Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,944)

Search Parameters:
Keywords = attentional capture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4847 KiB  
Article
FCA-STNet: Spatiotemporal Growth Prediction and Phenotype Extraction from Image Sequences for Cotton Seedlings
by Yiping Wan, Bo Han, Pengyu Chu, Qiang Guo and Jingjing Zhang
Plants 2025, 14(15), 2394; https://doi.org/10.3390/plants14152394 (registering DOI) - 2 Aug 2025
Abstract
To address the limitations of the existing cotton seedling growth prediction methods in field environments, specifically, poor representation of spatiotemporal features and low visual fidelity in texture rendering, this paper proposes an algorithm for the prediction of cotton seedling growth from images based [...] Read more.
To address the limitations of the existing cotton seedling growth prediction methods in field environments, specifically, poor representation of spatiotemporal features and low visual fidelity in texture rendering, this paper proposes an algorithm for the prediction of cotton seedling growth from images based on FCA-STNet. The model leverages historical sequences of cotton seedling RGB images to generate an image of the predicted growth at time t + 1 and extracts 37 phenotypic traits from the predicted image. A novel STNet structure is designed to enhance the representation of spatiotemporal dependencies, while an Adaptive Fine-Grained Channel Attention (FCA) module is integrated to capture both global and local feature information. This attention mechanism focuses on individual cotton plants and their textural characteristics, effectively reducing the interference from common field-related challenges such as insufficient lighting, leaf fluttering, and wind disturbances. The experimental results demonstrate that the predicted images achieved an MSE of 0.0086, MAE of 0.0321, SSIM of 0.8339, and PSNR of 20.7011 on the test set, representing improvements of 2.27%, 0.31%, 4.73%, and 11.20%, respectively, over the baseline STNet. The method outperforms several mainstream spatiotemporal prediction models. Furthermore, the majority of the predicted phenotypic traits exhibited correlations with actual measurements with coefficients above 0.8, indicating high prediction accuracy. The proposed FCA-STNet model enables visually realistic prediction of cotton seedling growth in open-field conditions, offering a new perspective for research in growth prediction. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

21 pages, 6618 KiB  
Article
Comparison of Deep Learning Models for LAI Simulation and Interpretable Hydrothermal Coupling in the Loess Plateau
by Junpo Yu, Yajun Si, Wen Zhao, Zeyu Zhou, Jiming Jin, Wenjun Yan, Xiangyu Shao, Zhixiang Xu and Junwei Gan
Plants 2025, 14(15), 2391; https://doi.org/10.3390/plants14152391 (registering DOI) - 2 Aug 2025
Abstract
As the world’s largest loess deposit region, the Loess Plateau’s vegetation dynamics are crucial for its regional water–heat balance and ecosystem functioning. Leaf Area Index (LAI) serves as a key indicator bridging canopy architecture and plant physiological activities. Existing studies have made significant [...] Read more.
As the world’s largest loess deposit region, the Loess Plateau’s vegetation dynamics are crucial for its regional water–heat balance and ecosystem functioning. Leaf Area Index (LAI) serves as a key indicator bridging canopy architecture and plant physiological activities. Existing studies have made significant advancements in simulating LAI, yet accurate LAI simulation remains challenging. To address this challenge and gain deeper insights into the environmental controls of LAI, this study aims to accurately simulate LAI in the Loess Plateau using deep learning models and to elucidate the spatiotemporal influence of soil moisture and temperature on LAI dynamics. For this purpose, we used three deep learning models, namely Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), and Interpretable Multivariable (IMV)-LSTM, to simulate LAI in the Loess Plateau, only using soil moisture and temperature as inputs. Results indicated that our approach outperformed traditional models and effectively captured LAI variations across different vegetation types. The attention analysis revealed that soil moisture mainly influenced LAI in the arid northwest and temperature was the predominant effect in the humid southeast. Seasonally, soil moisture was crucial in spring and summer, notably in grasslands and croplands, whereas temperature dominated in autumn and winter. Notably, forests had the longest temperature-sensitive periods. As LAI increased, soil moisture became more influential, and at peak LAI, both factors exerted varying controls on different vegetation types. These findings demonstrated the strength of deep learning for simulating vegetation–climate interactions and provided insights into hydrothermal regulation mechanisms in semiarid regions. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

19 pages, 1160 KiB  
Article
Multi-User Satisfaction-Driven Bi-Level Optimization of Electric Vehicle Charging Strategies
by Boyin Chen, Jiangjiao Xu and Dongdong Li
Energies 2025, 18(15), 4097; https://doi.org/10.3390/en18154097 (registering DOI) - 1 Aug 2025
Abstract
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic [...] Read more.
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic classification of user types. A multidimensional decision-making environment is established for three representative user categories—residential, commercial, and industrial—by synthesizing time-variant electricity pricing models with dynamic carbon emission pricing mechanisms. A bi-level optimization architecture is subsequently formulated, leveraging deep reinforcement learning (DRL) to capture user-specific demand characteristics through customized reward functions and adaptive constraint structures. Validation is conducted within a high-fidelity simulation environment featuring 90 autonomous EV charging agents operating in a metropolitan parking facility. Empirical results indicate that the proposed typology-driven approach yields a 32.6% average cost reduction across user groups relative to baseline charging protocols, with statistically significant improvements in expenditure optimization (p < 0.01). Further interpretability analysis employing gradient-weighted class activation mapping (Grad-CAM) demonstrates that the model’s attention mechanisms are well aligned with theoretically anticipated demand prioritization patterns across the distinct user types, thereby confirming the decision-theoretic soundness of the framework. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

22 pages, 6482 KiB  
Article
Surface Damage Detection in Hydraulic Structures from UAV Images Using Lightweight Neural Networks
by Feng Han and Chongshi Gu
Remote Sens. 2025, 17(15), 2668; https://doi.org/10.3390/rs17152668 (registering DOI) - 1 Aug 2025
Abstract
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial [...] Read more.
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial vehicles (UAVs) enable efficient acquisition of high-resolution visual data across expansive hydraulic environments. However, existing deep learning (DL) models often lack architectural adaptations for the visual complexities of UAV imagery, including low-texture contrast, noise interference, and irregular crack patterns. To address these challenges, this study proposes a lightweight, robust, and high-precision segmentation framework, called LFPA-EAM-Fast-SCNN, specifically designed for pixel-level damage detection in UAV-captured images of hydraulic concrete surfaces. The developed DL-based model integrates an enhanced Fast-SCNN backbone for efficient feature extraction, a Lightweight Feature Pyramid Attention (LFPA) module for multi-scale context enhancement, and an Edge Attention Module (EAM) for refined boundary localization. The experimental results on a custom UAV-based dataset show that the proposed damage detection method achieves superior performance, with a precision of 0.949, a recall of 0.892, an F1 score of 0.906, and an IoU of 87.92%, outperforming U-Net, Attention U-Net, SegNet, DeepLab v3+, I-ST-UNet, and SegFormer. Additionally, it reaches a real-time inference speed of 56.31 FPS, significantly surpassing other models. The experimental results demonstrate the proposed framework’s strong generalization capability and robustness under varying noise levels and damage scenarios, underscoring its suitability for scalable, automated surface damage assessment in UAV-based remote sensing of civil infrastructure. Full article
Show Figures

Figure 1

18 pages, 1811 KiB  
Article
A Multimodal Deep Learning Framework for Consistency-Aware Review Helpfulness Prediction
by Seonu Park, Xinzhe Li, Qinglong Li and Jaekyeong Kim
Electronics 2025, 14(15), 3089; https://doi.org/10.3390/electronics14153089 (registering DOI) - 1 Aug 2025
Abstract
Multimodal review helpfulness prediction (MRHP) aims to identify the most helpful reviews by leveraging both textual and visual information. However, prior studies have primarily focused on modeling interactions between these modalities, often overlooking the consistency between review content and ratings, which is a [...] Read more.
Multimodal review helpfulness prediction (MRHP) aims to identify the most helpful reviews by leveraging both textual and visual information. However, prior studies have primarily focused on modeling interactions between these modalities, often overlooking the consistency between review content and ratings, which is a key indicator of review credibility. To address this limitation, we propose CRCNet (Content–Rating Consistency Network), a novel MRHP model that jointly captures the semantic consistency between review content and ratings while modeling the complementary characteristics of text and image modalities. CRCNet employs RoBERTa and VGG-16 to extract semantic and visual features, respectively. A co-attention mechanism is applied to capture the consistency between content and rating, and a Gated Multimodal Unit (GMU) is adopted to integrate consistency-aware representations. Experimental results on two large-scale Amazon review datasets demonstrate that CRCNet outperforms both unimodal and multimodal baselines in terms of MAE, MSE, RMSE, and MAPE. Further analysis confirms the effectiveness of content–rating consistency modeling and the superiority of the proposed fusion strategy. These findings suggest that incorporating semantic consistency into multimodal architectures can substantially improve the accuracy and trustworthiness of review helpfulness prediction. Full article
22 pages, 24173 KiB  
Article
ScaleViM-PDD: Multi-Scale EfficientViM with Physical Decoupling and Dual-Domain Fusion for Remote Sensing Image Dehazing
by Hao Zhou, Yalun Wang, Wanting Peng, Xin Guan and Tao Tao
Remote Sens. 2025, 17(15), 2664; https://doi.org/10.3390/rs17152664 (registering DOI) - 1 Aug 2025
Abstract
Remote sensing images are often degraded by atmospheric haze, which not only reduces image quality but also complicates information extraction, particularly in high-level visual analysis tasks such as object detection and scene classification. State-space models (SSMs) have recently emerged as a powerful paradigm [...] Read more.
Remote sensing images are often degraded by atmospheric haze, which not only reduces image quality but also complicates information extraction, particularly in high-level visual analysis tasks such as object detection and scene classification. State-space models (SSMs) have recently emerged as a powerful paradigm for vision tasks, showing great promise due to their computational efficiency and robust capacity to model global dependencies. However, most existing learning-based dehazing methods lack physical interpretability, leading to weak generalization. Furthermore, they typically rely on spatial features while neglecting crucial frequency domain information, resulting in incomplete feature representation. To address these challenges, we propose ScaleViM-PDD, a novel network that enhances an SSM backbone with two key innovations: a Multi-scale EfficientViM with Physical Decoupling (ScaleViM-P) module and a Dual-Domain Fusion (DD Fusion) module. The ScaleViM-P module synergistically integrates a Physical Decoupling block within a Multi-scale EfficientViM architecture. This design enables the network to mitigate haze interference in a physically grounded manner at each representational scale while simultaneously capturing global contextual information to adaptively handle complex haze distributions. To further address detail loss, the DD Fusion module replaces conventional skip connections by incorporating a novel Frequency Domain Module (FDM) alongside channel and position attention. This allows for a more effective fusion of spatial and frequency features, significantly improving the recovery of fine-grained details, including color and texture information. Extensive experiments on nine publicly available remote sensing datasets demonstrate that ScaleViM-PDD consistently surpasses state-of-the-art baselines in both qualitative and quantitative evaluations, highlighting its strong generalization ability. Full article
Show Figures

Figure 1

15 pages, 4258 KiB  
Article
Complex-Scene SAR Aircraft Recognition Combining Attention Mechanism and Inner Convolution Operator
by Wansi Liu, Huan Wang, Jiapeng Duan, Lixiang Cao, Teng Feng and Xiaomin Tian
Sensors 2025, 25(15), 4749; https://doi.org/10.3390/s25154749 (registering DOI) - 1 Aug 2025
Abstract
Synthetic aperture radar (SAR), as an active microwave imaging system, has the capability of all-weather and all-time observation. In response to the challenges of aircraft detection in SAR images due to the complex background interference caused by the continuous scattering of airport buildings [...] Read more.
Synthetic aperture radar (SAR), as an active microwave imaging system, has the capability of all-weather and all-time observation. In response to the challenges of aircraft detection in SAR images due to the complex background interference caused by the continuous scattering of airport buildings and the demand for real-time processing, this paper proposes a YOLOv7-MTI recognition model that combines the attention mechanism and involution. By integrating the MTCN module and involution, performance is enhanced. The Multi-TASP-Conv network (MTCN) module aims to effectively extract low-level semantic and spatial information using a shared lightweight attention gate structure to achieve cross-dimensional interaction between “channels and space” with very few parameters, capturing the dependencies among multiple dimensions and improving feature representation ability. Involution helps the model adaptively adjust the weights of spatial positions through dynamic parameterized convolution kernels, strengthening the discrete strong scattering points specific to aircraft and suppressing the continuous scattering of the background, thereby alleviating the interference of complex backgrounds. Experiments on the SAR-AIRcraft-1.0 dataset, which includes seven categories such as A220, A320/321, A330, ARJ21, Boeing737, Boeing787, and others, show that the mAP and mRecall of YOLOv7-MTI reach 93.51% and 96.45%, respectively, outperforming Faster R-CNN, SSD, YOLOv5, YOLOv7, and YOLOv8. Compared with the basic YOLOv7, mAP is improved by 1.47%, mRecall by 1.64%, and FPS by 8.27%, achieving an effective balance between accuracy and speed, providing research ideas for SAR aircraft recognition. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

42 pages, 2867 KiB  
Article
A Heuristic Approach to Competitive Facility Location via Multi-View K-Means Clustering with Co-Regularization and Customer Behavior
by Thanathorn Phoka, Praeploy Poonprapan and Pornpimon Boriwan
Mathematics 2025, 13(15), 2481; https://doi.org/10.3390/math13152481 (registering DOI) - 1 Aug 2025
Abstract
Solving competitive facility location problems can optimize market share or operational efficiency in environments where multiple firms compete for customer attention. In such contexts, facility attractiveness is shaped not only by geographic proximity but also by customer preference characteristics. This study presents a [...] Read more.
Solving competitive facility location problems can optimize market share or operational efficiency in environments where multiple firms compete for customer attention. In such contexts, facility attractiveness is shaped not only by geographic proximity but also by customer preference characteristics. This study presents a novel heuristic framework that integrates multi-view K-means clustering with customer behavior modeling reinforced by a co-regularization mechanism to align clustering results across heterogeneous data views. By jointly exploiting spatial and behavioral information, the framework clusters customers and facilities into meaningful market segments. Within each segment, a bilevel optimization model is applied to represent the sequential decision-making of competing entities—where a leader first selects facility locations, followed by a reactive follower. An empirical evaluation on a real-world dataset from San Francisco demonstrates that the proposed approach, using optimal co-regularization parameters, achieves a total runtime of approximately 4.00 s—representing a 99.34% reduction compared to the full CFLBP-CB model (608.58 s) and a 99.32% reduction compared to a genetic algorithm (585.20 s). Concurrently, it yields an overall profit of 16,104.17, which is an approximate 0.72% increase over the Direct CFLBP-CB profit of 15,988.27 and is only 0.21% lower than the genetic algorithm’s highest profit of 16,137.75. Moreover, comparative analysis reveals that the proposed multi-view clustering with co-regularization outperforms all single-view baselines, including K-means, spectral, and hierarchical methods. This superiority is evidenced by an approximate 5.21% increase in overall profit and a simultaneous reduction in optimization time, thereby demonstrating its effectiveness in capturing complementary spatial and behavioral structures for competitive facility location. Notably, the proposed two-stage approach achieves high-quality solutions with significantly shorter computation times, making it suitable for large-scale or time-sensitive competitive facility planning tasks. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

23 pages, 3099 KiB  
Article
Explainable Multi-Scale CAM Attention for Interpretable Cloud Segmentation in Astro-Meteorological Applications
by Qing Xu, Zichen Zhang, Guanfang Wang and Yunjie Chen
Appl. Sci. 2025, 15(15), 8555; https://doi.org/10.3390/app15158555 (registering DOI) - 1 Aug 2025
Abstract
Accurate cloud segmentation is critical for astronomical observations and solar forecasting. However, traditional threshold- and texture-based methods suffer from limited accuracy (65–80%) under complex conditions such as thin cirrus or twilight transitions. Although the deep-learning segmentation method based on U-Net effectively captures low-level [...] Read more.
Accurate cloud segmentation is critical for astronomical observations and solar forecasting. However, traditional threshold- and texture-based methods suffer from limited accuracy (65–80%) under complex conditions such as thin cirrus or twilight transitions. Although the deep-learning segmentation method based on U-Net effectively captures low-level and high-level features and achieves significant progress in accuracy, current methods still lack interpretability and multi-scale feature integration and usually produce fuzzy boundaries or fragmented predictions. In this paper, we propose multi-scale CAM, an explainable AI (XAI) framework that integrates class activation mapping (CAM) with hierarchical feature fusion to quantify pixel-level attention across hierarchical features, thereby enhancing the model’s discriminative capability. To achieve precise segmentation, we integrate CAM into an improved U-Net architecture, incorporating multi-scale CAM attention for adaptive feature fusion and dilated residual modules for large-scale context extraction. Experimental results on the SWINSEG dataset demonstrate that our method outperforms existing state-of-the-art methods, improving recall by 3.06%, F1 score by 1.49%, and MIoU by 2.21% over the best baseline. The proposed framework balances accuracy, interpretability, and computational efficiency, offering a trustworthy solution for cloud detection systems in operational settings. Full article
(This article belongs to the Special Issue Explainable Artificial Intelligence Technology and Its Applications)
Show Figures

Figure 1

19 pages, 1954 KiB  
Article
Image Sensor-Based Three-Dimensional Visible Light Positioning for Various Environments
by Xiangyu Liu, Junqi Zhang, Song Song and Lei Guo
Sensors 2025, 25(15), 4741; https://doi.org/10.3390/s25154741 (registering DOI) - 1 Aug 2025
Abstract
Research on image sensor (IS)-based visible light positioning systems has attracted widespread attention. However, when the receiver is tilted or under a single LED, the positioning system can only achieve two-dimensional (2D) positioning and requires the assistance of inertial measurement units (IMU). When [...] Read more.
Research on image sensor (IS)-based visible light positioning systems has attracted widespread attention. However, when the receiver is tilted or under a single LED, the positioning system can only achieve two-dimensional (2D) positioning and requires the assistance of inertial measurement units (IMU). When the LED is not captured or decoding fails, the system’s positioning error increases further. Thus, we propose a novel three-dimensional (3D) visible light positioning system based on image sensors for various environments. Specifically, (1) we use IMU to obtain the receiver’s state and calculate the receiver’s 2D position. Then, we fit the height–size curve to calculate the receiver’s height, avoiding the coordinate iteration error in traditional 3D positioning methods. (2) When no LED or decoding fails, we propose a firefly-assisted unscented particle filter (FA-UPF) algorithm to predict the receiver’s position, achieving high-precision dynamic positioning. The experimental results show that the system positioning error under a single LED is within 10 cm, and the average positioning error through FA-UPF under no light source is 6.45 cm. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

19 pages, 4552 KiB  
Article
Cognitive–Affective Dynamics of Political Attitude Polarization: EEG-Based Behavioral Evidence from a COVID-19 Vaccine Mandate Task
by Jing Li and Zhiwei Xu
Behav. Sci. 2025, 15(8), 1043; https://doi.org/10.3390/bs15081043 - 1 Aug 2025
Abstract
Political polarization in policy evaluations arises from identity-driven cognitive–affective dynamics, yet the neural mechanisms underlying the real-time processing of policy texts remain unexplored. This study bridges this gap by employing EEG to capture neurobehavioral responses during a COVID-19 vaccine mandate judgment task. The [...] Read more.
Political polarization in policy evaluations arises from identity-driven cognitive–affective dynamics, yet the neural mechanisms underlying the real-time processing of policy texts remain unexplored. This study bridges this gap by employing EEG to capture neurobehavioral responses during a COVID-19 vaccine mandate judgment task. The analysis of 70 politically stratified participants revealed significantly elevated gamma1 (30–50 Hz) activity in the right prefrontal cortex among policy supporters, reflecting enhanced attentional engagement and value integration. These topographically specific neural dissociations demonstrate how ideological alignment modulates cognitive–affective processing. Our findings establish EEG as a robust tool for quantifying implicit identity-driven evaluations, offering new pathways to decode polarization in contested policy contexts. Full article
(This article belongs to the Special Issue Neural Correlates of Cognitive and Affective Processing)
Show Figures

Figure 1

26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

26 pages, 8736 KiB  
Article
Uncertainty-Aware Fault Diagnosis of Rotating Compressors Using Dual-Graph Attention Networks
by Seungjoo Lee, YoungSeok Kim, Hyun-Jun Choi and Bongjun Ji
Machines 2025, 13(8), 673; https://doi.org/10.3390/machines13080673 (registering DOI) - 1 Aug 2025
Abstract
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a [...] Read more.
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a Bayesian GAT method specifically tailored for vibration-based compressor fault diagnosis. The approach integrates domain-specific digital-twin simulations built with Rotordynamic software (1.3.0), and constructs dual adjacency matrices to encode both physically informed and data-driven sensor relationships. Additionally, a hybrid forecasting-and-reconstruction objective enables the model to capture short-term deviations as well as long-term waveform fidelity. Monte Carlo dropout further decomposes prediction uncertainty into aleatoric and epistemic components, providing a more robust and interpretable model. Comparative evaluations against conventional Long Short-Term Memory (LSTM)-based autoencoder and forecasting methods demonstrate that the proposed framework achieves superior fault-detection performance across multiple fault types, including misalignment, bearing failure, and unbalance. Moreover, uncertainty analyses confirm that fault severity correlates with increasing levels of both aleatoric and epistemic uncertainty, reflecting heightened noise and reduced model confidence under more severe conditions. By enhancing GAT fundamentals with a domain-tailored dual-graph strategy, specialized Bayesian inference, and digital-twin data generation, this research delivers a comprehensive and interpretable solution for compressor fault diagnosis, paving the way for more reliable and risk-aware predictive maintenance in complex rotating machinery. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

12 pages, 1090 KiB  
Article
Behavioral Interference by Emotional Stimuli: Sequential Modulation by Perceptual Conditions but Not by Emotional Primes
by Andrea De Cesarei, Virginia Tronelli, Serena Mastria, Vera Ferrari and Maurizio Codispoti
Vision 2025, 9(3), 66; https://doi.org/10.3390/vision9030066 (registering DOI) - 1 Aug 2025
Abstract
Previous studies observed that emotional scenes, presented as distractors, capture attention and interfere with an ongoing task. This behavioral interference has been shown to be elicited by the semantic rather than by the perceptual properties of a scene, as it resisted the application [...] Read more.
Previous studies observed that emotional scenes, presented as distractors, capture attention and interfere with an ongoing task. This behavioral interference has been shown to be elicited by the semantic rather than by the perceptual properties of a scene, as it resisted the application of low-pass spatial frequency filters. Some studies observed that the visual system can adapt to perceptual conditions; however, little is known concerning whether attentional capture by emotional stimuli can also be modulated by the sequential repetition of viewing conditions or of emotional content. In the present study, we asked participants to perform a parity task while viewing irrelevant natural scenes, which could be either emotional or neutral. These scenes could be either blurred (low-pass filter) or perceptually intact, and the order of presentation was balanced to study the effects of sequential repetition of perceptual conditions. The results indicate that affective modulation was most pronounced when the same viewing condition (either intact or blurred) was repeated, with faster responses when perceptual conditions were repeated for neutral distractors, but to a lesser extent for emotional ones. These data suggest that emotional interference in an attentional task can be modulated by serial sensitization in the processing of spatial frequencies. Full article
(This article belongs to the Section Visual Neuroscience)
Show Figures

Figure 1

21 pages, 5882 KiB  
Article
Leveraging Prior Knowledge in a Hybrid Network for Multimodal Brain Tumor Segmentation
by Gangyi Zhou, Xiaowei Li, Hongran Zeng, Chongyang Zhang, Guohang Wu and Wuxiang Zhao
Sensors 2025, 25(15), 4740; https://doi.org/10.3390/s25154740 (registering DOI) - 1 Aug 2025
Abstract
Recent advancements in deep learning have significantly enhanced brain tumor segmentation from MRI data, providing valuable support for clinical diagnosis and treatment planning. However, challenges persist in effectively integrating prior medical knowledge, capturing global multimodal features, and accurately delineating tumor boundaries. To address [...] Read more.
Recent advancements in deep learning have significantly enhanced brain tumor segmentation from MRI data, providing valuable support for clinical diagnosis and treatment planning. However, challenges persist in effectively integrating prior medical knowledge, capturing global multimodal features, and accurately delineating tumor boundaries. To address these challenges, the Hybrid Network for Multimodal Brain Tumor Segmentation (HN-MBTS) is proposed, which incorporates prior medical knowledge to refine feature extraction and boundary precision. Key innovations include the Two-Branch, Two-Model Attention (TB-TMA) module for efficient multimodal feature fusion, the Linear Attention Mamba (LAM) module for robust multi-scale feature modeling, and the Residual Attention (RA) module for enhanced boundary refinement. Experimental results demonstrate that this method significantly outperforms existing approaches. On the BraT2020 and BraT2023 datasets, the method achieved average Dice scores of 87.66% and 88.07%, respectively. These results confirm the superior segmentation accuracy and efficiency of the approach, highlighting its potential to provide valuable assistance in clinical settings. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

Back to TopTop