Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,235)

Search Parameters:
Keywords = averaged agreement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 252 KiB  
Article
Validation and Administration of the Spanish Questionnaire ‘Humanisation of Pediatric Care in Pain Management with a Non-Pharmacological Approach (HUPEDCARE-Q)’
by Inmaculada García-Valdivieso, Jorge Sánchez-Infante, Miriam Hermida-Mota, Sonsoles Hernández-Iglesias, Pablo Pando Cerra and Sagrario Gómez-Cantarino
Children 2025, 12(8), 1036; https://doi.org/10.3390/children12081036 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: The pain associated with invasive procedures is one of the most common experiences in the pediatric population. Its management remains insufficient due to gaps in healthcare training and knowledge. The aim of this study was to analyze the attitudes, beliefs, care [...] Read more.
Background/Objectives: The pain associated with invasive procedures is one of the most common experiences in the pediatric population. Its management remains insufficient due to gaps in healthcare training and knowledge. The aim of this study was to analyze the attitudes, beliefs, care practices, and training of healthcare professionals in relation to pediatric pain, through the development and application of the questionnaire ‘Humanisation of Pediatric Care in Pain Management with a Non-Pharmacological Approach (HUPEDCARE-Q)’. Methods: A cross-sectional, observational, and descriptive study with a quantitative approach was conducted to validate a questionnaire. The process was carried out in three phases: (1) design and initial development of the instrument; (2) evaluation of content validity through expert judgment, using the Content Validity Coefficient (CVC); (3) administration of the questionnaire to a large sample of healthcare professionals to assess its internal consistency and psychometric structure. Results: The evaluation involved five experts, and the items were assessed using the Content Validity Coefficient (CVC), with the overall CVC of the questionnaire exceeding 0.80. The average item scores given by the experts ranged from 0.88 to 0.95, indicating a high level of agreement in their evaluations. The results showed statistically significant positive correlations among most items (p < 0.001), indicating adequate internal consistency. Conclusions: The content validation and pilot study confirmed the theoretical relevance and appropriateness of the HUPEDCARE-Q questionnaire items in the Spanish context. The results support its usefulness as a valid and reliable tool to identify attitudes, beliefs, knowledge, and training needs in the humanized management of pediatric pain. Full article
(This article belongs to the Special Issue The Latest Challenges and Explorations in Pediatric Nursing)
35 pages, 3122 KiB  
Article
Blockchain-Driven Smart Contracts for Advanced Authorization and Authentication in Cloud Security
by Mohammed Naif Alatawi
Electronics 2025, 14(15), 3104; https://doi.org/10.3390/electronics14153104 - 4 Aug 2025
Viewed by 200
Abstract
The increasing reliance on cloud services demands advanced security mechanisms to protect sensitive data and ensure robust access control. This study addresses critical challenges in cloud security by proposing a novel framework that integrates blockchain-based smart contracts to enhance authorization and authentication processes. [...] Read more.
The increasing reliance on cloud services demands advanced security mechanisms to protect sensitive data and ensure robust access control. This study addresses critical challenges in cloud security by proposing a novel framework that integrates blockchain-based smart contracts to enhance authorization and authentication processes. Smart contracts, as self-executing agreements embedded with predefined rules, enable decentralized, transparent, and tamper-proof mechanisms for managing access control in cloud environments. The proposed system mitigates prevalent threats such as unauthorized access, data breaches, and identity theft through an immutable and auditable security framework. A prototype system, developed using Ethereum blockchain and Solidity programming, demonstrates the feasibility and effectiveness of the approach. Rigorous evaluations reveal significant improvements in key metrics: security, with a 0% success rate for unauthorized access attempts; scalability, maintaining low response times for up to 100 concurrent users; and usability, with an average user satisfaction rating of 4.4 out of 5. These findings establish the efficacy of smart contract-based solutions in addressing critical vulnerabilities in cloud services while maintaining operational efficiency. The study underscores the transformative potential of blockchain and smart contracts in revolutionizing cloud security practices. Future research will focus on optimizing the system’s scalability for higher user loads and integrating advanced features such as adaptive authentication and anomaly detection for enhanced resilience across diverse cloud platforms. Full article
Show Figures

Figure 1

10 pages, 506 KiB  
Article
How Much Variance Exists Among Published Definitions of Proximal Junctional Kyphosis? A Retrospective Cohort Study of Adult Spinal Deformity
by Tim T. Bui, Karan Joseph, Alexander T. Yahanda, Samuel Vogl, Miguel Ruiz-Cardozo and Camilo A. Molina
J. Clin. Med. 2025, 14(15), 5469; https://doi.org/10.3390/jcm14155469 - 4 Aug 2025
Viewed by 87
Abstract
Background/Objectives: We sought to characterize the variance and overlap among definitions of Proximal Junctional Kyphosis (PJK) used in the adult spinal deformity (ASD) literature. PJK is defined as excess in PJK angle, a Cobb angle between the upper-instrumented vertebra (UIV) and a [...] Read more.
Background/Objectives: We sought to characterize the variance and overlap among definitions of Proximal Junctional Kyphosis (PJK) used in the adult spinal deformity (ASD) literature. PJK is defined as excess in PJK angle, a Cobb angle between the upper-instrumented vertebra (UIV) and a supra-adjacent vertebra (SAV), either one (UIV+1) or two (UIV+2) levels rostral of the UIV. No expert consensus exists for threshold angle or which SAV to use. Methods: A total of 116 thoracolumbar fusion patients ≥ 65 years old were reviewed. The UIV+1 and UIV+2 angles were measured. Six definitions of PJK from the literature were evaluated. These definitions were selected based on citation frequency, historical relevance, and accessibility through commonly used databases. Pearson’s Chi-squared and pairwise comparisons were performed to evaluate the distinctness and agreement rates among these definitions. Results: The six definitions of PJK were as follows: [PJK20] PJK angle ≥ 20° with UIV+2 as the (SAV), [PJK10] PJK angle ≥ 10° with a >10° change from pre-op with UIV+2 as the SAV, [PJK2SD] PJK angle > 2 standard deviations from average with UIV+1 as the SAV, [PJK10+10] PJK angle ≥ 10° with a >10° change from pre-op with UIV+1 as the SAV, [PJK15] PJK angle > 15° with UIV+1 as the SAV, and [PJK30] PJK angle > 30° with UIV+2 as the SAV, or displaced rod fracture, or reoperation within 2 years for junctional failure, pseudoarthrosis, or rod fracture. [PJK10] and [PJK2SD] were the most distinct definitions while [PJK20], [PJK10+10], [PJK15], and [PJK30] showed no significant pairwise differences. [PJK2SD] was stringent, while definition [PJK30] included unique diagnostic information not captured by other definitions. Conclusions: The use of [PJK20], [PJK10+10], [PJK15], or [PJK30] is recommended for consistency, with [PJK15] presenting the best balance. Stringent [PJK2SD] may be beneficial for identifying severe PJK, though with low sensitivity. Overall, PJK definitions must be standardized for the consistent reporting of clinical outcomes and research comparability. Full article
(This article belongs to the Special Issue Optimizing Outcomes in Scoliosis and Complex Spinal Surgery)
Show Figures

Figure 1

13 pages, 1283 KiB  
Communication
Clinical Performance of Analog and Digital 18F-FDG PET/CT in Pediatric Epileptogenic Zone Localization: Preliminary Results
by Oreste Bagni, Roberta Danieli, Francesco Bianconi, Barbara Palumbo and Luca Filippi
Biomedicines 2025, 13(8), 1887; https://doi.org/10.3390/biomedicines13081887 - 3 Aug 2025
Viewed by 227
Abstract
Background: Despite its central role in pediatric pre-surgical evaluation of drug-resistant focal epilepsy, conventional analog 18F-fluorodeoxyglucose (18F-FDG) PET/CT (aPET) systems often yield modest epileptogenic zone (EZ) detection rates (~50–60%). Silicon photomultiplier–based digital PET/CT (dPET) promises enhanced image quality, but [...] Read more.
Background: Despite its central role in pediatric pre-surgical evaluation of drug-resistant focal epilepsy, conventional analog 18F-fluorodeoxyglucose (18F-FDG) PET/CT (aPET) systems often yield modest epileptogenic zone (EZ) detection rates (~50–60%). Silicon photomultiplier–based digital PET/CT (dPET) promises enhanced image quality, but its performance in pediatric epilepsy remains untested. Methods: We retrospectively analyzed 22 children (mean age 11.5 ± 2.6 years) who underwent interictal brain 18F-FDG PET/CT: 11 on an analog system (Discovery ST, 2018–2019) and 11 on a digital system (Biograph Vision 450, 2020–2021). Three blinded nuclear medicine physicians independently scored EZ localization and image quality (4-point scale); post-surgical histology and ≥1-year clinical follow-up served as reference. Results: The EZ was correctly identified in 8/11 analog scans (72.7%) versus 10/11 digital scans (90.9%). Average image quality was significantly higher with dPET (3.0 ± 0.9 vs. 2.1 ± 0.9; p < 0.05), and inter-reader agreement improved from good (ICC = 0.63) to excellent (ICC = 0.91). Conclusions: Our preliminary findings suggest that dPET enhances image clarity and reader consistency, potentially improving localization accuracy in pediatric epilepsy presurgical workups. Full article
Show Figures

Figure 1

21 pages, 4415 KiB  
Article
Friction and Regenerative Braking Shares Under Various Laboratory and On-Road Driving Conditions of a Plug-In Hybrid Passenger Car
by Dimitrios Komnos, Alessandro Tansini, Germana Trentadue, Georgios Fontaras, Theodoros Grigoratos and Barouch Giechaskiel
Energies 2025, 18(15), 4104; https://doi.org/10.3390/en18154104 - 2 Aug 2025
Viewed by 273
Abstract
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative [...] Read more.
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative braking, i.e., recuperation of the deceleration kinetic and potential energy to the vehicle battery, is one of the strategies to reduce the brake emission levels and improve vehicle efficiency. According to the regulation, the shares of friction and regenerative braking can be determined with actual testing of the vehicle on a chassis dynamometer. In this study we tested the regenerative capabilities of a plug-in hybrid vehicle, both in the laboratory and on the road, under different protocols (including both smooth and aggressive braking) and covering a wide range of driving conditions (urban, rural, motorway) over 10,000 km of driving. Good agreement was obtained between laboratory and on-road tests, with the use of the friction brakes being on average 7% and 5.3%, respectively. However, at the same time it was demonstrated that the friction braking share can vary over a wide range (up to around 30%), depending on the driver’s behaviour. Full article
Show Figures

Figure 1

21 pages, 23129 KiB  
Article
Validation of Global Moderate-Resolution FAPAR Products over Boreal Forests in North America Using Harmonized Landsat and Sentinel-2 Data
by Yinghui Zhang, Hongliang Fang, Zhongwen Hu, Yao Wang, Sijia Li and Guofeng Wu
Remote Sens. 2025, 17(15), 2658; https://doi.org/10.3390/rs17152658 - 1 Aug 2025
Viewed by 129
Abstract
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the [...] Read more.
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the reliability of FAPAR-based applications. This study validated five global FAPAR products, MOD15A2H, MYD15A2H, VNP15A2H, GEOV2, and GEOV3, over four boreal forest sites in North America. Qualitative quality flags (QQFs) and quantitative quality indicators (QQIs) of each product were analyzed. Time series high-resolution reference FAPAR maps were developed using the Harmonized Landsat and Sentinel-2 dataset. The reference FAPAR maps revealed a strong agreement with the in situ FAPAR from AmeriFlux (correlation coefficient (R) = 0.91; root mean square error (RMSE) = 0.06). The results revealed that global FAPAR products show similar uncertainties (RMSE: 0.16 ± 0.04) and moderate agreement with the reference FAPAR (R = 0.75 ± 0.10). On average, 34.47 ± 6.91% of the FAPAR data met the goal requirements of the Global Climate Observing System (GCOS), while 54.41 ± 6.89% met the threshold requirements of the GCOS. Deciduous forests perform better than evergreen forests, and the products tend to underestimate the reference data, especially for the beginning and end of growing seasons in evergreen forests. There are no obvious quality differences at different QQFs, and the relative QQI can be used to filter high-quality values. To enhance the regional applicability of global FAPAR products, further algorithm improvements and expanded validation efforts are essential. Full article
Show Figures

Figure 1

29 pages, 3400 KiB  
Article
Synthetic Data Generation for Machine Learning-Based Hazard Prediction in Area-Based Speed Control Systems
by Mariusz Rychlicki and Zbigniew Kasprzyk
Appl. Sci. 2025, 15(15), 8531; https://doi.org/10.3390/app15158531 - 31 Jul 2025
Viewed by 269
Abstract
This work focuses on the possibilities of generating synthetic data for machine learning in hazard prediction in area-based speed monitoring systems. The purpose of the research conducted was to develop a methodology for generating realistic synthetic data to support the design of a [...] Read more.
This work focuses on the possibilities of generating synthetic data for machine learning in hazard prediction in area-based speed monitoring systems. The purpose of the research conducted was to develop a methodology for generating realistic synthetic data to support the design of a continuous vehicle speed monitoring system to minimize the risk of traffic accidents caused by speeding. The SUMO traffic simulator was used to model driver behavior in the analyzed area and within a given road network. Data from OpenStreetMap and field measurements from over a dozen speed detectors were integrated. Preliminary tests were carried out to record vehicle speeds. Based on these data, several simulation scenarios were run and compared to real-world observations using average speed, the percentage of speed limit violations, root mean square error (RMSE), and percentage compliance. A new metric, the Combined Speed Accuracy Score (CSAS), has been introduced to assess the consistency of simulation results with real-world data. For this study, a basic hazard prediction model was developed using LoRaWAN sensor network data and environmental contextual variables, including time, weather, location, and accident history. The research results in a method for evaluating and selecting the simulation scenario that best represents reality and drivers’ propensities to exceed speed limits. The results and findings demonstrate that it is possible to produce synthetic data with a level of agreement exceeding 90% with real data. Thus, it was shown that it is possible to generate synthetic data for machine learning in hazard prediction for area-based speed control systems using traffic simulators. Full article
Show Figures

Figure 1

37 pages, 23165 KiB  
Article
Leveraging High-Frequency UAV–LiDAR Surveys to Monitor Earthflow Dynamics—The Baldiola Landslide Case Study
by Francesco Lelli, Marco Mulas, Vincenzo Critelli, Cecilia Fabbiani, Melissa Tondo, Marco Aleotti and Alessandro Corsini
Remote Sens. 2025, 17(15), 2657; https://doi.org/10.3390/rs17152657 - 31 Jul 2025
Viewed by 246
Abstract
UAV platforms equipped with RTK positioning and LiDAR sensors are increasingly used for landslide monitoring, offering frequent, high-resolution surveys with broad spatial coverage. In this study, we applied high-frequency UAV-based monitoring to the active Baldiola earthflow (Northern Apennines, Italy), integrating 10 UAV–LiDAR and [...] Read more.
UAV platforms equipped with RTK positioning and LiDAR sensors are increasingly used for landslide monitoring, offering frequent, high-resolution surveys with broad spatial coverage. In this study, we applied high-frequency UAV-based monitoring to the active Baldiola earthflow (Northern Apennines, Italy), integrating 10 UAV–LiDAR and photogrammetric surveys, acquired at average intervals of 14 days over a four-month period. UAV-derived orthophotos and DEMs supported displacement analysis through homologous point tracking (HPT), with robotic total station measurements serving as ground-truth data for validation. DEMs were also used for multi-temporal DEM of Difference (DoD) analysis to assess elevation changes and identify depletion and accumulation patterns. Displacement trends derived from HPT showed strong agreement with RTS data in both horizontal (R2 = 0.98) and vertical (R2 = 0.94) components, with cumulative displacements ranging from 2 m to over 40 m between April and August 2024. DoD analysis further supported the interpretation of slope processes, revealing sector-specific reactivations and material redistribution. UAV-based monitoring provided accurate displacement measurements, operational flexibility, and spatially complete datasets, supporting its use as a reliable and scalable tool for landslide analysis. The results support its potential as a stand-alone solution for both monitoring and emergency response applications. Full article
Show Figures

Figure 1

21 pages, 4657 KiB  
Article
A Semi-Automated RGB-Based Method for Wildlife Crop Damage Detection Using QGIS-Integrated UAV Workflow
by Sebastian Banaszek and Michał Szota
Sensors 2025, 25(15), 4734; https://doi.org/10.3390/s25154734 - 31 Jul 2025
Viewed by 202
Abstract
Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). [...] Read more.
Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices—Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)—based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts—DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the “moderate” and “low” vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

13 pages, 311 KiB  
Article
Diagnostic Performance of ChatGPT-4o in Analyzing Oral Mucosal Lesions: A Comparative Study with Experts
by Luigi Angelo Vaira, Jerome R. Lechien, Antonino Maniaci, Andrea De Vito, Miguel Mayo-Yáñez, Stefania Troise, Giuseppe Consorti, Carlos M. Chiesa-Estomba, Giovanni Cammaroto, Thomas Radulesco, Arianna di Stadio, Alessandro Tel, Andrea Frosolini, Guido Gabriele, Giannicola Iannella, Alberto Maria Saibene, Paolo Boscolo-Rizzo, Giovanni Maria Soro, Giovanni Salzano and Giacomo De Riu
Medicina 2025, 61(8), 1379; https://doi.org/10.3390/medicina61081379 - 30 Jul 2025
Viewed by 255
Abstract
Background and Objectives: this pilot study aimed to evaluate the diagnostic accuracy of ChatGPT-4o in analyzing oral mucosal lesions from clinical images. Materials and Methods: a total of 110 clinical images, including 100 pathological lesions and 10 healthy mucosal images, were retrieved [...] Read more.
Background and Objectives: this pilot study aimed to evaluate the diagnostic accuracy of ChatGPT-4o in analyzing oral mucosal lesions from clinical images. Materials and Methods: a total of 110 clinical images, including 100 pathological lesions and 10 healthy mucosal images, were retrieved from Google Images and analyzed by ChatGPT-4o using a standardized prompt. An expert panel of five clinicians established a reference diagnosis, categorizing lesions as benign or malignant. The AI-generated diagnoses were classified as correct or incorrect and further categorized as plausible or not plausible. The accuracy, sensitivity, specificity, and agreement with the expert panel were analyzed. The Artificial Intelligence Performance Instrument (AIPI) was used to assess the quality of AI-generated recommendations. Results: ChatGPT-4o correctly diagnosed 85% of cases. Among the 15 incorrect diagnoses, 10 were deemed plausible by the expert panel. The AI misclassified three malignant lesions as benign but did not categorize any benign lesions as malignant. Sensitivity and specificity were 91.7% and 100%, respectively. The AIPI score averaged 17.6 ± 1.73, indicating strong diagnostic reasoning. The McNemar test showed no significant differences between AI and expert diagnoses (p = 0.084). Conclusions: In this proof-of-concept pilot study, ChatGPT-4o demonstrated high diagnostic accuracy and strong descriptive capabilities in oral mucosal lesion analysis. A residual 8.3% false-negative rate for malignant lesions underscores the need for specialist oversight; however, the model shows promise as an AI-powered triage aid in settings with limited access to specialized care. Full article
(This article belongs to the Section Dentistry and Oral Health)
12 pages, 2015 KiB  
Article
Low-Order Modelling of Extinction of Hydrogen Non-Premixed Swirl Flames
by Hazem S. A. M. Awad, Savvas Gkantonas and Epaminondas Mastorakos
Aerospace 2025, 12(8), 676; https://doi.org/10.3390/aerospace12080676 - 29 Jul 2025
Viewed by 185
Abstract
Predicting the blow-off (BO) is critical for characterising the operability limits of gas turbine engines. In this study, the applicability of a low-order extinction prediction modelling, which is based on a stochastic variant of the Imperfectly Stirred Reactor (ISR) approach, to predict the [...] Read more.
Predicting the blow-off (BO) is critical for characterising the operability limits of gas turbine engines. In this study, the applicability of a low-order extinction prediction modelling, which is based on a stochastic variant of the Imperfectly Stirred Reactor (ISR) approach, to predict the lean blow-off (LBO) curve and the extinction conditions in a hydrogen Rich-Quench-Lean (RQL)-like swirl combustor is investigated. The model predicts the blow-off scalar dissipation rate (SDR), which is then extrapolated using Reynolds-Averaged Navier–Stokes (RANS) cold-flow simulations and simple scaling laws, to determine the critical blow-off conditions. It has been found that the sISR modelling framework can predict the BO flow split ratio at different global equivalence ratios, showing a reasonable agreement with the experimental data. This further validates sISR as an efficient low-order modelling flame extinction tool, which can significantly contribute to the development of robust hydrogen RQL combustors by enabling the rapid exploration of combustor operability during the preliminary design phases. Full article
(This article belongs to the Special Issue Scientific and Technological Advances in Hydrogen Combustion Aircraft)
Show Figures

Figure 1

16 pages, 285 KiB  
Article
Diagnostic Accuracy and Concordance of Standardized vs. Non-Standardized Joint Physical Examination for Assessing Disease Activity in Rheumatoid Arthritis: A Paired Comparison Using Ultrasound as Reference Standard
by Yimy F. Medina and Martin A. Rondón
J. Clin. Med. 2025, 14(15), 5334; https://doi.org/10.3390/jcm14155334 - 29 Jul 2025
Viewed by 384
Abstract
Objective: Physical joint examination is fundamental in rheumatoid arthritis (RA) assessment. This study evaluated the diagnostic accuracy and agreement between standardized and non-standardized physical joint examinations in RA patients using musculoskeletal ultrasound as the reference standard. Methods: We assessed the joints for tenderness [...] Read more.
Objective: Physical joint examination is fundamental in rheumatoid arthritis (RA) assessment. This study evaluated the diagnostic accuracy and agreement between standardized and non-standardized physical joint examinations in RA patients using musculoskeletal ultrasound as the reference standard. Methods: We assessed the joints for tenderness and swelling, calculating sensitivity, specificity, and predictive values. Musculoskeletal ultrasound was used as the reference standard, with adjustment for imperfect reference bias. Agreement between the methods was evaluated using the average kappa coefficient. Results: A total of 1496 joints were evaluated. Without adjustment for imperfect reference bias, standardized examination showed higher sensitivity for detecting pain and swelling than non-standardized examination. Specificity was similar for pain but higher for swelling in standardized examination. After bias adjustment, standardized examination sensitivity improved for pain (93.8% vs. 77.3%; 95% CI: 0.14–0.19) and swelling (91.9% vs. 60.0%; 95% CI: 0.29–0.34). Tenderness specificity remained comparable (standardized examination: 75.4%, non-standardized examination: 76.3%), while the non-standardized examination maintained superior swelling specificity (85.7% vs. 77.1%). Standardized joint examination demonstrated significantly higher concordance than non-standardized assessment in evaluating joint tenderness; standardized assessment yielded significantly greater average kappa coefficients under both false-positive-prioritized (0.44 vs. 0.37; p = 0.01) and false-negative-prioritized scenarios (0.59 vs. 0.45; p < 0.0001). For joint swelling, standardized evaluation showed significantly higher concordance when false negatives were considered more critical (0.59 vs. 0.37; p < 0.0001), whereas differences under false-positive prioritization were not statistically significant. Conclusions: Standardization of the physical joint examination significantly improves diagnostic accuracy and agreement in detecting joint tenderness and swelling in patients with rheumatoid arthritis. Implementing a standardized physical examination protocol may enhance disease activity diagnosis and optimize clinical management of RA. Full article
(This article belongs to the Section Immunology)
22 pages, 786 KiB  
Article
Diet to Data: Validation of a Bias-Mitigating Nutritional Screener Using Assembly Theory
by O’Connell C. Penrose, Phillip J. Gross, Hardeep Singh, Ania Izabela Rynarzewska, Crystal Ayazo and Louise Jones
Nutrients 2025, 17(15), 2459; https://doi.org/10.3390/nu17152459 - 28 Jul 2025
Viewed by 219
Abstract
Background/Objectives: Traditional dietary screeners face significant limitations: they rely on subjective self-reporting, average intake estimates, and are influenced by a participant’s awareness of being observed—each of which can distort results. These factors reduce both accuracy and reproducibility. The Guide Against Age-Related Disease (GARD) [...] Read more.
Background/Objectives: Traditional dietary screeners face significant limitations: they rely on subjective self-reporting, average intake estimates, and are influenced by a participant’s awareness of being observed—each of which can distort results. These factors reduce both accuracy and reproducibility. The Guide Against Age-Related Disease (GARD) addresses these issues by applying Assembly Theory to objectively quantify food and food behavior (FFB) complexity. This study aims to validate the GARD as a structured, bias-resistant tool for dietary assessment in clinical and research settings. Methods: The GARD survey was administered in an internal medicine clinic within a suburban hospital system in the southeastern U.S. The tool assessed six daily eating windows, scoring high-complexity FFBs (e.g., fresh plants, social eating, fasting) as +1 and low-complexity FFBs (e.g., ultra-processed foods, refined ingredients, distracted eating) as –1. To minimize bias, patients were unaware of scoring criteria and reported only what they ate the previous day, avoiding broad averages. A computer algorithm then scored responses based on complexity, independent of dietary guidelines. Internal (face, convergent, and discriminant) validity was assessed using Spearman rho correlations. Results: Face validation showed high inter-rater agreement using predefined Assembly Index (Ai) and Copy Number (Ni) thresholds. Positive correlations were found between high-complexity diets and behaviors (rho = 0.533–0.565, p < 0.001), while opposing constructs showed moderate negative correlations (rho = –0.363 to −0.425, p < 0.05). GARD scores aligned with established diet patterns: Mediterranean diets averaged +22; Standard American Diet averaged −10. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
Show Figures

Figure 1

19 pages, 4126 KiB  
Article
Flexural Performance of Steel–GFRP Strips–UHPC Composite Beam in Negative Moment Region
by Lei Cao, Deng Zhang, Dan Zeng, Jin Zhang, Youjie Zhang, Zhe Zhang and Rong Zhan
Buildings 2025, 15(15), 2652; https://doi.org/10.3390/buildings15152652 - 27 Jul 2025
Viewed by 419
Abstract
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC [...] Read more.
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC composite beams in the hogging moment region is determined through a three-point loading test method. Their failure modes and mechanisms, crack propagation and distribution characteristics are analyzed considering the influence of the reinforcement ratio. The variation of the law of mid-span displacement, maximum crack width, strains and interface slip with load are discussed. Calculation methods for the cracking load and ultimate bearing capacity of steel–GFRP strips–UHPC composite beams are proposed. The results show that with the increase of the reinforcement ratio, the cracking load and ultimate bending capacity are improved by 11.1% and 6.0%, respectively. However, the development of cracks is inhibited, as the crack width, average crack spacing and strain of the reinforcement bars are reduced as the reinforcement ratio increases. The maximum crack width changes linearly with the load as it is less than 0.2 mm. The theoretical cracking load and ultimate bearing capacity of the composite beams considering the tensile contribution of UHPC achieve good agreement with the experimental values. Full article
Show Figures

Figure 1

18 pages, 2878 KiB  
Article
Flow Field Reconstruction and Prediction of Powder Fuel Transport Based on Scattering Images and Deep Learning
by Hongyuan Du, Zhen Cao, Yingjie Song, Jiangbo Peng, Chaobo Yang and Xin Yu
Sensors 2025, 25(15), 4613; https://doi.org/10.3390/s25154613 - 25 Jul 2025
Viewed by 157
Abstract
This paper presents the flow field reconstruction and prediction of powder fuel transport systems based on representative feature extraction from scattering images using deep learning techniques. A laboratory-built powder fuel supply system was used to conduct scattering spectroscopy experiments on boron-based fuel under [...] Read more.
This paper presents the flow field reconstruction and prediction of powder fuel transport systems based on representative feature extraction from scattering images using deep learning techniques. A laboratory-built powder fuel supply system was used to conduct scattering spectroscopy experiments on boron-based fuel under various flow rate conditions. Based on the acquired scattering images, a prediction and reconstruction method was developed using a deep network framework composed of a Stacked Autoencoder (SAE), a Backpropagation Neural Network (BP), and a Long Short-Term Memory (LSTM) model. The proposed framework enables accurate classification and prediction of the dynamic evolution of flow structures based on learned representations from scattering images. Experimental results show that the feature vectors extracted by the SAE form clearly separable clusters in the latent space, leading to high classification accuracy under varying flow conditions. In the prediction task, the feature vectors predicted by the LSTM exhibit strong agreement with ground truth, with average mean square error, mean absolute error, and r-square values of 0.0027, 0.0398, and 0.9897, respectively. Furthermore, the reconstructed images offer a visual representation of the changing flow field, validating the model’s effectiveness in structure-level recovery. These results suggest that the proposed method provides reliable support for future real-time prediction of powder fuel mass flow rates based on optical sensing and imaging techniques. Full article
(This article belongs to the Special Issue Important Achievements in Optical Measurements in China 2024–2025)
Show Figures

Figure 1

Back to TopTop