Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (387)

Search Parameters:
Keywords = autonomous shipping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2102 KiB  
Article
D* Lite and Transformer-Enhanced SAC: A Hybrid Reinforcement Learning Framework for COLREGs-Compliant Autonomous Navigation in Dynamic Maritime Environments
by Tianqing Chen, Yamei Lan, Yichen Li, Jiesen Zhang and Yijie Yin
J. Mar. Sci. Eng. 2025, 13(8), 1498; https://doi.org/10.3390/jmse13081498 - 4 Aug 2025
Abstract
Autonomous navigation in dynamic, multi-vessel maritime environments presents a formidable challenge, demanding strict adherence to the International Regulations for Preventing Collisions at Sea (COLREGs). Conventional approaches often struggle with the dual imperatives of global path optimality and local reactive safety, and they frequently [...] Read more.
Autonomous navigation in dynamic, multi-vessel maritime environments presents a formidable challenge, demanding strict adherence to the International Regulations for Preventing Collisions at Sea (COLREGs). Conventional approaches often struggle with the dual imperatives of global path optimality and local reactive safety, and they frequently rely on simplistic state representations that fail to capture complex spatio-temporal interactions among vessels. We introduce a novel hybrid reinforcement learning framework, D* Lite + Transformer-Enhanced Soft Actor-Critic (TE-SAC), to overcome these limitations. This hierarchical framework synergizes the strengths of global and local planning. An enhanced D* Lite algorithm generates efficient, long-horizon reference paths at the global level. At the local level, the TE-SAC agent performs COLREGs-compliant tactical maneuvering. The core innovation resides in TE-SAC’s synergistic state encoder, which uniquely combines a Graph Neural Network (GNN) to model the instantaneous spatial topology of vessel encounters with a Transformer encoder to capture long-range temporal dependencies and infer vessel intent. Comprehensive simulations demonstrate the framework’s superior performance, validating the strengths of both planning layers. At the local level, our TE-SAC agent exhibits remarkable tactical intelligence, achieving an exceptional 98.7% COLREGs compliance rate and reducing energy consumption by 15–20% through smoother, more decisive maneuvers. This high-quality local control, guided by the efficient global paths from the enhanced D* Lite algorithm, culminates in a 10–32 percentage point improvement in overall task success rates compared to state-of-the-art baselines. This work presents a robust, verifiable, and efficient framework. By demonstrating superior performance and compliance with rules in high-fidelity simulations, it lays a crucial foundation for advancing the practical application of intelligent autonomous navigation systems. Full article
(This article belongs to the Special Issue Motion Control and Path Planning of Marine Vehicles—3rd Edition)
Show Figures

Figure 1

26 pages, 1567 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 - 1 Aug 2025
Viewed by 141
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
31 pages, 3379 KiB  
Review
The Adoption of Technological Innovations in the Maritime Industry: A Bibliometric Review
by Armand Djoumessi, Alessio Tei and Claudio Ferrari
J. Mar. Sci. Eng. 2025, 13(8), 1484; https://doi.org/10.3390/jmse13081484 - 31 Jul 2025
Viewed by 151
Abstract
The adoption of technological innovations in the maritime industry is of interest to business, policy, and academic communities. In the last group, this interest has translated into the publication of a large but scattered literature, making it difficult to compare findings and identify [...] Read more.
The adoption of technological innovations in the maritime industry is of interest to business, policy, and academic communities. In the last group, this interest has translated into the publication of a large but scattered literature, making it difficult to compare findings and identify the dynamics, structures, and patterns that might inform future research. A comprehensive review of past research on this topic might help achieve this. To date, no such review has been carried out, which is an important gap in the literature that this paper contributes to bridging. Two bibliometric review techniques—co-citation analysis of cited references and bibliographic coupling of documents—are applied to 171 journal articles published between 1999 and February 2025 to answer the following questions: 1. What is the knowledge base of this literature? 2. What are the recent research trends (research fronts) in this literature? The analysis reveals that research on “shore power” dominates both the knowledge base and research fronts. Other key research themes centre on “autonomous shipping”, “blockchain”, and “alternative fuels”. Based on these results, implications for future research are drawn. Full article
(This article belongs to the Special Issue Sustainable and Efficient Maritime Operations)
Show Figures

Figure 1

22 pages, 5254 KiB  
Article
Exploring Simulation Methods to Counter Cyber-Attacks on the Steering Systems of the Maritime Autonomous Surface Ship (MASS)
by Igor Astrov, Sanja Bauk and Pentti Kujala
J. Mar. Sci. Eng. 2025, 13(8), 1470; https://doi.org/10.3390/jmse13081470 - 31 Jul 2025
Viewed by 213
Abstract
This paper presents a simulation-based investigation into control strategies for mitigating the consequences of cyber-assault on the steering systems of the Maritime Autonomous Surface Ships (MASS). The study focuses on two simulation experiments conducted within the Simulink/MATLAB environment, utilizing the catamaran “Nymo” MASS [...] Read more.
This paper presents a simulation-based investigation into control strategies for mitigating the consequences of cyber-assault on the steering systems of the Maritime Autonomous Surface Ships (MASS). The study focuses on two simulation experiments conducted within the Simulink/MATLAB environment, utilizing the catamaran “Nymo” MASS mathematical model to represent vessel dynamics. Cyber-attacks are modeled as external disturbances affecting the rudder control signal, emulating realistic interference scenarios. To assess control resilience, two configurations are compared during a representative turning maneuver to a specified heading: (1) a Proportional–Integral–Derivative (PID) regulator augmented with a Least Mean Squares (LMS) adaptive filter, and (2) a Nonlinear Autoregressive Moving Average with Exogenous Input (NARMA-L2) neural network regulator. The PID and LMS configurations aim to enhance the disturbance rejection capabilities of the classical controller through adaptive filtering, while the NARMA-L2 approach represents a data-driven, nonlinear control alternative. Simulation results indicate that although the PID and LMS setups demonstrate improved performance over standalone PID in the presence of cyber-induced disturbances, the NARMA-L2 controller exhibits superior adaptability, accuracy, and robustness under adversarial conditions. These findings suggest that neural network-based control offers a promising pathway for developing cyber-resilient steering systems in autonomous maritime vessels. Full article
(This article belongs to the Special Issue Advanced Control Strategies for Autonomous Maritime Systems)
Show Figures

Figure 1

36 pages, 7335 KiB  
Article
COLREGs-Compliant Distributed Stochastic Search Algorithm for Multi-Ship Collision Avoidance
by Bohan Zhang, Jinichi Koue, Tenda Okimoto and Katsutoshi Hirayama
J. Mar. Sci. Eng. 2025, 13(8), 1402; https://doi.org/10.3390/jmse13081402 - 23 Jul 2025
Viewed by 221
Abstract
The increasing complexity of maritime traffic imposes growing demands on the safety and rationality of ship-collision-avoidance decisions. While most existing research focuses on simple encounter scenarios, autonomous collision-avoidance strategies that comply with the International Regulations for Preventing Collisions at Sea (COLREGs) in complex [...] Read more.
The increasing complexity of maritime traffic imposes growing demands on the safety and rationality of ship-collision-avoidance decisions. While most existing research focuses on simple encounter scenarios, autonomous collision-avoidance strategies that comply with the International Regulations for Preventing Collisions at Sea (COLREGs) in complex multi-ship environments remain insufficiently investigated. To address this gap, this study proposes a novel collision-avoidance framework that integrates a quantitative COLREGs analysis with a distributed stochastic search mechanism. The framework consists of three core components: encounter identification, safety assessment, and stage classification. A cost function is employed to balance safety, COLREGs compliance, and navigational efficiency, incorporating a distance-based weighting factor to modulate the influence of each target vessel. The use of a distributed stochastic search algorithm enables decentralized decision-making through localized information sharing and probabilistic updates. Extensive simulations conducted across a variety of scenarios demonstrate that the proposed method can rapidly generate effective collision-avoidance strategies that fully comply with COLREGs. Comprehensive evaluations in terms of safety, navigational efficiency, COLREGs adherence, and real-time computational performance further validate the method’s strong adaptability and its promising potential for practical application in complex multi-ship environments. Full article
(This article belongs to the Special Issue Maritime Security and Risk Assessments—2nd Edition)
Show Figures

Figure 1

16 pages, 1616 KiB  
Article
Estimation of Ship-to-Ship Link Persistence in Maritime Autonomous Surface Ship Communication Scenarios
by Shuaiheng Huai, Xiaoyu Du and Qing Hu
Electronics 2025, 14(14), 2742; https://doi.org/10.3390/electronics14142742 - 8 Jul 2025
Viewed by 238
Abstract
Maritime Autonomous Surface Ships (MASSs) are expected to become vital participants in future maritime commerce and ocean development activities. This paper investigates a channel capacity-based scheme for estimating the persistence of ship-to-ship communication links in MASS communication scenarios. Specifically, this study presents a [...] Read more.
Maritime Autonomous Surface Ships (MASSs) are expected to become vital participants in future maritime commerce and ocean development activities. This paper investigates a channel capacity-based scheme for estimating the persistence of ship-to-ship communication links in MASS communication scenarios. Specifically, this study presents a relative motion model for nodes within the network and estimates link persistence based on the dynamic characteristics of the links. Additionally, transmission modes tailored to maritime communication scenarios are proposed to optimize link capacity and reduce interference. Simulation results demonstrate that the proposed method can accurately estimate the duration and capacity of the links, thereby achieving higher network capacity. When used as a metric for routing protocols, the proposed link-persistence measure outperforms traditional metrics in terms of packet loss ratio, end-to-end delay, and throughput. Comparisons with other mobility models show that the proposed mobility model offers greater accuracy and reliability in describing the relative mobility of nodes. Full article
(This article belongs to the Special Issue Autonomous and Connected Vehicles)
Show Figures

Figure 1

39 pages, 2307 KiB  
Article
Modeling of Energy Management System for Fully Autonomous Vessels with Hybrid Renewable Energy Systems Using Nonlinear Model Predictive Control via Grey Wolf Optimization Algorithm
by Harriet Laryea and Andrea Schiffauerova
J. Mar. Sci. Eng. 2025, 13(7), 1293; https://doi.org/10.3390/jmse13071293 - 30 Jun 2025
Viewed by 317
Abstract
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear [...] Read more.
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear model predictive control (NMPC) with metaheuristic optimizers—Grey Wolf Optimization (GWO) and Genetic Algorithm (GA)—and is benchmarked against a conventional rule-based (RB) method. The HRES architecture comprises photovoltaic arrays, vertical-axis wind turbines (VAWTs), diesel engines, generators, and a battery storage system. A ship dynamics model was used to represent propulsion power under realistic sea conditions. Simulations were conducted using real-world operational and environmental datasets, with state prediction enhanced by an Extended Kalman Filter (EKF). Performance is evaluated using marine-relevant indicators—fuel consumption; emissions; battery state of charge (SOC); and emission cost—and validated using standard regression metrics. The NMPC-GWO algorithm consistently outperformed both NMPC-GA and RB approaches, achieving high prediction accuracy and greater energy efficiency. These results confirm the reliability and optimization capability of predictive EMS frameworks in reducing emissions and operational costs in autonomous maritime operations. Full article
(This article belongs to the Special Issue Advancements in Hybrid Power Systems for Marine Applications)
Show Figures

Figure 1

15 pages, 4137 KiB  
Article
Improved Model Predictive Control Algorithm for the Path Tracking Control of Ship Autonomous Berthing
by Chunyu Song, Xiaomin Guo and Jianghua Sui
J. Mar. Sci. Eng. 2025, 13(7), 1273; https://doi.org/10.3390/jmse13071273 - 30 Jun 2025
Viewed by 347
Abstract
To address the issues of path tracking accuracy and control stability in autonomous ship berthing, an improved algorithm combining nonlinear model predictive control (NMPC) and convolutional neural networks (CNNs) is proposed in this paper. A CNN is employed to train on a large [...] Read more.
To address the issues of path tracking accuracy and control stability in autonomous ship berthing, an improved algorithm combining nonlinear model predictive control (NMPC) and convolutional neural networks (CNNs) is proposed in this paper. A CNN is employed to train on a large dataset of ship berthing trajectories, combined with the rolling optimization mechanism of NMPC. A high-precision path tracking control method is designed, which accounts for ship motion constraints and environmental disturbances. Simulation results show an 88.24% improvement in tracking precision over traditional MPC. This paper proposes an improved nonlinear model predictive control (NMPC) strategy for autonomous ship berthing. By integrating convolutional neural networks (CNNs) and moving horizon estimation (MHE), the method enhances robustness and path-tracking accuracy under environmental disturbances. The amount of system overshoot is reduced, and the anti-interference capability is notably improved. The effectiveness, generalization, and applicability of the proposed algorithm are verified. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

18 pages, 1982 KiB  
Article
Semantic Interoperability of Multi-Agent Systems in Autonomous Maritime Domains
by Marko Rosic, Dean Sumic and Lada Males
Electronics 2025, 14(13), 2630; https://doi.org/10.3390/electronics14132630 - 29 Jun 2025
Viewed by 285
Abstract
The maritime domain is experiencing significant transformation, driven by the integration of autonomous technologies. Autonomous ships and smart maritime systems depend on the sophisticated interplay of artificial intelligence, sensor infrastructures, and communication protocols to achieve safe, reliable, and efficient operations. Central to this [...] Read more.
The maritime domain is experiencing significant transformation, driven by the integration of autonomous technologies. Autonomous ships and smart maritime systems depend on the sophisticated interplay of artificial intelligence, sensor infrastructures, and communication protocols to achieve safe, reliable, and efficient operations. Central to this evolution is the imperative for seamless interoperability among agents operating within heterogeneous maritime environments. Semantic interoperability, which ensures that information is interpreted and exchanged consistently and meaningfully across systems, emerges as a critical enabler of coordinated multi-agent cooperation. This paper explores the role of semantic interoperability in the coordination of multi-agent systems, the challenges involved, and the technological frameworks that facilitate its implementation. Full article
(This article belongs to the Special Issue Research on Cooperative Control of Multi-agent Unmanned Systems)
Show Figures

Figure 1

22 pages, 2586 KiB  
Article
Model Predictive Control for Autonomous Ship Navigation with COLREG Compliance and Chart-Based Path Planning
by Primož Potočnik
J. Mar. Sci. Eng. 2025, 13(7), 1246; https://doi.org/10.3390/jmse13071246 - 28 Jun 2025
Viewed by 452
Abstract
Autonomous ship navigation systems must ensure safe and efficient route planning while complying with the International Regulations for Preventing Collisions at Sea (COLREGs). This paper presents an integrated navigation framework that combines chart-based global path planning with a Model Predictive Control (MPC) approach [...] Read more.
Autonomous ship navigation systems must ensure safe and efficient route planning while complying with the International Regulations for Preventing Collisions at Sea (COLREGs). This paper presents an integrated navigation framework that combines chart-based global path planning with a Model Predictive Control (MPC) approach for local trajectory tracking and COLREG-compliant collision avoidance. The method generates feasible reference routes using maritime charts and predefined waypoints, while the MPC controller ensures precise path following and dynamic re-planning in response to nearby vessels and coastal obstacles. Coastal features and shorelines are modeled using Global Self-consistent, Hierarchical, High-resolution Geography data, enabling MPC to treat landmasses as static obstacles. Other vessels are represented as dynamic obstacles with varying speeds and headings, and COLREG rules are embedded within the MPC framework to enable rule-compliant maneuvering during encounters. To address real-time computational constraints, a simplified MPC formulation is introduced, balancing predictive accuracy with computational efficiency, making the approach suitable for embedded implementations. The navigation framework is implemented in a MATLAB-based simulation with real-time visualization supporting multi-vessel scenarios and COLREG-aware vessel interactions. Simulation results demonstrate robust performance across diverse maritime scenarios—including complex multi-ship encounters and constrained coastal navigation—while maintaining the shortest safe routes. By seamlessly integrating chart-aware path planning with COLREG-compliant, MPC-based collision avoidance, the proposed framework offers an effective, scalable, and robust solution for autonomous maritime navigation. Full article
Show Figures

Figure 1

17 pages, 938 KiB  
Article
Status Quo and Future Prospects of China’s Weather Routing Services for Ocean-Going Business Vessels
by Hao Zhang, Guanjun Niu, Tao Liu, Chuanhai Qian, Wei Zhao, Xiaojun Mei and Hao Wu
Oceans 2025, 6(3), 38; https://doi.org/10.3390/oceans6030038 - 23 Jun 2025
Viewed by 539
Abstract
The global shipping industry is evolving towards deep integration of digital transformation, intelligent upgrading, and green development. Meanwhile, recent geopolitical shifts have introduced heightened uncertainties into international shipping, compounding the challenges and escalating the demands for weather routing services for ocean-going ships. This [...] Read more.
The global shipping industry is evolving towards deep integration of digital transformation, intelligent upgrading, and green development. Meanwhile, recent geopolitical shifts have introduced heightened uncertainties into international shipping, compounding the challenges and escalating the demands for weather routing services for ocean-going ships. This paper provides a systematic review and expert perspective on China’s current status and key challenges in ocean-going weather routing services. Based on operational insights from China’s national meteorological service synthesized with a review of current trends and the literature, it further explores the future development of China’s ocean-going weather routing services and technologies from multiple dimensions: enhancing maritime weather observation capabilities, developing advanced weather routing service models, upgrading autonomous and controllable global satellite communication systems, promoting intelligent navigation technologies to facilitate shipping’s low-carbon transition, and expanding meteorological support capabilities for Arctic shipping routes. The analysis identifies critical gaps and proposes strategic directions, offering a unique contribution to understanding the trajectory of weather routing services within China’s specific national context from the perspective of its primary national service provider. Full article
Show Figures

Figure 1

34 pages, 950 KiB  
Review
An Overview of Critical Success Factors for Digital Shipping Corridors: A Roadmap for Maritime Logistics Modernization
by Seyedeh Azadeh Alavi-Borazjani, Alberto Antonio Bengue, Valentina Chkoniya and Muhammad Noman Shafique
Sustainability 2025, 17(12), 5537; https://doi.org/10.3390/su17125537 - 16 Jun 2025
Viewed by 2128
Abstract
Digital Shipping Corridors (DSCs) are gaining traction as integrated models for increasing transparency, efficiency, and sustainability in maritime logistics. Yet, the enabling conditions for their effective implementation remain insufficiently explored. This study employs a qualitative thematic review approach, analyzing the academic literature, global [...] Read more.
Digital Shipping Corridors (DSCs) are gaining traction as integrated models for increasing transparency, efficiency, and sustainability in maritime logistics. Yet, the enabling conditions for their effective implementation remain insufficiently explored. This study employs a qualitative thematic review approach, analyzing the academic literature, global policy documents, and selected case studies to identify and synthesize the critical success factors for DSC development. The analysis reveals seven interdependent factors: technological infrastructure, economic feasibility, regulatory frameworks, logistical efficiency, logistical security, stakeholder collaboration, and environmental sustainability. These factors are not independent but interact dynamically, requiring coordinated development across technical, institutional, and environmental domains. This study proposes a dynamic interaction framework that illustrates how progress in one area (e.g., digital infrastructure) depends on readiness in others (e.g., governance and cross-sector collaboration). The outcomes contribute both conceptually and practically. The framework offers a system-level understanding of DSC implementation and identifies key leverage points for intervention. The findings provide strategic guidance for policymakers, port authorities, and supply chain stakeholders pursuing digitally enabled sustainable maritime corridors. This study also highlights areas for future empirical validation, particularly in relation to governance integration and cross-border alignment. Full article
Show Figures

Figure 1

18 pages, 3291 KiB  
Article
Monocular Unmanned Boat Ranging System Based on YOLOv11-Pose Critical Point Detection and Camera Geometry
by Yuzhen Wu, Yucheng Suo, Xinqiang Chen, Yongsheng Yang, Han Zhang, Zichuang Wang and Octavian Postolache
J. Mar. Sci. Eng. 2025, 13(6), 1172; https://doi.org/10.3390/jmse13061172 - 14 Jun 2025
Viewed by 359
Abstract
Unmanned boat distance detection is an important foundation for autonomous navigation tasks of unmanned boats. Monocular vision ranging has the advantages of low hardware equipment requirements, simple deployment, and high efficiency of distance detection. Unmanned boats can sense the real-time navigational situation of [...] Read more.
Unmanned boat distance detection is an important foundation for autonomous navigation tasks of unmanned boats. Monocular vision ranging has the advantages of low hardware equipment requirements, simple deployment, and high efficiency of distance detection. Unmanned boats can sense the real-time navigational situation of waters through monocular vision ranging, providing data support for their autonomous navigation. This paper establishes a framework for unmanned boat distance detection. The framework extracts and recognizes the features of an unmanned boat through Yolov11m-pose and selects the key points of the ship for physical distance mapping. Using the camera calibration to obtain the pixel focal length, the main point coordinates and other parameters are obtained. The number of pixel points in the image key point to the image center pixel and the actual distance of the camera from the horizontal plane are combined with the focal length of the camera for triangular similarity conversion. These data are fused with the camera pitch angle and other parameters to obtain the final distance. At the same time, experimental verification of the key point detection model demonstrates that it fully meets the requirements for unmanned boat ranging tasks, as assessed by Precision, Recall, mAP50, mAP50-95 and other indicators. These indicators show that Yolov11m-pose has a better accuracy in the key point detection task with an unmanned boat. The verification experiments also illustrate the accuracy of the key point-based physical distance mapping compared with the traditional detection frame-based physical distance mapping, which was assessed by the mean squared error (MSE), the root mean square error (RMSE), and the mean absolute error (MAE). The metrics show that key point-based unmanned boat distance mapping has greater accuracy in a variety of environmental situations, which verifies the effectiveness of this approach. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 5553 KiB  
Article
Data-Driven Multi-Scale Channel-Aligned Transformer for Low-Carbon Autonomous Vessel Operations: Enhancing CO2 Emission Prediction and Green Autonomous Shipping Efficiency
by Jiahao Ni, Hongjun Tian, Kaijie Zhang, Yihong Xue and Yang Xiong
J. Mar. Sci. Eng. 2025, 13(6), 1143; https://doi.org/10.3390/jmse13061143 - 9 Jun 2025
Viewed by 497
Abstract
The accurate prediction of autonomous vessel CO2 emissions is critical for achieving IMO 2050 carbon neutrality and optimizing low-carbon maritime operations. Traditional models face limitations in real-time multi-source data analysis and dynamic cross-variable dependency modeling, hindering data-driven decision-making for sustainable autonomous shipping. [...] Read more.
The accurate prediction of autonomous vessel CO2 emissions is critical for achieving IMO 2050 carbon neutrality and optimizing low-carbon maritime operations. Traditional models face limitations in real-time multi-source data analysis and dynamic cross-variable dependency modeling, hindering data-driven decision-making for sustainable autonomous shipping. This study proposes a Multi-scale Channel-aligned Transformer (MCAT) model, integrated with a 5G–satellite–IoT communication architecture, to address these challenges. The MCAT model employs multi-scale token reconstruction and a dual-level attention mechanism, effectively capturing spatiotemporal dependencies in heterogeneous data streams (AIS, sensors, weather) while suppressing high-frequency noise. To enable seamless data collaboration, a hybrid transmission framework combining satellite (Inmarsat/Iridium), 5G URLLC slicing, and industrial Ethernet is designed, achieving ultra-low latency (10 ms) and nanosecond-level synchronization via IEEE 1588v2. Validated on a 22-dimensional real autonomous vessel dataset, MCAT reduces prediction errors by 12.5% MAE and 24% MSE compared to state-of-the-art methods, demonstrating superior robustness under noisy scenarios. Furthermore, the proposed architecture supports smart autonomous shipping solutions by providing demonstrably interpretable emission insights through its dual-level attention mechanism (visualized via attention maps) for route optimization, fuel efficiency enhancement, and compliance with CII regulations. This research bridges AI-driven predictive analytics with green autonomous shipping technologies, offering a scalable framework for digitalized and sustainable maritime operations. Full article
(This article belongs to the Special Issue Sustainable Maritime Transport and Port Intelligence)
Show Figures

Figure 1

20 pages, 772 KiB  
Article
A DDQN-Guided Dual-Population Evolutionary Multitasking Framework for Constrained Multi-Objective Ship Berthing
by Jinyou Mou and Qidan Zhu
J. Mar. Sci. Eng. 2025, 13(6), 1068; https://doi.org/10.3390/jmse13061068 - 28 May 2025
Viewed by 361
Abstract
Autonomous ship berthing requires advanced path planning to balance multiple objectives, such as minimizing berthing time, reducing energy consumption, and ensuring safety under dynamic environmental constraints. However, traditional planning and learning methods often suffer from inefficient search or sparse rewards in such constrained [...] Read more.
Autonomous ship berthing requires advanced path planning to balance multiple objectives, such as minimizing berthing time, reducing energy consumption, and ensuring safety under dynamic environmental constraints. However, traditional planning and learning methods often suffer from inefficient search or sparse rewards in such constrained and high-dimensional settings. This study introduces a double deep Q-network (DDQN)-guided dual-population constrained multi-objective evolutionary algorithm (CMOEA) framework for autonomous ship berthing. By integrating deep reinforcement learning (DRL) with CMOEA, the framework employs DDQN to dynamically guide operator selection, enhancing search efficiency and solution diversity. The designed reward function optimizes thrust, time, and heading accuracy while accounting for vessel kinematics, water currents, and obstacles. Simulations on the CSAD vessel model demonstrate that this framework outperforms baseline algorithms such as evolutionary multitasking constrained multi-objective optimization (EMCMO), DQN, Q-learning, and non-dominated sorting genetic algorithm II (NSGA-II), achieving superior efficiency and stability while maintaining the required berthing angle. The framework also exhibits strong adaptability across varying environmental conditions, making it a promising solution for autonomous ship berthing in port environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop