390/wevj16010012 - 28 Dec 2024
Viewed by 1115
Abstract
This paper compares the electromagnetic performances of radial-flux, dual-rotor, permanent magnet (DRPM) machines with series (S) and parallel (P) magnetic circuits for two rotors, i.e., SDRPM and PDRPM, accounting for different slot/pole number combinations, stator winding configurations, and machine sizes. The machines are [...] Read more.
This paper compares the electromagnetic performances of radial-flux, dual-rotor, permanent magnet (DRPM) machines with series (S) and parallel (P) magnetic circuits for two rotors, i.e., SDRPM and PDRPM, accounting for different slot/pole number combinations, stator winding configurations, and machine sizes. The machines are optimized using the finite element analysis (FEA) based on the genetic algorithm. It shows that the PDRPM machine with the tooth coil (TC) configuration has the highest permanent magnet (PM) utilisation compared to the PDRPM with toroidal winding (TW) configuration and the SDRPM machine with the TC configuration under different slot/pole number combinations. The scaling effects of the machine size on the torque have been investigated. The TW-PDRPM machine is suitable for large-radius and short-axial length applications due to the short end-winding length of the TW configuration, while the TC-PDRPM is better for small-radius and long-axial length applications. The TC-SDRPM performs well when both the machine outer radius and axial length increase. Finally, the TC-SDRPM and TW-PDRPM machines are prototyped and validated experimentally. Full article
Show Figures

Figure 1

15 pages, 8029 KiB  
Article
Study on Length–Diameter Ratio of Axial–Radial Flux Hybrid Excitation Machine
by Mingyu Guo, Jiakuan Xia, Qimin Wu, Wenhao Gao and Hongbo Qiu
Processes 2024, 12(12), 2942; https://doi.org/10.3390/pr12122942 - 23 Dec 2024
Cited by 1 | Viewed by 697
Abstract
To improve the flux regulation range of the Axial–Radial Flux Hybrid Excitation Machine (ARFHEM) and the utilization rate of permanent magnets (PMs), the effects of different length–diameter ratios (LDRs) on the ARFHEM performance are studied. Firstly, the principle of the flux regulation of [...] Read more.
To improve the flux regulation range of the Axial–Radial Flux Hybrid Excitation Machine (ARFHEM) and the utilization rate of permanent magnets (PMs), the effects of different length–diameter ratios (LDRs) on the ARFHEM performance are studied. Firstly, the principle of the flux regulation of the ARFHEM is introduced by means of the structure and equivalent magnetic circuit method. Then, based on the principle of the bypass effect, the analytical formulas of LDRs, the number of pole-pairs, and the flux regulation ability are derived, and then the restrictive relationship between the air-gap magnetic field, LDR, and the number of pole-pairs is revealed. On this basis, the influence of an electric LDR on motor performance is studied. By comparing and analyzing the air-gap magnetic density and no-load back electromotive force (EMF) of motors with different LDRs, the variation in the magnetic flux regulation ability of motors with different LDRs is obtained and its influence mechanism is revealed. In addition, the torque regulation ability and loss of motors with different LDRs are compared and analyzed, and the influence mechanism of the LDR on torque and loss is determined. Finally, the above analysis is verified by experiments. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

14 pages, 10803 KiB  
Article
Improvement on Electromagnetic Performance of Axial–Radial Flux Type Permanent Magnet Machines by Optimal Stator Slot Number
by Ran Yi, Chunwei Yuan, Hongbo Qiu, Wenhao Gao and Junyi Ren
World Electr. Veh. J. 2024, 15(11), 535; https://doi.org/10.3390/wevj15110535 - 19 Nov 2024
Viewed by 1319
Abstract
To achieve the objective of high torque, a high utilization rate of PMs, and flexible flux regulation capability of the permanent magnet (PM) machine, an axial–radial flux type permanent magnet (ARFTPM) machine was studied in this paper. The working principle of the ARFTPM [...] Read more.
To achieve the objective of high torque, a high utilization rate of PMs, and flexible flux regulation capability of the permanent magnet (PM) machine, an axial–radial flux type permanent magnet (ARFTPM) machine was studied in this paper. The working principle of the ARFTPM machine is analyzed by illustrating the flux paths. Then, the influence of stator slot number on the flux regulation capability and torque is studied. A full comparison of the main parameters and electromagnetic performances of the ARFTPM machine with different stator slot numbers is presented, including winding coefficient, back electromotive force (EMF), cogging torque, average torque, and torque-angle characteristics. The optimal stator slot number was obtained. Finally, the 12-slot/10-pole prototype machine is manufactured and tested to validate the simulation data and theoretical analysis. Full article
Show Figures

Figure 1

14 pages, 4708 KiB  
Article
Research and Development of a Large-Scale Axial-Flux Generator for Hydrokinetic Power System
by Georgi Dimitrov Todorov, Konstantin Hristov Kamberov and Blagovest Nikolov Zlatev
Appl. Sci. 2024, 14(22), 10564; https://doi.org/10.3390/app142210564 - 16 Nov 2024
Viewed by 1793
Abstract
The study demonstrates an application of actual technologies and tools for the development of an axial-flux electricity generator. The specifics of its application—a run-of-river sited power station—predefine some of the design parameters that are close to a wind turbine generator. An extensive study [...] Read more.
The study demonstrates an application of actual technologies and tools for the development of an axial-flux electricity generator. The specifics of its application—a run-of-river sited power station—predefine some of the design parameters that are close to a wind turbine generator. An extensive study of available solutions is used as a starting point for further concept development. The study aims to provide a viable solution for a large-scale electrical machine. A step-based methodology is defined for concept parameters’ assessment and a feasibility study. It demonstrates the advantages of virtual prototyping when assessing various design parameters such as air gaps, coil thickness, and the number of rotor disks. Several simulations over different virtual prototypes provide sufficient information to elaborate an improved design concept. The major result is a ready-for-detailed design concept, with defined major parameters and studied work behavior for a specific, large structure of an electrical machine. Another important result is the presentation of the application of virtual prototyping in the assessment of large structures, for which physical prototyping is an expensive and time-consuming approach. The application of virtual prototyping at a very early product development stage is an effective way to undertake efficient solutions involving the concept of the product. Full article
(This article belongs to the Special Issue Electric Power Applications II)
Show Figures

Figure 1

21 pages, 4523 KiB  
Article
A Novel Cooling System for High-Speed Axial-Flux Machines Using Soft Magnetic Composites
by Matthew Meier and Elias G. Strangas
Energies 2024, 17(22), 5615; https://doi.org/10.3390/en17225615 - 9 Nov 2024
Cited by 2 | Viewed by 1772
Abstract
Demand is high for small, lightweight, and power-dense machines. However, as power increases and size decreases, rejecting losses becomes more difficult. Many novel cooling systems have been developed, which have allowed machines to be made smaller while increasing power. This paper proposes a [...] Read more.
Demand is high for small, lightweight, and power-dense machines. However, as power increases and size decreases, rejecting losses becomes more difficult. Many novel cooling systems have been developed, which have allowed machines to be made smaller while increasing power. This paper proposes a cooling system making use of soft magnetic composite (SMC) cores to improve cooling specifically in a high-speed axial-flux machine via the use of an integrated cooling channel in the SMC core. A series of experiments on a prototype machine are performed and the experimental data are used to determine a set of parameters for the FEA thermal model. Using the thermal FEA model, a comparison is completed with a traditional closed cooling system using laminated steels and an attached cooling plate.The SMC machine is then simulated at speeds up to 160 krpm and currents up to 8 A. To achieve the same coil temperature between the two designs, the laminated steel model required 4 MPa contact pressure at 10 krpm and 5 MPa contact pressure at 20 krpm. At the same time, the novel design removed approximately 20% more heat per shear air gap surface area and approximately 15% more heat per total machine surface area than the version with the attached cooling plate. Extending the operating range of the model to 160 krpm demonstrated that the maximum temperature rise remained below 180 °C. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

18 pages, 5886 KiB  
Article
Interior Profile Accuracy Assessment Method of Deep-Hole Parts Based on Servo Drive System
by Jintao Liang, Kaixin Wang, Xiaotian Song and Xiaolan Han
Sensors 2024, 24(20), 6554; https://doi.org/10.3390/s24206554 - 11 Oct 2024
Viewed by 1015
Abstract
Dimensional and profile measurements of deep-hole parts are key processes both in manufacturing and product lifecycle management. Due to the particularity of the space conditions of deep-hole parts, the existing measurement instruments and methods exhibit some limitations. Based on the multi-axis, highly precise [...] Read more.
Dimensional and profile measurements of deep-hole parts are key processes both in manufacturing and product lifecycle management. Due to the particularity of the space conditions of deep-hole parts, the existing measurement instruments and methods exhibit some limitations. Based on the multi-axis, highly precise servo drive system, a novel measuring device is developed. The laser displacement sensors are fed by the flux-switching permanent magnet linear motor, and the part is rotated by the servo motor. On this basis, the assessment methods of roundness, straightness, and cylindricity are proposed by employing the least square method (LSM). Additionally, considering the axial center deviation between the sensors and the part, the rotating center coordinate is optimized by the gradient descent algorithm (GDM). Then, the measurement system is constructed and the experiment study is conducted. The results indicate favorable evaluation error of the LSM fitting and GDM iteration. Compared with the coordinate measuring machine (CMM), the measured results show good consistency. In the error analysis, the angle positioning error of measured point is less than 0.01°, and the axial positioning error is less than 0.05 mm. The proposed system and assessment method are regarded as a feasible and promising solution for deep-hole part measurements. Full article
Show Figures

Figure 1

Back to TopTop