Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (193)

Search Parameters:
Keywords = available phosphorus requirement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 33384 KiB  
Article
Spatial Analysis of Soil Acidity and Available Phosphorus in Coffee-Growing Areas of Pichanaqui: Implications for Liming and Site-Specific Fertilization
by Kenyi Quispe, Nilton Hermoza, Sharon Mejia, Lorena Estefani Romero-Chavez, Elvis Ottos, Andrés Arce and Richard Solórzano Acosta
Agriculture 2025, 15(15), 1632; https://doi.org/10.3390/agriculture15151632 - 28 Jul 2025
Viewed by 291
Abstract
Soil acidity is one of the main limiting factors for coffee production in Peruvian rainforests. The objective of this study is to predict the spatial acidity variability for recommending site-specific liming and phosphorus fertilization treatments. We analyzed thirty-six edaphoclimatic variables, eight methods for [...] Read more.
Soil acidity is one of the main limiting factors for coffee production in Peruvian rainforests. The objective of this study is to predict the spatial acidity variability for recommending site-specific liming and phosphorus fertilization treatments. We analyzed thirty-six edaphoclimatic variables, eight methods for estimating liming doses, and three geospatial variables from 552 soil samples in the Pichanaqui district of Peru. Multivariate statistics, nonparametric comparison, and geostatistical analysis with Ordinary Kriging interpolation were used for data analysis. The results showed low coffee yields (0.70 ± 0.16 t ha−1) due to soil acidification. The interquartile ranges (IQR) were found to be 3.80–5.10 for pH, 0.21–0.87 cmol Kg−1 for Al+3, and 2.55–6.53 mg Kg−1 for available P, which are limiting soil conditions for coffee plantations. Moreover, pH, Al+3, Ca+2, and organic matter (OM) were the variables with the highest accuracy and quality in the spatial prediction of soil acidity (R2 between 0.77 and 0.85). The estimation method of liming requirements, MPM (integration of pH and organic material method), obtained the highest correlation with soil acidity-modulating variables and had a high spatial predictability (R2 = 0.79), estimating doses between 1.50 and 3.01 t ha−1 in soils with organic matter (OM) > 4.00%. The MAC (potential acidity method) method (R2 = 0.59) estimated liming doses between 0.51 and 0.88 t ha−1 in soils with OM < 4.00% and potential acidity greater than 0.71 cmol Kg−1. Regarding phosphorus fertilization (DAP), the results showed high requirements (median = 137.21 kg ha−1, IQR = 8.28 kg ha−1), with high spatial predictability (R2 = 0.74). However, coffee plantations on Ferralsols, with Paleogene parental material, mainly in dry forests, had the lowest predicted fertilization requirements (between 6.92 and 77.55 kg ha−1 of DAP). This research shows a moderate spatial variation of acidity, the need to optimize phosphorus fertilization, and an optimal prediction of liming requirements using the MPM and MAC methods, which indicate high requirements in the southwest of the Pichanaqui district. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

24 pages, 1391 KiB  
Article
Nitrogen Fertilization and Glomus Mycorrhizal Inoculation Enhance Growth and Secondary Metabolite Accumulation in Hyssop (Hyssopus officinalis L.)
by Saeid Hazrati, Marzieh Mohammadi, Saeed Mollaei, Mostafa Ebadi, Giuseppe Pignata and Silvana Nicola
Nitrogen 2025, 6(3), 60; https://doi.org/10.3390/nitrogen6030060 - 26 Jul 2025
Viewed by 274
Abstract
Nitrogen (N) availability often limits primary productivity in terrestrial ecosystems, and arbuscular mycorrhizal fungi (AMF) can enhance plant N acquisition. This study investigated the interactive effects of N fertilization and AMF inoculation on N uptake, plant performance and phenolic acid content in Hyssopus [...] Read more.
Nitrogen (N) availability often limits primary productivity in terrestrial ecosystems, and arbuscular mycorrhizal fungi (AMF) can enhance plant N acquisition. This study investigated the interactive effects of N fertilization and AMF inoculation on N uptake, plant performance and phenolic acid content in Hyssopus officinalis L., with the aim of promoting sustainable N management in H. officinalis cultivation. A factorial randomized complete block design was employed to evaluate four AMF inoculation strategies (no inoculation, root inoculation, soil inoculation and combined root–soil inoculation) across three N application rates (0, 0.5 and 1,1 g N pot−1 (7 L)) in a controlled greenhouse environment. Combined root and soil AMF inoculation alongside moderate N fertilization (0.5 mg N pot−1) optimized N use efficiency, maximizing plant biomass and bioactive compound production. Compared to non-inoculated controls, this treatment combination increased N uptake by 30%, phosphorus uptake by 24% and potassium uptake by 22%. AMF colonization increased chlorophyll content and total phenolic compounds under moderate N supply. However, excessive N application (1 g N pot−1) reduced AMF effectiveness and secondary metabolite accumulation. Notably, AMF inoculation without N fertilization yielded the highest levels of anthocyanin and salicylic acid, indicating differential N-dependent regulation of specific biosynthetic pathways. The interaction between AMF and N demonstrated that moderate N fertilization (0.5 g N pot−1) combined with dual inoculation strategies can reduce total N input requirements by 50%, while maintaining optimal plant performance. These findings provide practical insights for developing N-efficient cultivation protocols in medicinal plant production systems, contributing to sustainable agricultural practices that minimize environmental N losses. Full article
Show Figures

Figure 1

35 pages, 1745 KiB  
Article
Balanced Fertilization of Winter Wheat with Potassium and Magnesium—An Effective Way to Manage Fertilizer Nitrogen Sustainably
by Agnieszka Andrzejewska, Katarzyna Przygocka-Cyna and Witold Grzebisz
Sustainability 2025, 17(15), 6705; https://doi.org/10.3390/su17156705 - 23 Jul 2025
Viewed by 394
Abstract
In agricultural practice, in addition to determining the nitrogen (Nf) dose, it is necessary to effectively control its effect on currently grown crops. Meeting these conditions requires not only the use of phosphorus (P) and potassium (K), but also nutrients such [...] Read more.
In agricultural practice, in addition to determining the nitrogen (Nf) dose, it is necessary to effectively control its effect on currently grown crops. Meeting these conditions requires not only the use of phosphorus (P) and potassium (K), but also nutrients such as magnesium (Mg) and sulfur (S). This hypothesis was verified in a single-factor field experiment with winter wheat (WW) carried out in the 2015/2016, 2016/2017, and 2017/2018 growing seasons. The experiment consisted of seven variants: absolute control (AC), NP, NPK-MOP (K as Muriate of Potash), NPK-MOP+Ki (Kieserite), NPK-KK (K as Korn–Kali), NPK-KK+Ki, and NPK-KK+Ki+ES (Epsom Salt). The use of K as MOP increased grain yield (GY) by 6.3% compared to NP. In the NPK-KK variant, GY was 13% (+0.84 t ha−1) higher compared to NP. Moreover, GYs in this fertilization variant (FV) were stable over the years (coefficient of variation, CV = 9.4%). In NPK-KK+Ki+ES, the yield increase was the highest and mounted to 17.2% compared to NP, but the variability over the years was also the highest (CV ≈ 20%). The amount of N in grain N (GN) increased progressively from 4% for NPK-MOP to 15% for NPK-KK and 25% for NPK-KK+Ki+ES in comparison to NP. The nitrogen harvest index was highly stable, achieving 72.6 ± 3.1%. All analyzed NUE indices showed a significant response to FVs. The PFP-Nf (partial factor productivity of Nf) indices increased on NPK-MOP by 5.8%, NPK-KK by 12.9%, and NPK-KK+Ki+ES by 17.9% compared to NP. The corresponding Nf recovery of Nf in wheat grain was 47.2%, 55.9%, and 64.4%, but its total recovery by wheat (grain + straw) was 67%, 74.5%, and 87.2%, respectively. In terms of the theoretical and practical value of the tested indexes, two indices, namely, NUP (nitrogen unit productivity) and NUA (nitrogen unit accumulation), proved to be the most useful. From the farmer’s production strategy, FV with K applied in the form of Korn–Kali proved to be the most stable option due to high and stable yield, regardless of weather conditions. The increase in the number of nutritional factors optimizing the action of nitrogen in winter wheat caused the phenomenon known as the “scissors effect”. This phenomenon manifested itself in a progressive increase in nitrogen unit productivity (NUP) combined with a regressive trend in unit nitrogen accumulation (NUA) in the grain versus the balance of soil available Mg (Mgb). The studies clearly showed that obtaining grain that met the milling requirements was recorded only for NUA above 22 kg N t−1 grain. This was possible only with the most intensive Mg treatment (NPK-KK+Ki and NPK-KK+Ki+ES). The study clearly showed that three of the six FVs fully met the three basic conditions for sustainable crop production: (i) stabilization and even an increase in grain yield; (ii) a decrease in the mass of inorganic N in the soil at harvest, potentially susceptible to leaching; and (iii) stabilization of the soil fertility of P, K, and Mg. Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

15 pages, 2224 KiB  
Article
Estimation of Available Phosphorus Under Phosphorus Fertilization in Paddy Fields of a Cold Region Using Several Extraction Methods: A Case Study from Yamagata, Japan
by Shuhei Tsumuraya, Hisashi Nasukawa and Ryosuke Tajima
Agriculture 2025, 15(13), 1453; https://doi.org/10.3390/agriculture15131453 - 5 Jul 2025
Viewed by 292
Abstract
Assessing available phosphorus (P) in paddy fields is challenging due to waterlogging-induced reducing conditions. This study tested the applicability of the Truog, Bray 2, and Mehlich 3 extraction methods in both air-dried and incubated soils, as well as the ascorbic-acid-reduced Bray 2 (AR [...] Read more.
Assessing available phosphorus (P) in paddy fields is challenging due to waterlogging-induced reducing conditions. This study tested the applicability of the Truog, Bray 2, and Mehlich 3 extraction methods in both air-dried and incubated soils, as well as the ascorbic-acid-reduced Bray 2 (AR Bray 2), which simulates reducing conditions, for evaluating rice growth under P fertilization. In addition, to investigate the chemical characteristics of the extraction methods, active Al and Fe and P sequential extractions were measured. Soil samples from four representative regions in Yamagata Prefecture were used. Pot cultivation tests using ‘Haenuki’ and ‘Tsuyahime’ cultivars were conducted with varying P fertilizer levels. Variations in P availability across soil types were influenced by levels of active Al and Fe. Sequential extractions identified NaHCO3-P and NaOH-P fractions as important for P availability. Bray 2 in both soils and AR Bray 2 were the most effective methods, showing a strong saturating exponential correlation with rice growth and P uptake, whereas Mehlich 3 and Truog showed weaker correlations. Bray 2 and AR Bray 2 show potential but require further evaluation for practical application due to the small number of soils. Future efforts should prioritize developing methods that account for P dynamics under reducing conditions, thereby improving P management strategies and supporting sustainable rice production. Full article
(This article belongs to the Special Issue Innovative Conservation Cropping Systems and Practices—2nd Edition)
Show Figures

Figure 1

14 pages, 1278 KiB  
Article
High Ratio of Manure Substitution Enhanced Soil Organic Carbon Storage via Increasing Particulate Organic Carbon and Nutrient Availability
by Xiaoyu Hao, Xingzhu Ma, Lei Sun, Shuangquan Liu, Jinghong Ji, Baoku Zhou, Yue Zhao, Yu Zheng, Enjun Kuang, Yitian Liu and Shicheng Zhao
Plants 2025, 14(13), 2045; https://doi.org/10.3390/plants14132045 - 3 Jul 2025
Viewed by 412
Abstract
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios [...] Read more.
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios of manure substitution in northeast China, with treatments including chemical fertilizer application alone (nitrogen, phosphorus, and potassium, NPK) and replacing 1/4 (1/4M), 2/4 (2/4M), 3/4 (3/4M), and 4/4 (4/4M) of chemical fertilizer N with manure N. Soil nutrients, enzymatic activity, and SOC fractions were analyzed to evaluate the effect of different manure substitution ratios on SOC storage. A high ratio of manure substitution (>1/4) significantly increased soil total N, total P, total K, and available nutrients (NO3-N, available P, and available K), and the 4/4M greatly decreased the C/N ratio compared to the NPK. Manure incorporation increased microbial biomass carbon (MBC) by 18.3–53.0%. Treatments with 50%, 75%, and 100% manure substitution (2/4M, 3/4M, and 4/4M) enhanced bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and total microbial necromass carbon (MNC) by 31.9–63.5%, 25.5–107.1%, and 27.4–94.2%, respectively, compared to the NPK treatment. Notably, the increase in FNC was greater than that of BNC as the manure substitution ratio increased. The increasing manure substitution significantly enhanced particulate organic C (POC) and total SOC but did not affect mineral-associated organic C (MAOC). High soil N and P supplies decreased leucine aminopeptidases (LAPs) and alkaline phosphatase activities but increased the activity ratio of β-glucosidase (BG)/(N-acetyl-glucosaminidase (NAG) + LAP). Treatments with 25% manure substitution (1/4M) maintained maize and soybean yield, but with increasing manure rate, the maize yield decreased gradually. Overall, the high ratio of manure substitution enhanced SOC storage via increasing POC and MNC, and decreasing the decomposition potential of manure C and soil C resulting from low N- and P-requiring enzyme activities under high nutrient supplies. This study provides empirical evidence that the rational substitution of chemical fertilizers with manure is an effective measure to improve the availability of nutrients, and its effect on increasing crop yields still needs to be continuously observed, which is still a beneficial choice for enhancing black soil fertility. Full article
Show Figures

Graphical abstract

18 pages, 2026 KiB  
Article
Cooperative Interplay Between PGPR and Trichoderma longibrachiatum Reprograms the Rhizosphere Microecology for Improved Saline Alkaline Stress Resilience in Rice Seedlings
by Junjie Song, Xueting Guan, Lili Chen, Zhouqing Han, Haojun Cui and Shurong Ma
Microorganisms 2025, 13(7), 1562; https://doi.org/10.3390/microorganisms13071562 - 2 Jul 2025
Viewed by 403
Abstract
Soil salinization has become a major obstacle to global agricultural sustainability. While microbial inoculants show promise for remediation, the functional coordination between Trichoderma and PGPR in saline alkali rhizospheres requires systematic investigation. Pot studies demonstrated that while individual inoculations of Trichoderma longibrachiatum (M) [...] Read more.
Soil salinization has become a major obstacle to global agricultural sustainability. While microbial inoculants show promise for remediation, the functional coordination between Trichoderma and PGPR in saline alkali rhizospheres requires systematic investigation. Pot studies demonstrated that while individual inoculations of Trichoderma longibrachiatum (M) or Bacillus aryabhattai (A2) moderately improved rice growth and soil properties, their co-inoculation (A2 + M) synergistically enhanced stress tolerance and nutrient availability—increasing available nitrogen (AN +28.02%), phosphorus (AP +11.55%), and potassium (AK +8.26%) more than either strain alone, while more effectively mitigating salinity (EC −5.54%) and alkalinity (pH −0.13 units). High-throughput sequencing further revealed that the A2 + M treatment reshaped the rhizosphere microbiome, uniquely enriching beneficial taxa (e.g., Actinomycetota [+9.68%], Ascomycota [+50.58%], Chytridiomycota [+152.43%]), and plant-growth-promoting genera (e.g., Sphingomonas, Trichoderma), while drastically reducing saline-alkali-adapted Basidiomycota (−87.96%). Further analysis identified soil organic matter (SOM), AN, and AP as key drivers for the enrichment of Chytridiomycota and Actinomycetota, whereas pH and EC showed positive correlations with Mortierellomycota, Aphelidiomycota, unclassified_k__Fungi, and Basidiomycota. Collectively, the co-inoculation of Trichoderma and PGPR strains enhanced soil microbiome structure and mitigated saline alkali stress in rice seedlings. These findings demonstrate the potential of microbial consortia as an effective bio-strategy for saline alkali soil amelioration. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

13 pages, 903 KiB  
Article
Optimizing Phosphorus Fertilization for Enhanced Yield and Nutrient Efficiency of Wheat (Triticum aestivum L.) on Saline–Alkali Soils in the Yellow River Delta, China
by Changjian Ma, Peng Song, Chang Liu, Lining Liu, Xuejun Wang, Zeqiang Sun, Yang Xiao, Xinhao Gao and Yan Li
Land 2025, 14(6), 1241; https://doi.org/10.3390/land14061241 - 9 Jun 2025
Viewed by 367
Abstract
As the global food crisis worsens, enhancing crop yields on saline–alkali soils has become a critical measure for ensuring global food security. Wheat (Triticum aestivum L.), one of the world’s most important staple crops, is particularly sensitive to phosphorus availability, making appropriate [...] Read more.
As the global food crisis worsens, enhancing crop yields on saline–alkali soils has become a critical measure for ensuring global food security. Wheat (Triticum aestivum L.), one of the world’s most important staple crops, is particularly sensitive to phosphorus availability, making appropriate phosphorus fertilization a key and manageable strategy to optimize yield. Although many studies have explored phosphorus fertilization strategies, most have focused on non-saline soils or generalized conditions, leaving a critical gap in understanding how phosphorus application affects wheat yield, soil nutrient dynamics, and nutrient uptake efficiency under saline–alkali stress. Therefore, further investigation is required to establish phosphorus management practices specifically adapted to saline–alkali environments for sustainable wheat production. To address this gap, the experiment was designed with varying phosphorus fertilizer application rates based on P2O5 content (0, 60 kg/hm2, 120 kg/hm2, 180 kg/hm2, and 240 kg/hm2), considering only the externally applied phosphorus without accounting for the inherent phosphorus content of the soil. The results indicated that as the phosphorus application rate increased, the wheat yield first increased and then decreased. The highest yield (6355 kg·hm−2) was achieved when the phosphorus application rate reached 120 kg/hm2, with an increase of 47.2–63.5% compared to the control (no fertilizer). Similarly, biomass, thousand-grain weight, and the absorption of nitrogen, phosphorus, and potassium in both straw and grains exhibited the same increasing-then-decreasing trend. Mechanistic analysis revealed that phosphorus fertilization enhanced soil alkali–hydrolyzable nitrogen, available phosphorus, and available potassium, thereby promoting nutrient uptake and ultimately improving grain yield. The innovations of this study lie in its focus on phosphorus management specifically under saline–alkali soil conditions, its integration of soil nutrient changes and plant physiological responses, and its identification of the optimal phosphorus application threshold for balancing yield improvement and nutrient efficiency. These findings provide a scientific basis for refining phosphorus fertilization strategies to sustainably boost wheat productivity in saline–alkali environments. Full article
Show Figures

Figure 1

20 pages, 7197 KiB  
Article
Soil Phosphorus Content, Organic Matter, and Elevation Are Key Determinants of Maize Harvest Index in Arid Regions
by Zhen Huo, Hengbati Wutanbieke, Jian Chen, Dongdong Zhong, Yongyu Chen, Zhanli Song, Xinhua Lv and Hegan Dong
Agriculture 2025, 15(11), 1207; https://doi.org/10.3390/agriculture15111207 - 31 May 2025
Viewed by 453
Abstract
This study systematically investigates the mechanistic effects of multifactor interactions (including soil properties, climatic conditions, and cultivation practices) on the productivity parameters (grain yield, stover yield, dry biomass, harvest index) of maize cultivars of different maturity groups in the arid region of Xinjiang, [...] Read more.
This study systematically investigates the mechanistic effects of multifactor interactions (including soil properties, climatic conditions, and cultivation practices) on the productivity parameters (grain yield, stover yield, dry biomass, harvest index) of maize cultivars of different maturity groups in the arid region of Xinjiang, China. Twelve representative maize-growing counties were selected as study sites, where we collected maize samples to measure HI, grain yield, stover yield, and soil physicochemical properties (e.g., organic matter content, total nitrogen, and available phosphorus). Additionally, climate data (effective accumulated temperature) and agronomic parameters (planting density) were integrated to comprehensively analyze the interactive effects of multiple environmental factors on HI using structural equation modeling (SEM). The results demonstrated significant varietal differences in HI across maturity periods. Specifically, early-maturing cultivars showed the highest average HI (0.58), significantly exceeding those of medium-maturing (0.55) and late-maturing varieties (0.54). Environmental analysis further revealed that soil phosphorus content (both available and total phosphorus), elevation, and organic matter content significantly positively affected HI, whereas soil bulk density and electrical conductivity exhibited negative impacts. Notably, HI exhibited a strong negative correlation with stover yield (R2 = 0.49), but remained relatively stable across different dry matter (DM) and grain yield levels. Despite the strong positive correlation between DM and grain yield (R2 = 0.81), the relative stability of HI suggests that yield improvement requires balanced optimization of both DM and partitioning efficiency. This study provides crucial theoretical foundations for optimizing high-yield maize cultivation systems, regulating fertilizer application rates and their ratios, and improving the configuration of planting density in arid regions. These findings offer practical guidance for sustainable agricultural development in similar environments. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

48 pages, 7578 KiB  
Article
Research on the Precise Regulation of Korla Fragrant Pear Quality Based on Sensitivity Analysis and Artificial Neural Network Model
by Mingyang Yu, Yang Li, Lanfei Wang, Weifan Fan, Zengheng Wang, Hao Wang, Kailu Guo, Liang Fu and Jianping Bao
Agronomy 2025, 15(5), 1236; https://doi.org/10.3390/agronomy15051236 - 19 May 2025
Viewed by 538
Abstract
This study investigated the soil–leaf–fruit relationship in Korla fragrant pears (Pyrus sinkiangensis Yu) to establish a scientific cultivation framework by analyzing soil nutrients (alkali-hydrolyzable nitrogen, available phosphorus, available potassium, and pH at 0–60 cm depth) across key phenological stages (fruit setting, expansion, [...] Read more.
This study investigated the soil–leaf–fruit relationship in Korla fragrant pears (Pyrus sinkiangensis Yu) to establish a scientific cultivation framework by analyzing soil nutrients (alkali-hydrolyzable nitrogen, available phosphorus, available potassium, and pH at 0–60 cm depth) across key phenological stages (fruit setting, expansion, and maturation), combined with leaf and fruit quality indicators. Artificial neural network modeling demonstrated strong predictive capability (R2 > 0.85), while sensitivity analysis quantified the relative contributions of different factors, revealing that titratable acidity was optimized when available potassium (30–47 mg/kg) in 40–60 cm soil during fruit setting coincided with pH 7.4–7.8 in 20–40 cm, or when pH 7.3–7.7 in 40–60 cm at fruit setting interacted with alkali-hydrolyzable nitrogen (33.0–53.2 mg/kg) in 40–60 cm during maturation. Fruit shape index improvement required available potassium (40–60 mg/kg) in 40–60 cm at maturation combined with leaf total nitrogen (2.0–6.5 mg/kg) at fruit setting, or specific maturation-stage alkali-hydrolyzable nitrogen levels paired with fruit setting SPAD (Soil and Plant Analysis Development) values (30–41). Furthermore, synergistic effects between expansion stage available phosphorus in 40–60 cm soil and leaf SPAD (Soil and Plant Analysis Development) values simultaneously enhanced the soluble solids content while reducing peel thickness. These findings provide precise nutrient management thresholds for quality optimization, offering practical guidance for orchard management to enhance Korla fragrant pears quality through targeted agricultural practices. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

22 pages, 654 KiB  
Article
Healthy Food Basket: Sustainable and Culturally Adaptive Nutrition for Moldova
by Rodica Siminiuc, Dinu Țurcanu and Sergiu Siminiuc
Sustainability 2025, 17(10), 4294; https://doi.org/10.3390/su17104294 - 9 May 2025
Viewed by 575
Abstract
In a global context marked by food insecurity and the increasing prevalence of non-communicable diseases, this study proposes a healthy food basket (HFB) model tailored to the demographic, cultural, and economic specificities of the Republic of Moldova which is aligned with international standards. [...] Read more.
In a global context marked by food insecurity and the increasing prevalence of non-communicable diseases, this study proposes a healthy food basket (HFB) model tailored to the demographic, cultural, and economic specificities of the Republic of Moldova which is aligned with international standards. The research employed a comprehensive methodology, including estimations of daily energy requirements using revised Harris–Benedict equations, food selection based on nutritional value, economic availability, and cultural relevance, and nutritional validation through the mean adequacy ratio (MAR), which was derived from nutrient adequacy ratios (NARs) and dietary reference values (DRVs) established by the EFSA. Nutrient intake calculations were based on food composition data and not population-level dietary surveys. Fat-soluble vitamins were excluded due to insufficient available data. The results indicate adequate intake levels of vitamins (B1, B2, B3, and C) and minerals (iron, magnesium, phosphorus, and potassium) while highlighting deficiencies in calcium and sodium that require dietary adjustments. The inclusion of traditional foods, such as kefir and salted or raw pork fat, underscores the model’s cultural acceptability and economic relevance, strengthening the integration of global nutritional principles with regional dietary habits. This study’s limitations, including the use of secondary data and the lack of empirical validation, highlight the need for longitudinal studies. The HFB model offers a replicable solution for other regions facing similar challenges, contributing to global efforts to reduce malnutrition and promote sustainable diets. Full article
Show Figures

Figure 1

19 pages, 3115 KiB  
Article
A Comparative Study on Two Innovative Solutions for Non-Invasive Phosphorus Removal from Aquatic Ecosystems
by Agnieszka Bańkowska-Sobczak, Dorota Pryputniewicz-Flis, Dorota Burska, Jakub Idźkowski, Łukasz Kozłowicz, Wiktoria Leśniewska and Grzegorz Brenk
Appl. Sci. 2025, 15(10), 5262; https://doi.org/10.3390/app15105262 - 8 May 2025
Viewed by 433
Abstract
Phosphorus (P) excess in the aquatic environment is a source of eutrophication leading to the deterioration of water quality and biodiversity loss. Methods of in situ controlling P in lakes and reservoirs mostly require the addition of chemical substances to a water body [...] Read more.
Phosphorus (P) excess in the aquatic environment is a source of eutrophication leading to the deterioration of water quality and biodiversity loss. Methods of in situ controlling P in lakes and reservoirs mostly require the addition of chemical substances to a water body without the possibility of controlling their future interactions with the environment. This study compared the performance of two solutions, laminates and modules, developed for non-invasive P removal from aquatic ecosystems with the use of calcite mineral as a P-reactive material. Both techniques enable reductions in the orthophosphate (OP) availability in lake water, and its removal from the ecosystem, without the permanent deposition of the P binding agent in the environment. In a laboratory mesocosm experiment, both, laminates and modules, lowered the OP concentration in lake water for at least 6 weeks compared to no treatment; the efficiency of modules was, however, much higher. They effectively eliminated the OP initially available in the system and further captured the OP newly supplied by the decomposition processes, showing continuous OP uptake, while laminates appeared to exhaust their capacity after about 1 week. This was mostly because of technical design—the calcite dose per m2 of the surface area was 168 times higher in modules compared to laminates. Treatment using both techniques caused a slight pH decrease compared to no treatment with a minor change of up to 0.2 point. Modules have the most potential for the implementation in practice as they are able to decrease the OP concentration for relatively long time periods of weeks to months without the need to be exchanged. They offer a refillable and reusable system for P control, removal, and recovery. Field tests should be performed to verify the performance of modules and laminates under in-lake conditions and complex interactions with the aquatic organisms to check for possible limitations and/or synergies between the non-invasive P removal techniques and native processes. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends)
Show Figures

Figure 1

28 pages, 1022 KiB  
Review
Hyperphosphatemia in Kidney Failure: Pathophysiology, Challenges, and Critical Role of Phosphorus Management
by Swetha Raju and Ramesh Saxena
Nutrients 2025, 17(9), 1587; https://doi.org/10.3390/nu17091587 - 5 May 2025
Viewed by 1979
Abstract
Phosphorus is one of the most abundant minerals in the body and plays a critical role in numerous cellular and metabolic processes. Most of the phosphate is deposited in bones, 14% is present in soft tissues as various organic phosphates, and only 1% [...] Read more.
Phosphorus is one of the most abundant minerals in the body and plays a critical role in numerous cellular and metabolic processes. Most of the phosphate is deposited in bones, 14% is present in soft tissues as various organic phosphates, and only 1% is found in extracellular space, mainly as inorganic phosphate. The plasma inorganic phosphate concentration is closely maintained between 2.5 and 4.5 mg/dL by intertwined interactions between fibroblast growth factor 23 (FGF-23), parathyroid hormone (PTH), and vitamin D, which tightly regulate the phosphate trafficking across the gastrointestinal tract, kidneys, and bones. Disruption of the strict hemostatic control of phosphate balance can lead to altered cellular and organ functions that are associated with high morbidity and mortality. In the past three decades, there has been a steady increase in the prevalence of kidney failure (KF) among populations. Individuals with KF have unacceptably high mortality, and well over half of deaths are related to cardiovascular disease. Abnormal phosphate metabolism is one of the major factors that is independently associated with vascular calcification and cardiovascular mortality in KF. In early stages of CKD, adaptive processes involving FGF-23, PTH, and vitamin D occur in response to dietary phosphate load to maintain plasma phosphate level in the normal range. However, as the CKD progresses, these adaptive events are unable to overcome phosphate retention from continued dietary phosphate intake and overt hyperphosphatemia ensues. As these hormonal imbalances and the associated adverse consequences are driven by the underlying hyperphosphatemic state in KF, it appears logical to strictly control serum phosphate. Conventional dialysis is inadequate in removing phosphate and most patients require dietary restrictions and pharmacologic interventions to manage hyperphosphatemia. However, diet control comes with many challenges with adherence and may place patients at risk for inadequate protein intake and malnutrition. Phosphate binders help to reduce phosphate levels but come with a sizable pill burden and high financial costs and are associated with poor adherence and psychosocial issues. Additionally, long-term use of binders may increase the risk of calcium, lanthanum, or iron overload or promote gastrointestinal side effects that exacerbate malnutrition and affect quality of life. Given the aforesaid challenges with phosphorus binders, novel therapies targeting small intestinal phosphate absorption pathways have been investigated. Recently, tenapanor, an agent that blocks paracellular absorption of phosphate via inhibition of enteric sodium–hydrogen exchanger-3 (NHE3) was approved for the treatment of hyperphosphatemia in KF. While various clinical tools are now available to manage hyperphosphatemia, there is a lack of convincing clinical data to demonstrate improvement in outcomes in KF with the lowering of phosphorus level. Conceivably, deleterious effects associated with hyperphosphatemia could be attributable to disruptions in phosphorus-sensing mechanisms and hormonal imbalance thereof. Further exploration of mechanisms that precisely control phosphorus sensing and regulation may facilitate development of strategies to diminish the deleterious effects of phosphorus load and improve overall outcomes in KF. Full article
Show Figures

Figure 1

17 pages, 4389 KiB  
Article
Winery Residues Transformed into Biochar and Co-Applied with Trichoderma Increase Grape Productivity and Soil Quality
by Elisiane Martins de Lima, Argemiro Pereira Martins Filho, Diogo Paes da Costa, Jamilly Alves de Barros, Rafaela Felix da França, José Romualdo de Sousa Lima, Gustavo Pereira Duda, Mairon Moura da Silva, Ademir Sérgio Ferreira Araujo and Erika Valente de Medeiros
Sustainability 2025, 17(9), 4150; https://doi.org/10.3390/su17094150 - 4 May 2025
Cited by 2 | Viewed by 710
Abstract
The application of biochar is extensively recognized as an effective strategy to enhance soil ecosystem services. However, its combined effect with beneficial microorganisms, such as Trichoderma, still requires further investigation to understand its impact on soil microbiota and nutrient cycling processes. To [...] Read more.
The application of biochar is extensively recognized as an effective strategy to enhance soil ecosystem services. However, its combined effect with beneficial microorganisms, such as Trichoderma, still requires further investigation to understand its impact on soil microbiota and nutrient cycling processes. To address this gap, this study aimed to evaluate the effect of biochar produced from on-farm winery waste, specifically grape stalks (GSB) and grape fermentation residues (GFB), generated after wine production, when co-applied with Trichoderma aureoviride URM 5158 and Trichoderma hamatum URM 6656 in soil cultivated with Malbec grapevines. Our findings reveal that both types of biochar and Trichoderma promoted changes in soil properties. The application of GSB biochar combined with T. hamatum increased grape productivity, while GFB biochar enhanced soil enzymatic activities, particularly those expressed per unit of microbial biomass carbon. Additionally, biochar applications increased pH, phosphorus, potassium, organic carbon, and microbial biomass carbon of the soil. Soils treated with the GFB + T. hamatum treatment exhibited an increase of 569.23% in microbial biomass carbon compared to the control. The results of this study provide substantial evidence that biochar and Trichoderma can be used to improve the chemical and biological properties of vineyard soils, increasing nutrient availability, especially carbon. These effects may contribute to soil fertility by promoting a more favorable environment for microbiota development and grapevine growth. This is the first field study to investigate the impact of on-farm winery waste transformed into biochar, combined with Trichoderma isolates, on Malbec grapevines. Full article
(This article belongs to the Special Issue Soil Pollution, Soil Ecology and Sustainable Land Use)
Show Figures

Figure 1

20 pages, 14184 KiB  
Article
Effects of Rare Earth Element-Rich Biochar on Soil Quality and Microbial Community Dynamics of Citrus grandis (L.) Osbeck. cv. Guanximiyou
by Zhiqi Chen, Liujun Feng, Zhiqiang Chen, Zhibiao Chen, Jie Wu and Qiang Lin
Agriculture 2025, 15(8), 895; https://doi.org/10.3390/agriculture15080895 - 20 Apr 2025
Viewed by 547
Abstract
Rare earth elements (REEs) are key resources of strategic importance, but pollution has increased due to uncontrolled mining. Although heavy metal hyperaccumulating plants are environmentally friendly, they require strict control during post-treatment, or they may cause secondary pollution. Therefore, their safe disposal plays [...] Read more.
Rare earth elements (REEs) are key resources of strategic importance, but pollution has increased due to uncontrolled mining. Although heavy metal hyperaccumulating plants are environmentally friendly, they require strict control during post-treatment, or they may cause secondary pollution. Therefore, their safe disposal plays a key role in the ecological restoration of REE mines. In this study, rare earth element (REE)-rich biochar was produced by pyrolyzing the REE hyperaccumulator Dicranopteris pedata. This biochar was then applied to the Citrus grandis (L.) Osbeck. cv. Guanximiyou soil amendment experiment to evaluate its effects on soil physicochemical properties and microbial indicators. Four treatments were established: CK (0% REE-rich biochar), BC1 (1% REE-rich biochar), BC3 (3% REE-rich biochar), and BC5 (5% REE-rich biochar). The BC5 treatment decreased soil REE bioavailability, thereby preventing REE pollution. The BC5 treatment also demonstrated the highest efficacy in improving soil total organic carbon (229.11%), total nitrogen (53.92%), total phosphorus (55.61%), total potassium (55.50%), available nitrogen (14.76%), available phosphorus (46.79%), and available potassium (159.42%) contents compared to CK. Furthermore, soil enzyme activities were significantly increased by BC5 treatment (p < 0.05). At the bacterial phylum level of classification, the bacterial diversity index (Chao1 and Shannon) exhibited elevated levels under BC5 conditions. Furthermore, the Chao1 index of fungal diversity exhibited a substantial augmentation of 55.67% (p < 0.05) in the BC5 treatment in comparison to the CK, and also significantly higher than the other treatments (p < 0.05). Our study showed that the composition of soil microorganisms was altered by REE-rich biochar. Proteobacteria, Acidobacteria, Actinobacteriota, and Chloroflexi are dominant among bacteria, while Ascomycota is dominant among fungi. Mantel and redundancy analyses showed that the most important environmental factor affecting the structure of soil microbial communities was pH, especially in the case of bacteria. In summary, this study showed that the application of 5% REE-rich biochar provided the best improvement in soil physicochemical properties and microbial diversity. These findings highlight its potential for soil remediation and provide new ideas for recycling heavy metal hyperaccumulating plant waste. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 3006 KiB  
Article
Data-Driven and Mechanistic Soil Modeling for Precision Fertilization Management in Cotton
by Miltiadis Iatrou, Panagiotis Tziachris, Fotis Bilias, Panagiotis Kekelis, Christos Pavlakis, Aphrodite Theofilidou, Ioannis Papadopoulos, Georgios Strouthopoulos, Georgios Giannopoulos, Dimitrios Arampatzis, Evangelos Vergos, Christos Karydas, Dimitris Beslemes and Vassilis Aschonitis
Nitrogen 2025, 6(2), 29; https://doi.org/10.3390/nitrogen6020029 - 19 Apr 2025
Viewed by 884
Abstract
This study introduces a novel methodology for predicting cotton yield by integrating machine learning (ML) with mechanistic soil modeling. This hybrid approach enhances yield prediction by combining data-driven ML techniques with soil process modeling. Using the developed yield model, yield curves for various [...] Read more.
This study introduces a novel methodology for predicting cotton yield by integrating machine learning (ML) with mechanistic soil modeling. This hybrid approach enhances yield prediction by combining data-driven ML techniques with soil process modeling. Using the developed yield model, yield curves for various nitrogen (N) levels can be constructed to identify the optimal N dose that maximizes yield. Estimating cotton N requirements is crucial, as growers often apply excessive N, exceeding the amount needed for maximum yield. By comparing the Mean Absolute Error (MAE) between predicted and observed cotton yield values across three ML algorithms, i.e., Random Forest (RF), XGBoost, and LightGBM, the RF model achieved the lowest error (422.6 kg/ha), outperforming XGBoost (446 kg/ha) and LightGBM (449 kg/ha). Additionally, the RF model exhibited high sensitivity to N fertilization, ranking N as the most influential variable in feature importance analysis. Furthermore, phosphorus (P) availability in the soil model was found to be a significant factor influencing the RF yield model, highlighting P’s crucial role in cotton growth and productivity. Full article
Show Figures

Figure 1

Back to TopTop