Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (295)

Search Parameters:
Keywords = atmospheric CO2 trend

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1415 KiB  
Article
Effects of Different Packaging on the Purine Content and Key Enzymes of Refrigerated Yellow Croaker (Larimichthys crocea)
by Tiansheng Xu, Wenxuan Lu, Bohan Chen, Dapeng Li and Jing Xie
Foods 2025, 14(15), 2732; https://doi.org/10.3390/foods14152732 - 5 Aug 2025
Viewed by 301
Abstract
In this study, we investigated the effects of air packaging, vacuum packaging and modified atmosphere packaging (CO2/N2: 80/20) on the purine metabolism and enzyme activities of refrigerated large yellow croakers. The results showed that modified atmosphere packaging significantly inhibited [...] Read more.
In this study, we investigated the effects of air packaging, vacuum packaging and modified atmosphere packaging (CO2/N2: 80/20) on the purine metabolism and enzyme activities of refrigerated large yellow croakers. The results showed that modified atmosphere packaging significantly inhibited microbial growth, delayed adenosine triphosphate degradation and maintained higher IMP content (1.93 μmol/g on day 21) compared to the air packaging group (2.82 μmol/g on day 12). The total purine content increased with storage time, with hypoxanthine content increasing significantly and occupying most of the total content, which was the key factor for the elevation of purine, followed by adenine content showing a significant decreasing trend. Hypoxanthine accumulation was significantly suppressed in the modified atmosphere packaging group (2.31 μmol/g on day 18), which was much lower than that in the air packaging group (5.64 μmol/g), whereas xanthine and guanine did not show significant differences among the groups. The key enzymes xanthine oxidase and purine nucleoside phosphorylase were much less active in modified atmosphere packaging, effectively delaying the cascade reaction of inosine monophosphate → hypoxanthine → xanthine. The study confirmed that modified atmosphere packaging intervenes in purine metabolism through enzyme activity regulation, providing a theoretical basis for the preservation of low purine aquatic products. Full article
Show Figures

Figure 1

38 pages, 6505 KiB  
Review
Trends in Oil Spill Modeling: A Review of the Literature
by Rodrigo N. Vasconcelos, André T. Cunha Lima, Carlos A. D. Lentini, José Garcia V. Miranda, Luís F. F. de Mendonça, Diego P. Costa, Soltan G. Duverger and Elaine C. B. Cambui
Water 2025, 17(15), 2300; https://doi.org/10.3390/w17152300 - 2 Aug 2025
Viewed by 465
Abstract
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused [...] Read more.
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused on examining trends in scientific publications, utilizing the complete dataset derived after systematic screening and database integration. In the second phase, we applied elements of a systematic review to identify and evaluate the most influential contributions in the scientific field of oil spill simulations. Our analysis revealed a steady and accelerating growth of research activity over the past five decades, with a particularly notable expansion in the last two. The field has also experienced a marked increase in collaborative practices, including a rise in international co-authorship and multi-authored contributions, reflecting a more global and interdisciplinary research landscape. We cataloged the key modeling frameworks that have shaped the field from established systems such as OSCAR, OIL-MAP/SIMAP, and GNOME to emerging hybrid and Lagrangian approaches. Hydrodynamic models were consistently central, often integrated with biogeochemical, wave, atmospheric, and oil-spill-specific modules. Environmental variables such as wind, ocean currents, and temperature were frequently used to drive model behavior. Geographically, research has concentrated on ecologically and economically sensitive coastal and marine regions. We conclude that future progress will rely on the real-time integration of high-resolution environmental data streams, the development of machine-learning-based surrogate models to accelerate computations, and the incorporation of advanced biodegradation and weathering mechanisms supported by experimental data. These advancements are expected to enhance the accuracy, responsiveness, and operational value of oil spill modeling tools, supporting environmental monitoring and emergency response. Full article
(This article belongs to the Special Issue Advanced Remote Sensing for Coastal System Monitoring and Management)
Show Figures

Figure 1

16 pages, 2720 KiB  
Communication
Wildland and Forest Fire Emissions on Federally Managed Land in the United States, 2001–2021
by Coeli M. Hoover and James E. Smith
Forests 2025, 16(8), 1205; https://doi.org/10.3390/f16081205 - 22 Jul 2025
Viewed by 308
Abstract
In the United States, ecosystems regularly experience wildfires and as fire seasons lengthen, fires are becoming a more important disturbance. While all types of disturbance have impacts on the carbon cycle, fires result in immediate emissions into the atmosphere. To assist managers in [...] Read more.
In the United States, ecosystems regularly experience wildfires and as fire seasons lengthen, fires are becoming a more important disturbance. While all types of disturbance have impacts on the carbon cycle, fires result in immediate emissions into the atmosphere. To assist managers in assessing wildland fire impacts, particularly on federally managed land, we developed estimates of area burned and related emissions for a 21-year period. These estimates are based on wildland fires defined by the interagency Monitoring Trends in Burn Severity database; emissions are simulated through the Wildland Fire Emissions Inventory System; and the classification of public land is performed according to the US Geological Survey’s Protected Areas Database of the United States. Wildland fires on federal land contributed 62 percent of all annual CO2 emissions from wildfires in the United States between 2001 and 2021. During this period, emissions from the forest fire subset of wildland fires ranged from 328 Tg CO2 in 2004 to 37 Tg CO2 in 2001. While forest fires averaged 38 percent of burned area, they represent the majority—59 to 89 percent of annual emissions—relative to fires in all ecosystems, including non-forest. Wildland fire emissions on land belonging to the federal government accounted for 44 to 77 percent of total annual fire emissions for the entire United States. Land managed by three federal agencies—the Forest Service, the Bureau of Land Management, and the Fish and Wildlife Service—accounted for 93 percent of fire emissions from federal land over the course of the study period, but year-to-year contributions varied. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

29 pages, 32010 KiB  
Article
Assessing Environmental Sustainability in the Eastern Mediterranean Under Anthropogenic Air Pollution Risks Through Remote Sensing and Google Earth Engine Integration
by Mohannad Ali Loho, Almustafa Abd Elkader Ayek, Wafa Saleh Alkhuraiji, Safieh Eid, Nazih Y. Rebouh, Mahmoud E. Abd-Elmaboud and Youssef M. Youssef
Atmosphere 2025, 16(8), 894; https://doi.org/10.3390/atmos16080894 - 22 Jul 2025
Viewed by 932
Abstract
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using [...] Read more.
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using Sentinel-5P TROPOMI satellite data processed through Google Earth Engine. Monthly concentration averages were examined across eight key locations using linear regression analysis to determine temporal trends, with Spearman’s rank correlation coefficients calculated between pollutant levels and five meteorological parameters (temperature, humidity, wind speed, atmospheric pressure, and precipitation) to determine the influence of political governance, economic conditions, and environmental sustainability factors on pollution dynamics. Quality assurance filtering retained only measurements with values ≥ 0.75, and statistical significance was assessed at a p < 0.05 level. The findings reveal distinctive spatiotemporal patterns that reflect the region’s complex political-economic landscape. NO2 concentrations exhibited clear political signatures, with opposition-controlled territories showing upward trends (Al-Rai: 6.18 × 10−8 mol/m2) and weak correlations with climatic variables (<0.20), indicating consistent industrial operations. In contrast, government-controlled areas demonstrated significant downward trends (Hessia: −2.6 × 10−7 mol/m2) with stronger climate–pollutant correlations (0.30–0.45), reflecting the impact of economic sanctions on industrial activities. CO concentrations showed uniform downward trends across all locations regardless of political control. This study contributes significantly to multiple Sustainable Development Goals (SDGs), providing critical baseline data for SDG 3 (Health and Well-being), mapping urban pollution hotspots for SDG 11 (Sustainable Cities), demonstrating climate–pollution correlations for SDG 13 (Climate Action), revealing governance impacts on environmental patterns for SDG 16 (Peace and Justice), and developing transferable methodologies for SDG 17 (Partnerships). These findings underscore the importance of incorporating environmental safeguards into post-conflict reconstruction planning to ensure sustainable development. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing (2nd Edition))
Show Figures

Figure 1

25 pages, 6820 KiB  
Article
Coccolithophore Assemblage Dynamics and Emiliania huxleyi Morphological Patterns During Three Sampling Campaigns Between 2017 and 2019 in the South Aegean Sea (Greece, NE Mediterranean)
by Patrick James F. Penales, Elisavet Skampa, Margarita D. Dimiza, Constantine Parinos, Dimitris Velaoras, Alexandra Pavlidou, Elisa Malinverno, Alexandra Gogou and Maria V. Triantaphyllou
Geosciences 2025, 15(7), 268; https://doi.org/10.3390/geosciences15070268 - 11 Jul 2025
Viewed by 785
Abstract
This study presents the living coccolithophore communities and the morphological variability of Emiliania huxleyi in the South Aegean Sea from three sampling regions during winter-early spring (March 2017, March 2019) and summer (August 2019). Emphasis is given to March 2017 to monitor the [...] Read more.
This study presents the living coccolithophore communities and the morphological variability of Emiliania huxleyi in the South Aegean Sea from three sampling regions during winter-early spring (March 2017, March 2019) and summer (August 2019). Emphasis is given to March 2017 to monitor the variations in coccolithophore assemblages after an exceptionally cold event in December 2016, which resulted in newly produced dense waters that ventilated the Aegean deep basins. The assemblages displayed distinct seasonality with the predominance of E. huxleyi and Syracosphaera molischii during winter-early spring, associated with the water column mixing. By contrast, summer assemblages were featured by holococcolithophores and typical taxa of warm, oligotrophic upper waters. It seems that the phytoplanktonic succession as well as the nutrient supply to the upper euphotic layers were affected by the water column perturbation during the extreme winter of 2016–2017, which led to strong convective mixing and dense water formation. The decreased coccosphere densities during March 2017, accompanied by the notable presence of diatoms, were most probably associated with a prolonged diatom bloom, causing delay in the development of the coccolithophore community and resulting in a nitrogen-limited setting. Emiliania huxleyi morphometry showed the characteristic seasonal calcification trend of the Aegean, with the dominance of smaller coccoliths in the summer and increased coccolith length and width during the cold season. The intense cold conditions and wind-induced mixing during the winter of 2016–2017 possibly increased the absorption of atmospheric CO2 in surface waters, causing increased acidity and the subsequent presence of etched/undercalcified E. huxleyi coccoliths and other taxa, most probably implying in situ calcite dissolution. Full article
(This article belongs to the Section Biogeosciences)
Show Figures

Figure 1

18 pages, 1178 KiB  
Review
Research on Using Ensemble Models to Assess the Impacts of Climate Change on Agriculture Production: A Review
by Leonardo Pinto de Magalhães, Adriana Cavalieri Sais and Fabrício Rossi
AgriEngineering 2025, 7(7), 219; https://doi.org/10.3390/agriengineering7070219 - 7 Jul 2025
Viewed by 518
Abstract
The use of artificial intelligence tools in agriculture is growing. In particular, the use of ensemble models. However, there are still few reviews on the use of these models in the study of the impacts of climate change on agriculture. Therefore, the aim [...] Read more.
The use of artificial intelligence tools in agriculture is growing. In particular, the use of ensemble models. However, there are still few reviews on the use of these models in the study of the impacts of climate change on agriculture. Therefore, the aim of this article is to review the use of such models and perform three key tasks: (1) identify topics in which ensemble models are used, (2) determine the most widely applied model and the predominant crops and regions, and (3) explore future applications and challenges. As a result, it was noted that the first studies, dating back to 2011, applied ensemble models to model invasive species. Since then, research has focused on changes in temperature and precipitation, with at least one study published every year. The most cited studies have dealt with land use classification, emphasizing its relevance to climate change studies. Notably, studies on carbon storage in soil and its capacity to remove CO2 from the atmosphere have become increasingly relevant. This analysis highlights the growing importance of ensemble models in climate-related agricultural research, outlining trends and key areas for future exploration. Full article
Show Figures

Figure 1

17 pages, 4789 KiB  
Article
Occurrence and Atmospheric Patterns Associated with Individual and Compound Heatwave–Ozone Events in São Paulo Megacity
by Vanessa Silveira Barreto Carvalho, Paola do Nascimento Silva, Aline Araújo de Freitas, Vitor Lucas dos Santos Rosa Tenório, Michelle Simões Reboita, Taciana Toledo de Almeida Albuquerque and Leila Droprinchinski Martins
Atmosphere 2025, 16(7), 822; https://doi.org/10.3390/atmos16070822 - 6 Jul 2025
Viewed by 488
Abstract
High ozone (O3) concentrations are frequently recorded in São Paulo Megacity, with extreme O3 levels often linked to high temperatures and heatwaves, phenomena expected to intensify with climate change. The co-occurrence of extreme O3 and heatwaves poses amplified risks [...] Read more.
High ozone (O3) concentrations are frequently recorded in São Paulo Megacity, with extreme O3 levels often linked to high temperatures and heatwaves, phenomena expected to intensify with climate change. The co-occurrence of extreme O3 and heatwaves poses amplified risks to environmental and human health. Hence, this study aims to analyze individual and compound extreme O3 and heatwave events and assess the associated atmospheric patterns. Hourly O3 and temperature (T) data from 20 sites (1998–2023) were used to calculate the maximum daily 8 h average O3 (MD8A-O3) and maximum daily temperature (Tmax). The Mann–Kendall test identified trends for these variables. The 90th percentile of data from September to March defined thresholds for extreme events. Events were classified as extreme when MD8A-O3 and Tmax exceeded their thresholds for at least six consecutive days. ERA5 data were used to evaluate atmospheric patterns during these events. The results show positive trends in MD8A-O3 in 62% of sites, with values exceeding WHO Air Quality Guidelines, alongside positive Tmax trends in 90% of sites. Over the study period, four compound events, seven heatwaves, and four extreme O3 events were identified. Compound and individual events were associated with the South America Subtropical Anticyclone and positive temperature anomalies. Individual O3 events were linked to cold anomalies south of 30° S and positive geopotential height anomalies at 850 hPa. These findings highlight the increasing occurrence of extreme O3 and heatwaves in São Paulo and their atmospheric drivers, offering insights to enhance awareness, forecasting, and policy responses to mitigate health and environmental impacts. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

23 pages, 4515 KiB  
Article
Impact of Coastal Beach Reclamation on Seasonal Greenhouse Gas Emissions: A Study of Diversified Saline–Alkaline Land Use Patterns
by Jiayi Xie, Ye Yuan, Xiaoqing Wang, Rui Zhang, Rui Zhong, Jiahao Zhai, Yumeng Lu, Jiawei Tao, Lijie Pu and Sihua Huang
Agriculture 2025, 15(13), 1403; https://doi.org/10.3390/agriculture15131403 - 29 Jun 2025
Viewed by 414
Abstract
Reclaiming coastal wetlands for agricultural purposes has led to intensified farming activities, which are anticipated to affect greenhouse gas (GHG) flux processes within coastal wetland ecosystems. However, how greenhouse gas exchanges respond to variations in agricultural reclamation activities across different years remains uncertain. [...] Read more.
Reclaiming coastal wetlands for agricultural purposes has led to intensified farming activities, which are anticipated to affect greenhouse gas (GHG) flux processes within coastal wetland ecosystems. However, how greenhouse gas exchanges respond to variations in agricultural reclamation activities across different years remains uncertain. To address this knowledge gap, this study characterized dynamic exchanges within the soil–plant–atmosphere continuum by employing continuous monitoring across four representative coastal wetland soil–vegetation systems in Jiangsu, China. The results show the carbon dioxide (CO2) and nitrous oxide (N2O) flux exchanges between the system and the atmosphere and soil–vegetation carbon pools, which revealed the drivers of carbon dynamics in the coastal wetland system. The four study sites, converted from coastal wetlands to agricultural lands at different times (years), generally act as CO2 sinks and N2O sources. Higher levels of CO2 sequestration occur as the age of reclamation rises. In terms of time scale, crops lands were found to be CO2 sinks during the growing period but became CO2 sources during the crop fallow period. Although the temporal trend of the N2O flux was generally smooth, reclaimed farmlands acted as net sources of N2O, particularly during the crop-growing period. The RDA and PLS-PM models illustrate that soil salinity, acidity, and hydrothermal conditions were the key drivers affecting the magnitude of the GHG flux exchanges under reclamation. This study demonstrates that GHG emissions from reclaimed wetlands can be effectively regulated through science-based land management, calling for prioritized attention to post-development practices rather than blanket restrictions on coastal exploitation. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 2031 KiB  
Article
Geochemical Characteristics and Paleoenvironmental Significance of the Xishanyao Formation Coal from the Xiheishan Mining Area, Zhundong Coalfield, Xinjiang, China
by Yongjie Hou, Kaixuan Zhang, Xiangcheng Jin, Yongjia Xu, Xiaotao Xu and Xiaoyun Yan
Minerals 2025, 15(7), 686; https://doi.org/10.3390/min15070686 - 27 Jun 2025
Viewed by 290
Abstract
The eastern Junggar Basin in Xinjiang, China is a key coal-bearing region dominated by the Middle Jurassic Xishanyao Formation. Despite its significance as a major coal resource base, detailed paleoenvironmental reconstructions of its coal seams remain limited. This study investigates the B1 [...] Read more.
The eastern Junggar Basin in Xinjiang, China is a key coal-bearing region dominated by the Middle Jurassic Xishanyao Formation. Despite its significance as a major coal resource base, detailed paleoenvironmental reconstructions of its coal seams remain limited. This study investigates the B1, B2, B3, and B5 coal seams of the Xishanyao Formation using X-ray fluorescence spectroscopy (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to assess geochemical indicators of the depositional environment during coal formation. The results show that the coal samples are characterized by high inertinite content and low vitrinite reflectance, indicative of low-rank coal. Slight enrichment of strontium (Sr) was observed in the B1, B2, and B5 seams, while cobalt (Co) showed minor enrichment in B3. Redox-sensitive elemental ratios (Ni/Co, V/Cr, and Mo) suggest that the peat-forming environment ranged from oxidizing to dysoxic conditions, with relatively high oxygen availability and strong hydrodynamic activity. A vertical trend of increasing paleosalinity and a shift from warm–humid to dry–hot paleoclimatic conditions was identified from the lower (B1) to upper (B5) coal seams. Additionally, the estimated atmospheric oxygen concentration during the Middle Jurassic was approximately 28.4%, well above the threshold for wildfire combustion. These findings provide new insights into the paleoenvironmental evolution of the Xishanyao Formation and offer a valuable geochemical framework for coal exploration and the assessment of coal-associated mineral resources in the eastern Junggar Basin. Full article
Show Figures

Figure 1

21 pages, 6105 KiB  
Article
Correlating XCO2 Trends over Texas, California, and Florida with Socioeconomic and Environmental Factors
by Shannon Lindsey, Mahesh Bade and Yang Li
Remote Sens. 2025, 17(13), 2187; https://doi.org/10.3390/rs17132187 - 25 Jun 2025
Viewed by 522
Abstract
Understanding the trends and drivers of greenhouse gases (GHGs) is vital to making effective climate mitigation strategies and benefiting human health. In this study, we investigate carbon dioxide (CO2) trends in the top three emitting states in the U.S. (i.e., Texas, [...] Read more.
Understanding the trends and drivers of greenhouse gases (GHGs) is vital to making effective climate mitigation strategies and benefiting human health. In this study, we investigate carbon dioxide (CO2) trends in the top three emitting states in the U.S. (i.e., Texas, California, and Florida) using column-averaged CO2 concentrations (XCO2) from the Greenhouse Gases Observing Satellite (GOSAT) from 2010 to 2022. Annual XCO2 enhancements are derived by removing regional background values (XCO2, enhancement), and their interannual changes (ΔXCO2, enhancement) are analyzed against key influencing factors, including population, gross domestic product (GDP), nonrenewable and renewable energy consumption, and normalized vegetation difference index (NDVI). Overall, interannual changes in socioeconomic factors, particularly GDP and energy consumption, are more strongly correlated with ΔXCO2, enhancement in Florida. In contrast, NDVI and state-specific environmental policies appear to play a more influential role in shaping XCO2 trends in California and Texas. These differences underscore the importance of regionally tailored approaches to emissions monitoring and mitigation. Although renewable energy use is increasing, CO2 trends remain primarily influenced by nonrenewable sources, limiting progress toward atmospheric CO2 reduction. Full article
Show Figures

Figure 1

16 pages, 3034 KiB  
Review
Diversified Cropping Modulates Microbial Communities and Greenhouse Gas Emissions by Enhancing Soil Nutrients
by Zhongyan Wang, Huaqiang Xuan, Bei Liu, Hongfeng Zhang, Tongyan Zheng, Yunxia Liu, Luping Dai, Yi Xie, Xianchao Shang, Li Zhang, Long Yang, Sitakanta Pattanaik, Ling Yuan and Xin Hou
Agronomy 2025, 15(6), 1472; https://doi.org/10.3390/agronomy15061472 - 17 Jun 2025
Viewed by 544
Abstract
Crop diversification has been acknowledged as a means of lowering the environmental impact of agriculture without sacrificing agricultural output in recent years due to the growth of intensive agriculture. Crop rotation and intercropping—the methodical growing of two or more crops on one plot—are [...] Read more.
Crop diversification has been acknowledged as a means of lowering the environmental impact of agriculture without sacrificing agricultural output in recent years due to the growth of intensive agriculture. Crop rotation and intercropping—the methodical growing of two or more crops on one plot—are promising practices in this regard. Therefore, we conducted a quantitative bibliometric analysis of observed data between 2014 and 2024 to identify current research hotspots and future research trends in intercropping and crop rotation. A further secondary search for research advances in four key sub-areas (soil physicochemical properties, microbial diversity, greenhouse gas emissions (CO2, N2O, or CH4) and crop yield) was conducted based on keyword clustering. Our findings suggest that a crop diversification strategy can significantly increase soil nutrient content, optimize soil physicochemical properties, and regulate microbial community structure. In addition, this strategy can help to reduce greenhouse gas emissions (CO2, N2O, CH4), which will have a positive impact on the atmospheric environment. Crop diversification improves crop yield and quality, which in turn increases farmers’ economic returns. In order to maximize the effective production methods of crop rotation and intercropping, and to increase the efficiency of resource usage, this paper examines the development of research and practice on two cropping patterns worldwide. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

22 pages, 10230 KiB  
Article
Near-Surface Water Vapor Content Based on SPICAV IR/VEx Observations in the 1.1 and 1.18 μm Transparency Windows of Venus
by Daria Evdokimova, Anna Fedorova, Nikolay Ignatiev, Oleg Korablev, Franck Montmessin and Jean-Loup Bertaux
Atmosphere 2025, 16(6), 726; https://doi.org/10.3390/atmos16060726 - 15 Jun 2025
Cited by 1 | Viewed by 457
Abstract
The SPICAV IR spectrometer aboard the Venus Express orbiter measured spectra of the 1.1 and 1.18 μm atmospheric transparency windows at the Venus night side in 2006–2014. The long-term measurements encompassed the major part of the Venus globe, including polar latitudes. For the [...] Read more.
The SPICAV IR spectrometer aboard the Venus Express orbiter measured spectra of the 1.1 and 1.18 μm atmospheric transparency windows at the Venus night side in 2006–2014. The long-term measurements encompassed the major part of the Venus globe, including polar latitudes. For the first time, the H2O volume mixing ratio in the deep Venus atmosphere at about 10–16 km has been retrieved for the entire SPICAV IR dataset using a radiative transfer model with multiple scattering. The retrieved H2O volume mixing ratio is found to be sensitive to different approximations of the H2O and CO2 absorption lines’ far wings and assumed surface emissivity. The global average of the H2O abundance retrieved for different parameters ranges from 23.6 ± 1.0 ppmv to 27.7 ± 1.2 ppmv. The obtained values are consistent with recent studies of water vapor below the cloud layer, showing the H2O mixing ratio below 30 ppmv. Within the considered dataset, the zonal mean of the H2O mixing ratio does not vary significantly from 60° S to 75° N, except for a 2 ppmv decrease noted at high latitudes. The H2O local time distribution is also uniform. The 8-year observation period revealed no significant long-term trends or periodicities. Full article
(This article belongs to the Section Planetary Atmospheres)
Show Figures

Figure 1

14 pages, 1604 KiB  
Article
Using Douglas Fir and European Larch Needles for the Assessment of Their Retention Capacity for Atmospheric Heavy Metals
by Dušan Jokanović, Ivana Stojiljković, Vesna Nikolić Jokanović, Kristina Živanović, Marko Marinković, Bojan Tubić and Filip Jovanović
Forests 2025, 16(6), 980; https://doi.org/10.3390/f16060980 - 11 Jun 2025
Cited by 1 | Viewed by 520
Abstract
Among numerous global problems, one of the most significant is air pollution. In this paper, unwashed (U) and water-washed (W) needles of two conifers—European larch and Douglas fir—were used to assess their capacity for the retention and accumulation of heavy metals. The needle [...] Read more.
Among numerous global problems, one of the most significant is air pollution. In this paper, unwashed (U) and water-washed (W) needles of two conifers—European larch and Douglas fir—were used to assess their capacity for the retention and accumulation of heavy metals. The needle samples were used to represent the atmospheric deposition of heavy metals located on the surface of the needles. The sampled European larch and Douglas fir plantations were situated at three locations in Serbia: a least polluted (Kučevo), a moderately polluted (Avala), and a very polluted (Lazarevac) site. The content of five heavy metals (Ni, Cu, Co, Cd, Pb) was investigated in the study. The concentration of cadmium (Cd) was higher in the European larch needles compared to Douglas fir, while the differences in the content of the other heavy metals between the species studied were insignificant. For both species, the following trend applied with respect to the heavy metal content in their needles: Ni ˃ Cu ˃ Co ˃ Pb ˃ Cd. Based on the results obtained, we deduced that the concentrations of all investigated heavy metals at all three locations for both species were within the allowed limits, except for nickel (Ni) content, which was over the predicted limit values for both species in the highly polluted area (Lazarevac). A PCA (principal component analysis) undertaken suggests that European larch has a greater ability to accumulate Co than Douglas fir on sites contaminated with heavy metals. The predictive foliar metal accumulation index (MAI) value was slightly higher in Douglas fir (4.14) than in European larch (3.76); therefore, the results suggest that this species would be a good planting choice, particularly in urban and industrial environments. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 4727 KiB  
Technical Note
Exploitation of OCO-3 Satellite Data to Analyse Carbon Dioxide Emissions from the Mt. Etna Volcano
by Vito Romaniello and Gaetana Ganci
Remote Sens. 2025, 17(11), 1918; https://doi.org/10.3390/rs17111918 - 31 May 2025
Viewed by 849
Abstract
The Orbiting Carbon Observatory-3 (OCO-3) mission provides a new perspective for studying atmospheric carbon dioxide (CO2). Here we assess the potentiality of OCO-3 satellite acquisitions to analyse and monitor the CO2 emissions from Mt. Etna volcano. While OCO-3 data are [...] Read more.
The Orbiting Carbon Observatory-3 (OCO-3) mission provides a new perspective for studying atmospheric carbon dioxide (CO2). Here we assess the potentiality of OCO-3 satellite acquisitions to analyse and monitor the CO2 emissions from Mt. Etna volcano. While OCO-3 data are well-suited for gas analysis on a regional spatial scale, they have not yet been widely utilised for studying volcanic carbon dioxide emissions. The Snapshot Area Map (SAM) acquisition mode enables the capture of targeted snapshots over volcanic regions, allowing for the measurement of CO2 concentrations in the vicinity of volcanic structures. In this work, we analyse 62 OCO-3 images acquired between 2020 and 2023, focusing on measurements within a 20 km radius of Mt. Etna’s summit, where the main craters are located. Atmospheric CO2 concentrations are examined as a function of distance from the summit, and assuming a linear decreasing trend, the angular coefficient is computed. Lower angular coefficient values may indicate a stronger volcanic CO2 contribution. Considering both the number of sampled pixels in each OCO-3 snapshot and the associated uncertainties in the angular coefficient calculation, we identify five days with potentially significant CO2 emissions from Mt. Etna, likely associated with specific volcanic activity phases. The eruptive activity on these five days is further investigated, revealing a possible correlation between elevated gas emissions and intense volcanic phenomena, such as lava fountains. This assessment is supported by thermal activity analyses using SEVIRI, MODIS, and VIIRS satellite data. Full article
Show Figures

Figure 1

12 pages, 7951 KiB  
Communication
Tropospheric NO2 Column over Tibet Plateau According to Geostationary Environment Monitoring Spectrometer: Spatial, Seasonal, and Diurnal Variations
by Xue Zhang, Chunxiang Ye, Jhoon Kim, Hanlim Lee, Junsung Park, Yeonjin Jung, Hyunkee Hong, Weitao Fu, Xicheng Li, Yuyang Chen, Xingyi Wu, Yali Li, Juan Li, Peng Zhang, Zhuoxian Yan, Jiaming Zhang, Song Liu and Lei Zhu
Remote Sens. 2025, 17(10), 1690; https://doi.org/10.3390/rs17101690 - 12 May 2025
Viewed by 751
Abstract
Nitrogen oxides (NOx) are key precursors of tropospheric ozone and particulate matter. The sparse local observations make it challenging to understand NOx cycling across the Tibetan Plateau (TP), which plays a crucial role in regional and global atmospheric processes. Here, [...] Read more.
Nitrogen oxides (NOx) are key precursors of tropospheric ozone and particulate matter. The sparse local observations make it challenging to understand NOx cycling across the Tibetan Plateau (TP), which plays a crucial role in regional and global atmospheric processes. Here, we utilized Geostationary Environment Monitoring Spectrometer (GEMS) data to examine the tropospheric NO2 vertical column density (ΩNO2) spatiotemporal variability over TP, a pristine environment marked with natural sources. GEMS observations revealed that the ΩNO2 over TP is generally low compared with surrounding regions with significant surface emissions, such as India and the Sichuan basin. A spatial decreasing trend of ΩNO2 is observed from the south and center to the north over Tibet. Unlike the surrounding regions, the TP exhibits opposing seasonal patterns and a negative correlation between the surface NO2 and ΩNO2. In the Lhasa and Nam Co areas within Xizang, the highest ΩNO2 in spring contrasts with the lowest surface concentration. Diurnally, a midday increase in ΩNO2 in the warm season reflects some external sources affecting the remote area. Trajectory analysis suggests strong convection lifted air mass from India and Southeast Asia into the upper troposphere over the TP. These findings highlight the mixing interplay of nonlocal and local NOx sources in shaping NO2 variability in a high-altitude environment. Future research should explore these transport mechanisms and their implications for atmospheric chemistry and climate dynamics over the TP. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop