A Comparative Study on Two Innovative Solutions for Non-Invasive Phosphorus Removal from Aquatic Ecosystems
Abstract
1. Introduction
2. Materials and Methods
2.1. Calcite Material
2.2. Carriers Tested
2.3. Experimental Design and Experimental Conditions
2.4. Measurements
3. Results
4. Discussion
4.1. Effect on Phosphorus
4.2. Other Effects
4.3. Possible Application and Management
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Falconer, I.R.; Humpage, A.R. Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. Int. J. Environ. Res. Public Health 2005, 2, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; García Molinos, J.; Heino, J.; Zhang, H.; Zhang, P.; Xu, J. Eutrophication causes invertebrate biodiversity loss and decreases cross-taxon congruence across anthropogenically-disturbed lakes. Environ. Int. 2021, 153, 106494. [Google Scholar] [CrossRef] [PubMed]
- Poikane, S.; Kelly, M.G.; Free, G.; Carvalho, L.; Hamilton David, P.H.; Katsanou, K.; Lürling, M.; Warner, S.; Spears, B.M.; Irvine, K. A global assessment of lake restoration in practice: New insights and future perspectives. Ecol. Indic. 2024, 158, 111330. [Google Scholar] [CrossRef]
- Chorus, I.; Köhler, A.; Beulker, C.; Fastner, J.; van de Weyer, K.; Hegewald, T.; Hupfer, M. Decades needed for ecosystem components to respond to a sharp and drastic phosphorus load reduction. Hydrobiologia 2020, 847, 4621–4651. [Google Scholar] [CrossRef]
- Frątczak, W.; Michalska-Hejduk, D.; Zalewski, M.; Izydorczyk, K. Effective phosphorous reduction by a riparian plant buffer zone enhanced with a limestone-based barrier. Ecol. Eng. 2019, 130, 94–100. [Google Scholar] [CrossRef]
- Bus, A.; Karczmarczyk, A.; Baryła, A. Phosphorus reactive materials for permeable reactive barrier filling—Lifespan estimations. Desalin. Water Treat. 2022, 245, 9–15. [Google Scholar] [CrossRef]
- Trojanowska, A.A.; Izydorczyk, K. Phosphorus Fractions Transformation in Sediments Before and After Cyanobacterial Bloom: Implications for Reduction of Eutrophication Symptoms in Dam Reservoir. Water Air Soil Pollut. 2010, 211, 287–298. [Google Scholar] [CrossRef]
- Zhao, S.; Hermans, M.; Niemistö, J.; Jilbert, T. Elevated internal phosphorus loading from shallow areas of eutrophic boreal lakes: Insights from porewater geochemistry. Sci. Total Environ. 2024, 907, 167950. [Google Scholar] [CrossRef]
- Alhamarna, M.Z.; Tandyrak, R. Lakes Restoration Approaches. Limnol. Rev. 2021, 21, 105–118. [Google Scholar] [CrossRef]
- Grochowska, J.; Augustyniak, R.; Łopata, M.; Parszuto, K.; Tandyrak, R.; Płachta, A. From Saprotrophic to Clear Water Status: The Restoration Path of a Degraded Urban Lake. Water Air Soil Pollut. 2019, 230, 94. [Google Scholar] [CrossRef]
- Kowalczewska-Madura, K.; Dondajewska, R.; Gołdyn, R.; Kozak, A.; Messyasz, B. Internal Phosphorus Loading from the Bottom Sediments of a Dimictic Lake During Its Sustainable Restoration. Water Air Soil Pollut. 2018, 229, 280. [Google Scholar] [CrossRef] [PubMed]
- Bishop, W.M.; Richardson, R.J. Influence of Phoslock® on legacy phosphorus, nutrient ratios, and algal assemblage composition in hypereutrophic water resources. Environ. Sci. Pollut. Res. 2018, 25, 4544–4557. [Google Scholar] [CrossRef] [PubMed]
- Akther, F.; Cutright, T.J. Control of Cyanobacterial Algal Blooms and Soluble Reactive Phosphorus Using PAK-27 and Phoslock®. Water Conserv. Sci. Eng. 2024, 9, 66. [Google Scholar] [CrossRef]
- Dithmer, L.; Nielsen, U.G.; Lürling, M.; Spears, B.M.; Yasseri, S.; Lundberg, D.; Moore, A.; Jensen, N.D.; Reitzel, K. Responses in sediment phosphorus and lanthanum concentrations and composition across 10 lakes following applications of lanthanum modified bentonite. Water Res. 2016, 97, 101–110. [Google Scholar] [CrossRef]
- Welch, E.B.; Gibbons, H.L.; Brattebo, S.K.; Corson-Rikert, H.A. Distribution of aluminium and phosphorus fractions following alum treatments in a large shallow lake. Lake Reserv. Manag. 2017, 33, 198–204. [Google Scholar] [CrossRef]
- Oosterhout, F.; Waajen, G.; Yasseri, S.; Manzi Marinho, M.; Pessoa Noyma, N.; Mucci, M.; Douglas, G.; Lürling, M. Lanthanum in Water, Sediment, Macrophytes and chironomid larvae following application of Lanthanum modified bentonite to lake Rauwbraken (The Netherlands). Sci. Total Environ. 2020, 706, 135118. [Google Scholar] [CrossRef]
- Zeller, M.A.; Alperin, M.J. The efficacy of Phoslock® in reducing internal phosphate loading varies with bottom water oxygenation. Water Res. X 2021, 11, 100095. [Google Scholar] [CrossRef]
- Wauer, G.; Teien, H.-C. Risk of acute toxicity for fish during aluminium application to hardwater lakes. Sci. Total Environ. 2010, 408, 4020–4025. [Google Scholar] [CrossRef]
- Hupfer, M.; Hilt, S. Lake Restoration. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 2080–2093. [Google Scholar] [CrossRef]
- Reitzel, K.; Andersen, F.T.; Egemose, S.; Jensen, H.S. Phosphate adsorption by lanthanum modified bentonite clay in fresh and brackish water. Water Res. 2013, 47, 2787–2796. [Google Scholar] [CrossRef]
- Kang, L.; Mucci, M.; Lürling, M. Influence of temperature and pH on phosphate removal efficiency of different sorbents used in lake restoration. Sci. Total Environ. 2022, 812, 151489. [Google Scholar] [CrossRef] [PubMed]
- Huser, B.J.; Egemose, S.; Harper, H.; Hupfer, M.; Jensen, H.; Pilgrim, K.M.; Reitzel, K.; Rydin, E.; Futter, M. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality. Water Res. 2016, 97, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Van Hullebusch, E.; Deluchat, V.; Chazal, P.M.; Baudu, M. Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: Part I. Case of aluminium sulphate. Environ. Pollut. 2002, 120, 617–626. [Google Scholar] [CrossRef]
- Wiśniewski, R.; Ślusarczyk, J.; Kaliszewski, T.; Szulczewski, A.; Nowacki, P. “Proteus”, a new device for application of coagulants directly to sediment during its controlled resuspension. Verh. Int. Ver. Limnol. 2010, 30, 1421–1424. [Google Scholar] [CrossRef]
- Berkowitz, J.; Anderson, M.A.; Amrhein, C. Influence of aging on phosphorus sorption to alum floc in lake water. Water Res. 2006, 40, 911–916. [Google Scholar] [CrossRef]
- Zhan, Y.; Qiu, B.; Lin, J. Effect of common ions aging treatment on adsorption of phosphate onto and control of phosphorus release from sediment by lanthanum-modified bentonite. J. Environ. Manag. 2023, 341, 118109. [Google Scholar] [CrossRef]
- Drewek, A.; Rybak, M.; Drzewiecka, K.; Niedzielski, P.; Polak, J.; Klimaszyk, P. The impact of iron coagulant on the behavior and biochemistry of freshwater mussels Anodonta cygnea and Unio tumidus during lake restoration. J. Environ. Manag. 2022, 318, 115535. [Google Scholar] [CrossRef]
- Rybak, M.; Joniak, T. Changes in Chara hispida L. morphology in response to phosphate aluminium coagulant application. Limnol. Rev. 2018, 18, 31–37. [Google Scholar] [CrossRef]
- Rybak, M.; Drzewiecka, K.; Woźniak, M.; Öksüz, S.; Krueger, M.; Sobczyński, T.; Ratajczak, I.; Joniak, T. Iron overload consequences for submerged plants stoichiometry, homeostasis and performance. Biogeochemistry 2023, 163, 17–32. [Google Scholar] [CrossRef]
- Childers, D.L.; Corman, J.; Edwards, M.; Elser, J.J. Sustainability Challenges of Phosphorus and Food: Solutions from Closing the Human Phosphorus Cycle. BioScience 2011, 61, 117–124. [Google Scholar] [CrossRef]
- Jupp, A.R.; Beijer, S.; Narain, G.C.; Schipper, W.; Slootweg, J.C. Phosphorus recovery and recycling—Closing the loop. Chem. Soc. Rev. 2021, 5, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, V.; Castillo, R.; Magrí, A.; Holzapfel, E.; Vidal, G. Phosphorus recovery from domestic wastewater: A review of the institutional framework. J. Environ. Manag. 2024, 351, 119812. [Google Scholar] [CrossRef] [PubMed]
- Łożyńska, J.; Dunalska, J.A.; Bańkowska-Sobczak, A.; Zhang, L.; Mitsch, W.J. Treatment of Hypolimnion Water on Mineral Aggregates as the Second Step of the Hypolimnetic Withdrawal Method Used for Lake Restoration. Minerals 2021, 11, 98. [Google Scholar] [CrossRef]
- Zamparas, M.; Kyriakopoulos, G.L.; Drosos, M.; Kapsalis, V.C.; Kalavrouziotis, I.K. Novel Composite Materials for Lake Restoration: A New Approach Impacting on Ecology and Circular Economy. Sustainability 2020, 12, 3397. [Google Scholar] [CrossRef]
- Tammeorg, O.; Chorus, I.; Spears, B.; Nõges, P.; Nürnberg, G.K.; Tammeorg, P.; Søndergaard, M.; Jeppesen, E.; Paerl, H.; Huser, B.; et al. Sustainable lake restoration: From challenges to solutions. WIREs Water 2024, 11, e1689. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Bus, A. Removal of phosphorus using suspended reactive filters (SRFs)—Efficiency and potential applications. Water Sci. Technol. 2017, 76, 1104–1111. [Google Scholar] [CrossRef]
- Carleton, G.; Glowczewski, J.; Cutright, T.J. Design and Preliminary Testing of an In-Field Passive Treatment System for Removing Phosphorus from Surface Water. Appl. Sci. 2021, 11, 3743. [Google Scholar] [CrossRef]
- Pryputniewicz-Flis, D.; Bańkowska Sobczak, A.; Burska, D.; Idźkowski, J.; Kozłowicz, Ł.; Brenk, G. Non-invasive Removal of Phosphorus from Lakes Using Processed Calcite-Based Materials. In Chemical Lake Restoration; Zamparas, M.G., Kyriakopoulos, G.L., Eds.; Springer: Cham, Switzerland, 2021; pp. 145–170. [Google Scholar] [CrossRef]
- Burska, D.; Pryputniewicz-Flis, D.; Bańkowska-Sobczak, A.; Brenk, G.; Woszczyk, T. The efficiency of P-removal from natural waters with sorbents placed in water permeable nonwovens. IOP Conf. Ser. Earth Environ. Sci. 2019, 362, 012099. [Google Scholar] [CrossRef]
- Bańkowska-Sobczak, A.; Pryputniewicz Flis, D.; Burska, D.; Idźkowski, J.; Kozłowicz, Ł.; Brenk, G. Non-invasive immobilisation and removal of phosphate from lakes using submerged laminates with calcite—Preliminary results. Water Air Soil Pollut. 2022, 233, 178. [Google Scholar] [CrossRef]
- Corman, J.R. Calcium carbonate and phosphorus interactions in inland waters. Limnol. Oceanogr. Lett. 2025, 10, 158–178. [Google Scholar] [CrossRef]
- De Vicente, I.; Amores, V.; Cruz-Pizarro, L. Instability of shallow lakes: A matter of the complexity of factors involved in sediment and water interaction? The ecology of the Iberian inland waters: Homage to Ramon Margalef. Limnetica 2006, 25, 253–270. [Google Scholar] [CrossRef]
- Von Gunten, K.; Trew, D.; Smerdon, B.; Alessi, D.S. Natural controls on phosphorus concentrations in small Lakes in Central Alberta, Canada. Can. Water Resour. J. Rev. Can. Des Ressour. Hydr. 2022, 48, 1–17. [Google Scholar] [CrossRef]
- Wang, L.; Song, H.; Wu, X.; An, J.; Wu, Y.; Wang, Y.; Li, B.; Liu, Q.; Dong, B. Relationship between the coprecipitation of phosphorus-on-calcite by submerged macrophytes the phosphorus cycle in water. J. Environ. Manag. 2022, 314, 115110. [Google Scholar] [CrossRef]
- Hart, B.; Roberts, S.; James, R.; Taylor, J.; Donnert, D.; Furrer, R. Use of active barriers to reduce eutrophication problems in urban lakes. Water Sci. Technol. 2003, 47, 157–163. [Google Scholar] [CrossRef]
- Berg, U.; Nuemann, T.; Donnert, D.; Nuesch, R.; Stüben, D. Sediment capping in eutrophic lakes—Efficiency of undisturbed calcite barriers to immobilize phosphorus. Appl. Geochem. 2004, 9, 1759–1771. [Google Scholar] [CrossRef]
- Bańkowska-Sobczak, A.; Błażejczyk, A.; Popek, Z.; Eiche, E.; Fischer, U. Phosphorus inactivation in lake sediments using calcite materials and controlled resuspension—Mechanism and efficiency. Minerals 2020, 10, 223. [Google Scholar] [CrossRef]
- Trach, Y.; Melnychuk, V.; Trach, R. The removal of cationic and anionic pollutions from water solutions using Ukrainian limestones: Comparative analysis. Desalin. Water Treat. 2022, 275, 35–46. [Google Scholar] [CrossRef]
- Bus, A.; Karczmarczyk, A.; Baryła, A. Calcined eggshell as a P reactive media filter-batch tests and column sorption experiment. Water Air Soil Pollut. 2019, 230, 20. [Google Scholar] [CrossRef]
- Tsai, W.-T. Microstructural Characterization of Calcite-Based Powder Materials Prepared by Planetary Ball Milling. Materials 2013, 6, 3361–3372. [Google Scholar] [CrossRef]
- Sarker, P.; Liu, X.; Rahaman, M.S.; Maruo, M. Eggshell waste as a promising adsorbent for phosphorus recovery from wastewater: A review. Water Biol. Secur. 2025, 4, 100319. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Zhang, Y.; Huang, Y.; Ye, X.; Wang, W. Boosting the phosphate adsorption of calcite by low Mg2+-Doping. Environ. Res. 2025, 267, 120692. [Google Scholar] [CrossRef]
- Bus, A.; Budzanowska, K.; Karczmarczyk, A.; Baryła, A. Raw and Calcined Eggshells as P-Reactive Materials in a Circular Economy Approach. Sustainability 2025, 17, 1191. [Google Scholar] [CrossRef]
- Plant, L.J.; House, W.A. Precipitation of calcite in the presence of inorganic phosphate. Colloids Surf. A Physicochem. Eng. Asp. 2002, 203, 143–153. [Google Scholar] [CrossRef]
- Sø, H.U.; Postma, D.; Jakobsen, R.; Larsen, F. Sorption of phosphate onto calcite; results from batch experiments and surface complexation modelling. Geochim. Cosmochim. Acta 2011, 75, 2911–2923. [Google Scholar] [CrossRef]
- Wang, L.; Ruiz-Agudo, E.; Putnis, C.V.; Menneken, M.; Putnis, A. Kinetics of calcium phosphate nucleation and growth on calcite: Implications for predicting the fate of dissolved phosphate species in alkaline soils. Environ. Sci. Technol. 2012, 46, 834–842. [Google Scholar] [CrossRef]
- Ren, C.; Li, Y.; Zhou, Q.; Li, W. Phosphate uptake by calcite: Constraints of concentration and pH on the formation of calcium phosphate precipitates. Chem. Geol. 2021, 579, 120365. [Google Scholar] [CrossRef]
- Flower, H.; Rains, M.; Taşcı, Y.; Zhang, J.; Trout, K.; Lewis, D.; Das, A.; Dalton, R. Why is calcite a strong phosphorus sink in freshwater? Investigating the adsorption mechanism using batch experiments and surface complexation modelling. Chemosphere 2022, 286, 131596. [Google Scholar] [CrossRef]
- Trach, Y.; Trach, R. Possibility of using a mixture of calcium salts to decrease sulphate concentration and total mineralisation of surface and mine waters. Acta Sci. Pol. Archit. 2022, 21, 63–68. [Google Scholar] [CrossRef]
- Zeng, C.; Hu, H.; Feng, X.; Wang, K.; Zhang, O. Activating CaCO3 to enhance lead removal from lead-zinc solution to serve as green technology for the purification of mine tailings. Chemosphere 2020, 249, 126227. [Google Scholar] [CrossRef]
- Bańkowska-Sobczak, A. Calcite as a candidate for non-invasive phosphorus removal from lakes. Ecohydrol. Hydrobiol. 2021, 21, 683–699. [Google Scholar] [CrossRef]
- Dittrich, M.; Gabriel, O.; Rutzen, C.; Koschel, R. Lake restoration by hypolimnetic Ca(OH)2 treatment: Impact on phosphorus sedimentation and release from sediment. Sci. Total Environ. 2011, 409, 1504–1515. [Google Scholar] [CrossRef]
- Donnert, D.; Berg, U.; Weidler, P.G.; Nüesch, R.; Song, Y.; Salecker, M.; Kusche, I.; Bumiller, W.; Friedrich, F. Phosphorus removal and recovery from waste water by crystallization. Wasser Geotechnol. 2002, 3, 115–132. [Google Scholar]
- Bańkowska-Sobczak, A.; Pryputniewicz-Flis, D.; Idźkowski, J.; Kozłowicz, Ł.; Brenk, G.; Diduszko, R.; Ostrowska, A.; Burska, D. Mechanical activation of a natural calcite for enhanced orthophosphate sorption. Desalin. Water Treat. 2024, 320, 100583. [Google Scholar] [CrossRef]
- Wen, T.; Zhao, Y.; Zhang, T.; Xiong, B.; Hu, H.; Zhang, Q.; Song, S. Effect of anions species on copper removal from wastewater by using mechanically activated calcium carbonate. Chemosphere 2019, 230, 127–135. [Google Scholar] [CrossRef]
- Amare, A.; Kassa, Y.; Lemma, B.; Bhaskarwar, A.N.; Mullu, T.; Tibebe, D. Optimised phosphate adsorption using a synergistic calcite-dolomite mix: A novel approach for water treatment. Chem. Ecol. 2025, 1–26. [Google Scholar] [CrossRef]
- Szlauer-Łukaszewska, A. Succession of periphyton developing on artificial substrate immersed in polysaprobic wastewater reservoir. Pol. J. Environ. Stud. 2007, 16, 753–762. [Google Scholar]
- Jöbgen, A.; Palm, A.; Melkonian, M. Phosphorus removal from eutrophic lakes using periphyton on submerged artificial substrata. Hydrobiologia 2004, 528, 123–142. [Google Scholar] [CrossRef]
- Müller, B.; Wang, Y.; Wehrli, B. Cycling of calcite in hard-water lakes of different trophic states. Limnol. Oceanogr. 2006, 51, 1678–1688. [Google Scholar] [CrossRef]
- Lüttge, A.; Conrad, P.G. Direct observation of microbial inhibition of calcite dissolution. Appl. Environ. Microbiol. 2004, 70, 1627–1632. [Google Scholar] [CrossRef]
- Dean, W.E. The carbon cycle and biogeochemical dynamics in lake sediments. J. Paleolimnol. 1999, 21, 375–393. [Google Scholar] [CrossRef]
- Upchurch, S.; Scott, T.M.; Alfieri, M.; Fratesi, B.; Dobecki, T.L. The Karst Systems of Florida: Understanding Karst in a Geologically Young Terrain; Springer: Cham, Switzerland, 2019; pp. 93–144. [Google Scholar] [CrossRef]
- Thomas, M.M.; Clouse, J.A.; Longo, J.M. Adsorption of organic compounds on carbonate minerals: 3. Influence on dissolution rates. Chem. Geol. 1993, 109, 227–237. [Google Scholar] [CrossRef]
- Lebron, I.; Suarez, D.L. Calcite nucleation and precipitation kinetics as affected by dissolved organic matter at 25 °C and pH > 7.5. Geochim. Cosmochim. Acta 1996, 60, 2765–2776. [Google Scholar] [CrossRef]
- House, W.A.; Donaldson, L. Adsorption and coprecipitation of phosphate on calcite. J. Colloid Interface Sci. 1986, 112, 309–324. [Google Scholar] [CrossRef]
- Tang, H.; Wu, X.; Xian, H.; Zhu, J.; Wei, J.; Liu, H.; He, H. Heterogeneous Nucleation and Growth of CaCO3 on Calcite (104) and Aragonite (110) Surfaces: Implications for the Formation of Abiogenic Carbonate Cements in the Ocean. Minerals 2020, 10, 294. [Google Scholar] [CrossRef]
- Spears, B.M.; Meis, S.; Anderson, A.; Kellou, M. Comparison of phosphorus (P) removal properties of materials proposed for the control of sediment P release in UK lakes. Sci. Total Environ. 2013, 442, 103–110. [Google Scholar] [CrossRef]
- Yu, X.; Grace, M.R.; Sun, G.; Zou, Y. Application of ferrihydrite and calcite as composite sediment capping materials in a eutrophic lake. J. Soils Sediments 2018, 18, 1185–1193. [Google Scholar] [CrossRef]
Treatment | OP Removed | ||
---|---|---|---|
[mg PO43−] | [mg PO43− cm−2] | [mg PO43− g−1] | |
1 week | |||
Laminates | 25.8 | 0.017 | 7.2 |
Modules | 23.4 | 0.032 | 0.1 |
6 weeks | |||
Laminates | 21.7 | 0.014 | 6.0 |
Modules | 59.8 | 0.081 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bańkowska-Sobczak, A.; Pryputniewicz-Flis, D.; Burska, D.; Idźkowski, J.; Kozłowicz, Ł.; Leśniewska, W.; Brenk, G. A Comparative Study on Two Innovative Solutions for Non-Invasive Phosphorus Removal from Aquatic Ecosystems. Appl. Sci. 2025, 15, 5262. https://doi.org/10.3390/app15105262
Bańkowska-Sobczak A, Pryputniewicz-Flis D, Burska D, Idźkowski J, Kozłowicz Ł, Leśniewska W, Brenk G. A Comparative Study on Two Innovative Solutions for Non-Invasive Phosphorus Removal from Aquatic Ecosystems. Applied Sciences. 2025; 15(10):5262. https://doi.org/10.3390/app15105262
Chicago/Turabian StyleBańkowska-Sobczak, Agnieszka, Dorota Pryputniewicz-Flis, Dorota Burska, Jakub Idźkowski, Łukasz Kozłowicz, Wiktoria Leśniewska, and Grzegorz Brenk. 2025. "A Comparative Study on Two Innovative Solutions for Non-Invasive Phosphorus Removal from Aquatic Ecosystems" Applied Sciences 15, no. 10: 5262. https://doi.org/10.3390/app15105262
APA StyleBańkowska-Sobczak, A., Pryputniewicz-Flis, D., Burska, D., Idźkowski, J., Kozłowicz, Ł., Leśniewska, W., & Brenk, G. (2025). A Comparative Study on Two Innovative Solutions for Non-Invasive Phosphorus Removal from Aquatic Ecosystems. Applied Sciences, 15(10), 5262. https://doi.org/10.3390/app15105262