Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = auxetic sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9027 KiB  
Article
Tailoring Piezoresistive Performance in 3D-Printed Nanocomposite Sensors Through Cellular Geometries
by Md Ibrahim Khalil Tanim and Anahita Emami
Appl. Nano 2024, 5(4), 258-278; https://doi.org/10.3390/applnano5040017 - 26 Nov 2024
Cited by 1 | Viewed by 2000
Abstract
Flexible nanocomposite sensors hold significant promise in various applications, such as wearable electronics and medical devices. This research aims to tailor the flexibility and sensitivity of 3D-printed piezoresistive nanocomposite pressure sensors through geometric design, by exploring various simple cellular structures. The geometric designs [...] Read more.
Flexible nanocomposite sensors hold significant promise in various applications, such as wearable electronics and medical devices. This research aims to tailor the flexibility and sensitivity of 3D-printed piezoresistive nanocomposite pressure sensors through geometric design, by exploring various simple cellular structures. The geometric designs were specifically selected to be 3D printable with a flexible material, allowing evaluation of the impact of different structures on sensor performance. In this study, we used both experimental and finite element (FE) methods to investigate the effect of geometric design on piezoresistive sensors. We fabricated the sensors using a flexible resin mixed with conductive nanoparticles via a Stereolithography (SLA) additive manufacturing technique. Electromechanical testing was carried out to evaluate the performance of four different sensor designs. Finite element (FE) models were developed, and their results were compared with experimental data to validate the simulations. The results demonstrated that auxetic structure exhibited the highest sensitivity and lowest stiffness both in experimental and FE analysis, highlighting its potential for applications requiring highly responsive materials. The validated FE model was further used for a parametric study of one of the promising simple designs, revealing that variations in geometric parameters significantly impact piezoresistive sensitivity. These findings provide valuable insights for advancing the development of pressure sensors with tailored sensitivity characteristics. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Figure 1

5 pages, 1804 KiB  
Proceeding Paper
HACS4x: Four-Ply Helical Auxetic Capacitive Sensors for Strain Sensing E-Textiles
by Brett C. Hannigan, Tyler J. Cuthbert and Carlo Menon
Eng. Proc. 2023, 52(1), 24; https://doi.org/10.3390/engproc2023052024 - 17 Jan 2024
Cited by 1 | Viewed by 1206
Abstract
In this article, we show the first capacitive strain sensor using a four-component helical auxetic yarn (HAY) structure. We demonstrate a prototype sensor that achieves a gauge factor (GF) of up to two and compare our experimental results with a simple geometric model [...] Read more.
In this article, we show the first capacitive strain sensor using a four-component helical auxetic yarn (HAY) structure. We demonstrate a prototype sensor that achieves a gauge factor (GF) of up to two and compare our experimental results with a simple geometric model of the HAY system. In addition to a high sensitivity, this sensor configuration is easily manufactured, suitable for textile integration, and produces a repeatable response. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, E-Textiles 2023)
Show Figures

Figure 1

5 pages, 1628 KiB  
Proceeding Paper
Electromechanical Behavior of Helical Auxetic Yarn Strain Sensor
by Asal Lolaki, Saba Sajjadieh, Mahsa Peidani, Zahra Rafieian, Hamed Rezaie and Mohsen Shanbeh
Eng. Proc. 2023, 52(1), 11; https://doi.org/10.3390/engproc2023052011 - 15 Jan 2024
Cited by 1 | Viewed by 1293
Abstract
Three-component strain sensors based on helical auxetic yarn (HAY) structure were designed. HAYs comprise elastic core yarn, wrapped by the composition of multifilament Nylon 66 and conductive spun yarns with three different electrical resistance. The electromechanical behavior of samples was investigated. The cross-section [...] Read more.
Three-component strain sensors based on helical auxetic yarn (HAY) structure were designed. HAYs comprise elastic core yarn, wrapped by the composition of multifilament Nylon 66 and conductive spun yarns with three different electrical resistance. The electromechanical behavior of samples was investigated. The cross-section of samples was studied to investigate the aerial density of conductive fibers at different strain ranges. The results indicated that gauge factors of HAY strain sensors significantly depend on the electrical resistance of the conductive component. Therefore, a new generation of efficient wearable textile-based strain sensors is introduced, based on the adjustable and flexible nature of the auxetic yarns. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, E-Textiles 2023)
Show Figures

Figure 1

18 pages, 4105 KiB  
Article
Porosity Effects on Static Performance of Carbon Nanotube-Reinforced Meta-Nanocomposite Structures
by Farzad Ebrahimi and Ali Dabbagh
Micromachines 2023, 14(7), 1402; https://doi.org/10.3390/mi14071402 - 9 Jul 2023
Cited by 5 | Viewed by 1761
Abstract
A mixture of outstanding merits of polymer nanocomposites (PNCs) and metamaterials can lead to the development of ultra-light meta-nanomaterials whose high sensitivity can be efficiently used in wearable strain sensors. Thus, reliable data about the performance of structural elements manufactured from such meta-nanomaterials [...] Read more.
A mixture of outstanding merits of polymer nanocomposites (PNCs) and metamaterials can lead to the development of ultra-light meta-nanomaterials whose high sensitivity can be efficiently used in wearable strain sensors. Thus, reliable data about the performance of structural elements manufactured from such meta-nanomaterials are needed before implementing their design. Motivated by this issue, the negative impacts of pores in the microstructure and carbon nanotubes’ (CNTs’) wavy configuration on the nonlinear bending features of thick beams consisted of auxetic CNT-reinforced (CNTR) polymers are probed for the first time. The impacts of distinct porosity distributions on the mechanical reaction of the system are covered in this article. In addition, a very low computationally cost homogenization is implemented herein to consider the waviness’ influence on the reinforcement mechanism in the auxetic PNC material. Moreover, higher-order shear deformation theory (HSDT) is followed and merged with non-linear definition of strain tensor with the aid of von Kármán’s theory to gather the equations describing the problem. Thereafter, the famous Navier’s exact solution is employed towards solving the problem for thick beams with simple supports at both ends. A comparison of our data with those existing in the literature certifies the accuracy of the presented modeling. The outcomes indicate on the remarkable rise in the flexural deformation of the auxetic PNC beam while the coefficient of porosity is raised. It is also shown that utilization of thick-walled cells in the re-entrant lattice can help to control the system’s total deflection. In addition, if the non-ideal shape of the nanofillers is ignored, the deflection of the meta-nanomaterial beam will be much larger than that of ideal calculations. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

19 pages, 4104 KiB  
Review
Sensors Based on Auxetic Materials and Structures: A Review
by Shanshan Dong and Hong Hu
Materials 2023, 16(9), 3603; https://doi.org/10.3390/ma16093603 - 8 May 2023
Cited by 20 | Viewed by 8614
Abstract
Auxetic materials exhibit a negative Poisson’s ratio under tension or compression, and such counter-intuitive behavior leads to enhanced mechanical properties such as shear resistance, impact resistance, and shape adaptability. Auxetic materials with these excellent properties show great potential applications in personal protection, medical [...] Read more.
Auxetic materials exhibit a negative Poisson’s ratio under tension or compression, and such counter-intuitive behavior leads to enhanced mechanical properties such as shear resistance, impact resistance, and shape adaptability. Auxetic materials with these excellent properties show great potential applications in personal protection, medical health, sensing equipment, and other fields. However, there are still many limitations in them, from laboratory research to real applications. There have been many reported studies applying auxetic materials or structures to the development of sensing devices in anticipation of improving sensitivity. This review mainly focuses on the use of auxetic materials or auxetic structures in sensors, providing a broad review of auxetic-based sensing devices. The material selection, structure design, preparation method, sensing mechanism, and sensing performance are introduced. In addition, we explore the relationship between the auxetic mechanism and the sensing performance and summarize how the auxetic behavior enhances the sensitivity. Furthermore, potential applications of sensors based on the auxetic mechanism are discussed, and the remaining challenges and future research directions are suggested. This review may help to promote further research and application of auxetic sensing devices. Full article
Show Figures

Figure 1

18 pages, 5681 KiB  
Article
3D Printing of pH Indicator Auxetic Hydrogel Skin Wound Dressing
by Filmon Tsegay, Muhammed Hisham, Mohamed Elsherif, Andreas Schiffer and Haider Butt
Molecules 2023, 28(3), 1339; https://doi.org/10.3390/molecules28031339 - 31 Jan 2023
Cited by 27 | Viewed by 4714
Abstract
The benefits of enclosing pH sensors into wound dressings include treatment monitoring of wounded skin and early detection of developing chronic conditions, especially for diabetic patients. A 3D printed re-entrant auxetic hydrogel wound dressing, doped with pH indicator phenol red dye, was developed [...] Read more.
The benefits of enclosing pH sensors into wound dressings include treatment monitoring of wounded skin and early detection of developing chronic conditions, especially for diabetic patients. A 3D printed re-entrant auxetic hydrogel wound dressing, doped with pH indicator phenol red dye, was developed and characterized. The re-entrant auxetic design allows wound dressing adhesion to complex body parts, such as joints on arms and legs. Tensile tests revealed a yield strength of 140 kPa and Young’s modulus of 78 MPa. In addition, the 3D-printed hydrogel has a swelling capacity of up to 14%, limited weight loss to 3% in six days, and porosity of near 1.2%. A reasonable pH response resembling human skin pH (4–10) was obtained and characterized. The integration of color-changing pH indicators allows patients to monitor the wound’s healing process using a smartphone. In addition to the above, the mechanical properties and their dependence on post-processing were studied. The results show that the resin composition and the use of post-treatments significantly affect the quality and durability of the wound dressings. Finally, a poly (acrylic acid) (PAA) and water-based adhesive was developed and used to demonstrate the performance of the auxetic wound dressing when attached to moving body joints. Full article
Show Figures

Figure 1

20 pages, 20804 KiB  
Article
Behavior of 3D Printed Stretchable Structured Sensors
by Eugene Kim, Seyedmeysam Khaleghian and Anahita Emami
Electronics 2023, 12(1), 18; https://doi.org/10.3390/electronics12010018 - 21 Dec 2022
Cited by 5 | Viewed by 2122
Abstract
Piezoresistive structures inspired by serpentines, auxetic, and kirigami arrangements have demonstrated good flexibility and sensitivity under tension. Piezoresistive structures display optimal performance when the characteristics entail reliable stretchability and repeatability. These structures can be implemented as wearable sensors by compressing and elongating the [...] Read more.
Piezoresistive structures inspired by serpentines, auxetic, and kirigami arrangements have demonstrated good flexibility and sensitivity under tension. Piezoresistive structures display optimal performance when the characteristics entail reliable stretchability and repeatability. These structures can be implemented as wearable sensors by compressing and elongating the conductive nanocomposites to vary the flow of electrons and to provide resistance change. To guarantee the reliability of these structures for strain sensing, it is important that the resistance change in these structures remains constant under repeated loads. In this study, the performance of different piezoresistive structures under cyclic tensile load is investigated and compared. Based on the performance of different types of structures, novel hybrid structures have been also proposed to design for both high stretchability and sensitivity of piezoresistive sensors. All the structures were tested with position limits rather than a fixed force to avoid permanent deformation. First, small position limits were used to determine Young’s Modulus, then a 10-cycle tensile test with larger position limits was used to further study the electromechanical behavior of different piezoresistive structures under larger deformation and repetition. Finally, the gage factor was derived for all the studied structures, and they were re-categorized based on properties’ similarities. Full article
(This article belongs to the Special Issue Selected Papers from Young Researchers in Flexible Electronics)
Show Figures

Figure 1

13 pages, 2823 KiB  
Article
Electromechanical Natural Frequency Analysis of an Eco-Friendly Active Sandwich Plate
by Rasool Moradi-Dastjerdi and Kamran Behdinan
Actuators 2022, 11(9), 261; https://doi.org/10.3390/act11090261 - 9 Sep 2022
Cited by 5 | Viewed by 2356
Abstract
In conventional piezoelectric ceramics, their brittle nature and containing lead are two crucial issues that significantly restrict their uses in many applications such as biomedical devices. In this work, we suggest the use of an eco-friendly piezoelectric nanocomposite material to piezoelectrically activate a [...] Read more.
In conventional piezoelectric ceramics, their brittle nature and containing lead are two crucial issues that significantly restrict their uses in many applications such as biomedical devices. In this work, we suggest the use of an eco-friendly piezoelectric nanocomposite material to piezoelectrically activate a cantilever meta-structure plate to be used as a novel actuator/sensor or even energy harvester; this cantilever plate is formed of several polymeric links to create an auxetic core plate that structurally shows a negative Poisson’s ratio. Moreover, the active nanocomposite materials are used as the face sheets on the auxetic plate; these active layers are made of nanowires of zinc oxide (ZnO) that are placed into an epoxy matrix in different forms of functionally graded (FG) patterns. For such active sandwich plates (ASPs) with potential electromechanical applications, a coupled electromechanical analysis has been performed to numerically investigate their natural frequencies as a crucial design parameter in such electromechanical devices. By developing a meshless method based on a higher plate theory, the effects of nanowire volume fraction, nanowire distribution, auxetic parameters, layer dimensions, and electrical terminal set-up have been studied; this in-depth study reveals that ASPs with an auxetic core have much lower natural frequencies than ASPs with honeycomb cores which would be very helpful in designing actuators or energy harvesters using the proposed cantilever sandwich plates. Full article
(This article belongs to the Special Issue Multifunctional Active Materials and Structures Based Actuators)
Show Figures

Figure 1

18 pages, 8014 KiB  
Article
MetaMembranes for the Sensitivity Enhancement of Wearable Piezoelectric MetaSensors
by Saman Farhangdoust, Gary Georgeson and Jeong-Beom Ihn
Sensors 2022, 22(5), 1909; https://doi.org/10.3390/s22051909 - 1 Mar 2022
Cited by 7 | Viewed by 2867
Abstract
The low stretchability of plain membranes restricts the sensitivity of conventional diaphragm-based pressure and inflatable piezoelectric sensors. Using theoretical and computational tools, we characterized current limitations and explored metamaterial-inspired membranes (MetaMems) to resolve these issues. This paper develops two MetaMem pressure sensors (MPSs) [...] Read more.
The low stretchability of plain membranes restricts the sensitivity of conventional diaphragm-based pressure and inflatable piezoelectric sensors. Using theoretical and computational tools, we characterized current limitations and explored metamaterial-inspired membranes (MetaMems) to resolve these issues. This paper develops two MetaMem pressure sensors (MPSs) to enrich the sensitivity and stretchability of the conventional sensors. Two auxetic hexagonal and kirigami honeycombs are proposed to create a negative Poisson’s ratio (NPR) in the MetaMems which enables them to expand the piezo-element of sensors in both longitudinal and transverse directions much better, and consequently provides the MPSs’ diaphragm a higher capability for flexural deformation. Polyvinylidene fluoride (PVDF) and polycarbonate (PC) are considered as the preferable materials for the piezo-element and MetaMem, respectively. A finite element analysis was conducted to investigate the stretchability behavior of the MetaMems and study its effect on the PVDF’s polarization and sensor sensitivity. The results obtained from theoretical analysis and numerical simulations demonstrate that the proposed MetaMems enhance the sensitivity of pressure sensors up to 3.8 times more than an equivalent conventional sensor with a plain membrane. This paper introduces a new class of flexible MetaMems to advance wearable piezoelectric metasensor technologies. Full article
Show Figures

Figure 1

11 pages, 2298 KiB  
Article
A Flexible Carbon Nanotubes-Based Auxetic Sponge Electrode for Strain Sensors
by Francesco La Malfa, Salvatore Puce, Francesco Rizzi and Massimo De Vittorio
Nanomaterials 2020, 10(12), 2365; https://doi.org/10.3390/nano10122365 - 27 Nov 2020
Cited by 22 | Viewed by 3191
Abstract
Soft compliant strain gauges are key devices for wearable applications such as body health sensor systems, exoskeletons, or robotics. Other than traditional piezoresistive materials, such as metals and doped semiconductors placed on strain-sensitive microsystems, a class of soft porous materials with exotic mechanical [...] Read more.
Soft compliant strain gauges are key devices for wearable applications such as body health sensor systems, exoskeletons, or robotics. Other than traditional piezoresistive materials, such as metals and doped semiconductors placed on strain-sensitive microsystems, a class of soft porous materials with exotic mechanical properties, called auxetics, can be employed in strain gauges in order to boost their performance and add functionalities. For strain electronic read-outs, their polymeric structure needs to be made conductive. Herein, we present the fabrication process of an auxetic electrode based on a polymeric nanocomposite. A multiwalled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) is fabricated on an open-cell polyurethane (PU) auxetic foam and its effective usability as an electrode for strain-gauge sensors is assessed. Full article
(This article belongs to the Special Issue Nanoscience and Nanotechnology for Electronics)
Show Figures

Figure 1

19 pages, 6969 KiB  
Article
Electromechanical Assessment and Induced Temperature Measurement of Carbon Fiber Tows under Tensile Condition
by Samir Mekid, Hammam Daraghma and Salem Bashmal
Materials 2020, 13(19), 4234; https://doi.org/10.3390/ma13194234 - 23 Sep 2020
Cited by 2 | Viewed by 2593
Abstract
The paper presents an investigation and analysis of the electromechanical and thermal characteristics of the carbon fiber alone as single tow and embedded in host materials such as polymer e.g., acrylonitrile butadiene styrene (ABS) using 3D printing. While carbon fibers can partially reinforce [...] Read more.
The paper presents an investigation and analysis of the electromechanical and thermal characteristics of the carbon fiber alone as single tow and embedded in host materials such as polymer e.g., acrylonitrile butadiene styrene (ABS) using 3D printing. While carbon fibers can partially reinforce the structure, they can act as sensors to monitor the structural health of the host material. The piezo-resistive behavior was examined without any pretreatment of the carbon fiber under tensile test in both cases. Special focus on the filaments clamping types and their effects was observed. An auxetic behavior was exhibited; otherwise, the free part shows elastic and yielding ranges with break point at high resistance. An induced temperature of the carbon fiber was measured during the tensile test to show low variation. The carbon fiber can provide strength contribution to the host material depending on the percentage of filling the material in 3D printing. The relative variation of the electrical resistance increases by 400% while embedded in the host material, but decreases as the tows filament density increases from 1 to 12 K. Full article
Show Figures

Figure 1

17 pages, 6115 KiB  
Article
Braided Fabrication of a Fiber Bragg Grating Sensor
by Songbi Lee and Joohyeon Lee
Sensors 2020, 20(18), 5246; https://doi.org/10.3390/s20185246 - 14 Sep 2020
Cited by 6 | Viewed by 3500
Abstract
Our objective was to construct textile braiding manufacturing methods to facilitate high precision and accurate measurements using optical fiber Bragg grating sensors for various structures. We aimed to combine three-dimensional (3D) braiding processing with the optical Bragg grating sensor’s accurate metrology. Outside the [...] Read more.
Our objective was to construct textile braiding manufacturing methods to facilitate high precision and accurate measurements using optical fiber Bragg grating sensors for various structures. We aimed to combine three-dimensional (3D) braiding processing with the optical Bragg grating sensor’s accurate metrology. Outside the limits of the sensor’s epoxy attachment methods, the textile braiding method can diversify the scope of application. The braiding process can be used to design a 3D fabric module process for multiple objective mechanical fiber arrangements and material characteristics. Optical stress–strain response conditions were explored through the optimization of design elements between the Bragg grating sensor and the braiding. Here, Bragg grating sensors were located 75% away from the fiber center. The sensor core structure was helical with a 1.54 cm pitch, and a polyurethane synthetic yarn was braided together with the sensor using a weaving machine. From the prototype results, a negative Poisson’s ratio resulted in a curled braided Bragg grating sensor. The number of polyurethane strands was studied to determine the role of wrap angle in the braiding. The 12-strands condition showed an increase in double stress–strain response rate at a Poisson’s ratio of 1.3%, and the 16-strands condition was found to have noise affecting the sensor at a Poisson’s ratio of 1.5%. The findings suggested the application of braiding fabrication to the Bragg grating sensor could help to develop a new monitoring sensor. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

17 pages, 24210 KiB  
Article
Numerical Investigation of Auxetic Textured Soft Strain Gauge for Monitoring Animal Skin
by Han Liu, Matthias Kollosche, Jin Yan, Eric M. Zellner, Sarah A. Bentil, Iris V. Rivero, Colin Wiersema and Simon Laflamme
Sensors 2020, 20(15), 4185; https://doi.org/10.3390/s20154185 - 28 Jul 2020
Cited by 12 | Viewed by 5616
Abstract
Recent advances in hyperelastic materials and self-sensing sensor designs have enabled the creation of dense compliant sensor networks for the cost-effective monitoring of structures. The authors have proposed a sensing skin based on soft polymer composites by developing soft elastomeric capacitor (SEC) technology [...] Read more.
Recent advances in hyperelastic materials and self-sensing sensor designs have enabled the creation of dense compliant sensor networks for the cost-effective monitoring of structures. The authors have proposed a sensing skin based on soft polymer composites by developing soft elastomeric capacitor (SEC) technology that transduces geometric variations into a measurable change in capacitance. A limitation of the technology is in its low gauge factor and lack of sensing directionality. In this paper, we propose a corrugated SEC through surface texture, which provides improvements in its performance by significantly decreasing its transverse Poisson’s ratio, and thus improving its sensing directionality and gauge factor. We investigate patterns inspired by auxetic structures for enhanced unidirectional strain monitoring. Numerical models are constructed and validated to evaluate the performance of textured SECs, and to study their performance at monitoring strain on animal skin. Results show that the auxetic patterns can yield a significant increase in the overall gauge factor and decrease the stress experienced by the animal skin, with the re-entrant hexagonal honeycomb pattern outperforming all of the other patterns. Full article
(This article belongs to the Special Issue Flexible Sensors for Structural Health Monitoring)
Show Figures

Figure 1

6 pages, 1587 KiB  
Proceeding Paper
Plantar Pressure Distribution under Uniform and Gradient Foam during Running and Jumping
by Olly Duncan, George Naylor, Joel Godfrey M, Tom Allen, Leon Foster, John Hart and Andrew Alderson
Proceedings 2020, 49(1), 116; https://doi.org/10.3390/proceedings2020049116 - 15 Jun 2020
Cited by 1 | Viewed by 4298
Abstract
Auxetic materials have a negative Poisson’s ratio, meaning they contract laterally during axial compression. Auxetics can also absorb more energy during impacts than conventional materials. Auxetic foam was fabricated by volumetrically compressing open cell foam to buckle cell ribs and impart a re-entrant [...] Read more.
Auxetic materials have a negative Poisson’s ratio, meaning they contract laterally during axial compression. Auxetics can also absorb more energy during impacts than conventional materials. Auxetic foam was fabricated by volumetrically compressing open cell foam to buckle cell ribs and impart a re-entrant cell structure, then the imposed structure was fixed by heating and cooling. Passing pins through the foam allowed localised control over compression during fabrication, producing gradient foam with regions with differing Poisson’s ratios and stress vs. strain relationships. Uniform sheets had volumetric compression ratios of three, gradient sheets had volumetric compression ratios of one (unchanged) or three in different regions. One participant jumped barefoot on all foams, cut out to fit pressure sensors; another ran wearing shoes containing uniform converted and unconverted foam insoles. Pressure distribution was measured underneath the foams and foam insoles. Peak pressure was lowest underneath converted foams, warranting further investigation with more participants. Full article
Show Figures

Figure 1

26 pages, 8961 KiB  
Review
Cellular Auxetic Structures for Mechanical Metamaterials: A Review
by Parth Uday Kelkar, Hyun Soo Kim, Kyung-Hoon Cho, Joon Young Kwak, Chong-Yun Kang and Hyun-Cheol Song
Sensors 2020, 20(11), 3132; https://doi.org/10.3390/s20113132 - 1 Jun 2020
Cited by 177 | Viewed by 19211
Abstract
Recent advances in lithography technology and the spread of 3D printers allow us a facile fabrication of special materials with complicated microstructures. The materials are called “designed materials” or “architectured materials” and provide new opportunities for material development. These materials, which owing to [...] Read more.
Recent advances in lithography technology and the spread of 3D printers allow us a facile fabrication of special materials with complicated microstructures. The materials are called “designed materials” or “architectured materials” and provide new opportunities for material development. These materials, which owing to their rationally designed architectures exhibit unusual properties at the micro- and nano-scales, are being widely exploited in the development of modern materials with customized and improved performance. Meta-materials are found to possess superior and unusual properties as regards static modulus (axial stress divided by axial strain), density, energy absorption, smart functionality, and negative Poisson’s ratio (NPR). However, in spite of recent developments, it has only been feasible to fabricate a few such meta-materials and to implement them in practical applications. Against such a backdrop, a broad review of the wide range of cellular auxetic structures for mechanical metamaterials available at our disposal and their potential application areas is important. Classified according to their geometrical configuration, this paper provides a review of cellular auxetic structures. The structures are presented with a view to tap into their potential abilities and leverage multidimensional fabrication advances to facilitate their application in industry. In this review, there is a special emphasis on state-of-the-art applications of these structures in important domains such as sensors and actuators, the medical industry, and defense while touching upon ways to accelerate the material development process. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

Back to TopTop