Research on Using Ensemble Models to Assess the Impacts of Climate Change on Agriculture Production: A Review
Abstract
1. Introduction
2. Relevant Sections
Ensemble Models and Impacts of Climate Change in Agriculture
3. Discussion
3.1. Most Used Models
- -
- Firstly, joint learning is a method that is known for its ability to avoid the phenomenon of overfitting.
- -
- Secondly, the bagging has been demonstrated to facilitate the effective operation of RFs when dealing with limited data sets.
- -
- Thirdly, the training can be administered concurrently.
- -
- Finally, the implementation of automatic feature selection is facilitated by the utilization of decision tree learning in RFs.
3.2. Countries and Crops
3.3. Changes in Applications and Prospects
4. Conclusions
5. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Pinto, F.M.; Schuch, F.S.; Brentano, D.M. Extreme Precipitation Events and Geomorphic Adjustments in the Riverscape: A Case Study in Southern Brazil. Resour. Environ. Sustain. 2023, 13, 100124. [Google Scholar] [CrossRef]
- Cai, W.; Borlace, S.; Lengaigne, M.; van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.; et al. Increasing Frequency of Extreme El Niño Events due to Greenhouse Warming. Nat. Clim. Change 2014, 4, 111–116. [Google Scholar] [CrossRef]
- Iqbal, N.; Shahzad, M.U.; Sherif, E.-S.M.; Tariq, M.U.; Rashid, J.; Le, T.-V.; Ghani, A. Analysis of Wheat-Yield Prediction Using Machine Learning Models under Climate Change Scenarios. Sustainability 2024, 16, 6976. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, Y.; Hao, F.; Zhang, X.; Wu, W.; Jin, X.; Robin Bryant, C.; Senthilnath, J. Integrated Phenology and Climate in Rice Yields Prediction Using Machine Learning Methods. Ecol. Indic. 2021, 120, 106935. [Google Scholar] [CrossRef]
- Osco, L.P.; Ramos, A.P.M.; Faita Pinheiro, M.M.; Moriya, É.A.S.; Imai, N.N.; Estrabis, N.; Ianczyk, F.; de Araújo, F.F.; Liesenberg, V.; de Castro Jorge, L.A.; et al. A Machine Learning Framework to Predict Nutrient Content in Valencia-Orange Leaf Hyperspectral Measurements. Remote Sens. 2020, 12, 906. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Feng, L.; Du, Q.; Runge, T. Combining Multi-Source Data and Machine Learning Approaches to Predict Winter Wheat Yield in the Conterminous United States. Remote Sens. 2020, 12, 1232. [Google Scholar] [CrossRef]
- de Magalhães, L.P.; Rossi, F. Use of Indices in RGB and Random Forest Regression to Measure the Leaf Area Index in Maize. Agronomy. 2024, 14, 750. [Google Scholar] [CrossRef]
- Singh, A.; Pandey, H.; Pandey, S.; Lal, D.; Chauhan, D.; Aparna; Antre, S.H.; Santhosh, B.; Kumar, A. Drought Stress in Maize: Stress Perception to Molecular Response and Strategies for Its Improvement. Funct. Integr. Genom. 2023, 23, 296. [Google Scholar] [CrossRef]
- Polikar, R. Ensemble Learning. In Ensemble Machine Learning; Springer: New York, NY, USA, 2012. [Google Scholar]
- Sagi, O.; Rokach, L. Ensemble Learning: A Survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Lima, A.A.J.; Lopes, J.C.; Lopes, R.P.; de Figueiredo, T.; Vidal-Vázquez, E.; Hernández, Z. Soil Organic Carbon Assessment Using Remote-Sensing Data and Machine Learning: A Systematic Literature Review. Remote Sens. 2025, 17, 882. [Google Scholar] [CrossRef]
- Tyralis, H.; Papacharalampous, G.; Langousis, A. A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources. Water 2019, 11, 910. [Google Scholar] [CrossRef]
- Lemke, D.; Hulme, P.E.; Brown, J.A.; Tadesse, W. Distribution Modelling of Japanese Honeysuckle (Lonicera japonica) Invasion in the Cumberland Plateau and Mountain Region, USA. For. Ecol. Manag. 2011, 262, 139–149. [Google Scholar] [CrossRef]
- Rollinson, C.R.; Kaye, M.W.; Leites, L.P. Community Assembly Responses to Warming and Increased Precipitation in an Early Successional Forest. Ecosphere 2012, 3, 122. [Google Scholar] [CrossRef]
- Hill, R.A.; Hawkins, C.P.; Carlisle, D.M. Predicting Thermal Reference Conditions for USA Streams and Rivers. Freshw. Sci. 2013, 32, 39–55. [Google Scholar] [CrossRef]
- Long, D.; Bai, L.; Yan, L.; Zhang, C.; Yang, W.; Lei, H.; Quan, J.; Meng, X.; Shi, C. Generation of Spatially Complete and Daily Continuous Surface Soil Moisture of High Spatial Resolution. Remote Sens. Environ. 2019, 233, 111364. [Google Scholar] [CrossRef]
- McGuire, S. FAO, IFAD, and WFP. The State of Food Insecurity in the World 2015: Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. Rome: FAO, 2015. Adv. Nutr. 2015, 6, 623–624. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature Extremes: Effect on Plant Growth and Development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Dupuis, I.; Dumas, C. Influence of Temperature Stress on in Vitro Fertilization and Heat Shock Protein Synthesis in Maize (Zea mays L.) Reproductive Tissues. Plant Physiol. 1990, 94, 665–670. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H.; Sheehy, J.E.; Thomas, J.M.G. Species, Ecotype and Cultivar Differences in Spikelet Fertility and Harvest Index of Rice in Response to High Temperature Stress. Field Crops Res. 2006, 95, 398–411. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H. Adverse High Temperature Effects on Pollen Viability, Seed-Set, Seed Yield and Harvest Index of Grain-Sorghum [Sorghum bicolor (L.) Moench] Are More Severe at Elevated Carbon Dioxide due to Higher Tissue Temperatures. Agric. For. Meteorol. 2006, 139, 237–251. [Google Scholar] [CrossRef]
- Asano, J.; Kojima, Y.; Kato, C.; Kamiya, K. Climate Change Impacts on Soil Moisture and Temperature in the Plain and Mountainous Regions of Gifu Prefecture, Japan. IOP Conf. Ser. Earth Environ. Sci. 2023, 1165, 012045. [Google Scholar] [CrossRef]
- Zuo, Z.; Qiao, L.; Zhang, R.; Chen, D.; Piao, S.; Xiao, D.; Zhang, K. Importance of Soil Moisture Conservation in Mitigating Climate Change. Sci. Bull. 2024, 69, 1332–1341. [Google Scholar] [CrossRef]
- Maraun, D.; Schiemann, R.; Ossó, A.; Jury, M. Changes in Event Soil Moisture-Temperature Coupling Can Intensify Very Extreme Heat beyond Expectations. Nat. Commun. 2025, 16, 734. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, X. The 30 M Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, X.; Tang, Q. The Footprint of Urban Heat Island Effect in 302 Chinese Cities: Temporal Trends and Associated Factors. Sci. Total Environ. 2019, 655, 652–662. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- National Research Council. Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties; The National Academies Press: Washington, DC, USA, 2005; p. 208. [Google Scholar]
- Dirmeyer, P.A.; Niyogi, D.; de Noblet-Ducoudré, N.; Dickinson, R.E.; Snyder, P.K. Impacts of Land Use Change on Climate. Int. J. Climatol. 2010, 30, 1905–1907. [Google Scholar] [CrossRef]
- Beillouin, D.; Corbeels, M.; Demenois, J.; Berre, D.; Boyer, A.; Fallot, A.; Feder, F.; Cardinael, R. A Global Meta-Analysis of Soil Organic Carbon in the Anthropocene. Nat. Commun. 2023, 14, 3700. [Google Scholar] [CrossRef]
- Smith, P.; Fang, C.; Dawson, J.J.C.; Moncrieff, J.B. Impact of Global Warming on Soil Organic Carbon. Adv. Agron. 2008, 97, 1–43. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A Comparative Assessment of Support Vector Regression, Artificial Neural Networks, and RFs for Predicting and Mapping Soil Organic Carbon Stocks across an Afromontane Landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Hilty, J.; Muller, B.; Pantin, F.; Leuzinger, S. Plant Growth: The What, the How, and the Why. New Phytol. 2021, 232, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. RFs. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Cao, J.; Luo, Y.; Zhang, L.; Li, Z.; Zhang, J. Prediction of Winter Wheat Yield Based on Multi-Source Data and Machine Learning in China. Remote Sens. 2020, 12, 236. [Google Scholar] [CrossRef]
- Abowarda, A.S.; Bai, L.; Zhang, C.; Long, D.; Li, X.; Huang, Q.; Sun, Z. Generating Surface Soil Moisture at 30 M Spatial Resolution Using Both Data Fusion and Machine Learning toward Better Water Resources Management at the Field Scale. Remote Sens. Environ. 2021, 255, 112301. [Google Scholar] [CrossRef]
- Mao, H.; Kathuria, D.; Duffield, N.; Mohanty, B.P. Gap Filling of High-Resolution Soil Moisture for SMAP/Sentinel-1: A Two-Layer Machine Learning-Based Framework. Water Resour. Res. 2019, 55, 6986–7009. [Google Scholar] [CrossRef]
- Bolten, J.D.; Crow, W.T.; Zhan, X.; Jackson, T.J.; Reynolds, C.A. Evaluating the Utility of Remotely Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 57–66. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil Moisture–Climate Interactions in a Changing Climate: A Review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Wanders, N.; Karssenberg, D.; de Roo, A.; de Jong, S.M.; Bierkens, M.F.P. The Suitability of Remotely Sensed Soil Moisture for Improving Operational Flood Forecasting. Hydrol. Earth Syst. Sci. 2014, 18, 2343–2357. [Google Scholar] [CrossRef]
- Umoh, U.A.; Eyoh, I.J.; Murugesan, V.S.; Nyoho, E.E. Fuzzy-Machine Learning Models for the Prediction of Fire Outbreaks: A Comparative Analysis. In Artificial Intelligence and Machine Learning for EDGE Computing; Academic Press: Cambridge, MA, USA, 2022; pp. 207–233. [Google Scholar] [CrossRef]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A Comprehensive Survey on Support Vector Machine Classification: Applications, Challenges and Trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Ayalew, A.T.; Lohani, T.K. Prediction of Crop Yield by Support Vector Machine Coupled with Deep Learning Algorithm Procedures in Lower Kulfo Watershed of Ethiopia. J. Eng. 2023, 2023, e6675523. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD ’16, San Francisco, CA, USA, 13–17 August 2016; Volume 1, pp. 785–794. [Google Scholar] [CrossRef]
- Magidi, J.; Bangira, T.; Kelepile, M.; Shoko, M. Land Use and Land Cover Changes in Notwane Watershed, Botswana, Using Extreme Gradient Boost (XGBoost) Machine Learning Algorithm. Afr. Geogr. Rev. 2024, 1–21. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Rahmani, E.; Khatami, M.; Stephens, E. Using Probabilistic Machine Learning Methods to Improve Beef Cattle Price Modeling and Promote Beef Production Efficiency and Sustainability in Canada. Sustainability 2024, 16, 1789. [Google Scholar] [CrossRef]
- de Magalhães, L.P.; Rossi, F. Estimation of Canopy Water Content in Maize Using Machine Learning and Multispectral Vegetation Indices: Comparison of Adaboost Regression and Other Methods. J. Appl. Remote Sens. 2024, 18, 042609. [Google Scholar] [CrossRef]
- Yeturu, K. Machine Learning Algorithms, Applications, and Practices in Data Science. Handb. Stat. 2020, 43, 81–206. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Ensemble Learning. In Elsevier Ebooks; Elsevier: Amsterdam, The Netherlands, 2017; pp. 479–501. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Yan, H.; Gusev, A.; Zhang, L.; He, Y.; Yang, S. Greenhouse Gas Emissions and Reduction Strategies for the World’s Largest Greenhouse Gas Emitters. Sci. Total Environ. 2024, 944, 173895. [Google Scholar] [CrossRef]
- De-Arteaga, M.; Herlands, W.; Neill, D.B.; Dubrawski, A. Machine Learning for the Developing World. ACM Trans. Manag. Inf. Syst. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Aderibigbe, A.O.; Ohenhen, P.E.; Nwaobia, N.K.; Gidiagba, J.O.; Ani, E.C. Artificial intelligence in developing countries: Bridging the gap between potential and implementation. Comput. Sci. IT Res. J. 2023, 4, 185–199. [Google Scholar] [CrossRef]
- Oliveira, E.A.; Christina, M.; Colosimo, E.A.; Martelli, D.B.; Silva, L.R.; Cristina, A.; Martelli-Júnior, H. Global Scientific Production in the Pre-COVID-19 Era: An Analysis of 53 Countries for 22 Years. An. Acad. Bras. Ciências 2022, 94, e20201428. [Google Scholar] [CrossRef]
- Amarante, V.; Zurbrigg, J. The Marginalization of Southern Researchers in Development. World Dev. Perspect. 2022, 26, 100428. [Google Scholar] [CrossRef]
- Wijaya, A.S. Climate Change, Global Warming and Global Inequity in Developed and Developing Countries (Analytical Perspective, Issue, Problem and Solution). In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014; Volume 19. [Google Scholar]
- Adom, P.K. The Socioeconomic Impact of Climate Change in Developing Countries over the next Decades: A Literature Survey. Heliyon 2024, 10, e35134. [Google Scholar] [CrossRef] [PubMed]
- Martre, P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J.W.; Rötter, R.P.; Boote, K.J.; Ruane, A.C.; Thorburn, P.J.; Cammarano, D.; et al. Multimodel Ensembles of Wheat Growth: Many Models Are Better than One. Glob. Change Biol. 2014, 21, 911–925. [Google Scholar] [CrossRef] [PubMed]
- Dang, A.T.N.; Kumar, L.; Reid, M. Modelling the Potential Impacts of Climate Change on Rice Cultivation in Mekong Delta, Vietnam. Sustainability 2020, 12, 9608. [Google Scholar] [CrossRef]
- Feng, P.; Wang, B.; Liu, D.L.; Waters, C.; Yu, Q. Incorporating Machine Learning with Biophysical Model Can Improve the Evaluation of Climate Extremes Impacts on Wheat Yield in South-Eastern Australia. Agric. For. Meteorol. 2019, 275, 100–113. [Google Scholar] [CrossRef]
- Jiang, H.; Hu, H.; Zhong, R.; Xu, J.; Xu, J.; Huang, J.; Wang, S.; Ying, Y.; Lin, T. A Deep Learning Approach to Conflating Heterogeneous Geospatial Data for Corn Yield Estimation: A Case Study of the US Corn Belt at the County Level. Glob. Change Biol. 2019, 26, 1754–1766. [Google Scholar] [CrossRef]
- Kang, Y.; Ozdogan, M.; Zhu, X.; Ye, Z.; Hain, C.; Anderson, M. Comparative Assessment of Environmental Variables and Machine Learning Algorithms for Maize Yield Prediction in the US Midwest. Environ. Res. Lett. 2020, 15, 064005. [Google Scholar] [CrossRef]
- Falconnier, G.N.; Corbeels, M.; Boote, K.J.; Affholder, F.; Adam, M.; MacCarthy, D.S.; Ruane, A.C.; Nendel, C.; Whitbread, A.M.; Justes, É.; et al. Modelling Climate Change Impacts on Maize Yields under Low Nitrogen Input Conditions in Sub-Saharan Africa. Glob. Change Biol. 2020, 26, 5942–5964. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Tao, F.; Zhang, L.; Luo, Y.; Zhang, J.; Han, J.; Xie, J. Integrating Multi-Source Data for Rice Yield Prediction across China Using Machine Learning and Deep Learning Approaches. Agric. For. Meteorol. 2021, 297, 108275. [Google Scholar] [CrossRef]
- Bo, Y.; Jägermeyr, J.; Yin, Z.; Jiang, Y.; Xu, J.; Liang, H.; Zhou, F. Global Benefits of Non-Continuous Flooding to Reduce Greenhouse Gases and Irrigation Water Use without Rice Yield Penalty. Glob. Change Biol. 2022, 28, 3636–3650. [Google Scholar] [CrossRef]
- Makowski, D.; Marajo-Petitzon, E.; Durand, J.-L.; Ben-Ari, T. Quantitative Synthesis of Temperature, CO2, Rainfall, and Adaptation Effects on Global Crop Yields. Eur. J. Agron. 2020, 115, 126041. [Google Scholar] [CrossRef]
- Han, Y.; Lu, H.; Qiao, D. Integrated Effects of Meteorological Factors, Edaphic Moisture, Evapotranspiration, and Leaf Area Index on the Net Primary Productivity of Winter Wheat—Summer Maize Rotation System. Field Crops Res. 2023, 302, 109080. [Google Scholar] [CrossRef]
- Patrick, S.; Mirau, S.; Mbalawata, I.; Leo, J. Time Series and Ensemble Models to Forecast Banana Crop Yield in Tanzania, Considering the Effects of Climate Change. Resour. Environ. Sustain. 2023, 14, 100138. [Google Scholar] [CrossRef]
- Kuradusenge, M.; Hitimana, E.; Hanyurwimfura, D.; Rukundo, P.; Mtonga, K.; Mukasine, A.; Uwitonze, C.; Ngabonziza, J.; Uwamahoro, A. Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize. Agriculture 2023, 13, 225. [Google Scholar] [CrossRef]
- Sarr, A.B.; Sultan, B. Predicting Crop Yields in Senegal Using Machine Learning Methods. Int. J. Climatol. 2022, 43, 1817–1838. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Sidhu, A.S.; Pruncu, C.I. Bibliometric Analysis of Specific Energy Consumption (SEC) in Machining Operations: A Sustainable Response. Sustainability 2021, 13, 5617. [Google Scholar] [CrossRef]
- Meng, X.; Bao, Y.; Zhang, X.; Luo, C.; Liu, H. A Long-Term Global Mollisols SOC Content Prediction Framework: Integrating Prior Knowledge, Geographical Partitioning, and Deep Learning Models with Spatio-Temporal Validation. Remote Sens. Environ. 2025, 318, 114592. [Google Scholar] [CrossRef]
- Mahmood, S.; Wilebore, B.; Jenkins, R.; Willis, K.J.; Macias-Fauria, M.; Ebrahim, S.M. A High-Resolution Soil Organic Carbon Map for Great Britain. Sustain. Environ. 2024, 10, 2415166. [Google Scholar] [CrossRef]
- Peng, R.; Liu, T.; Cao, G. Valuating Multifunctionality of Land Use for Sustainable Development: Framework, Method, and Application. Land 2023, 12, 222. [Google Scholar] [CrossRef]
- Bouma, J. How to Realize Multifunctional Land Use as a Contribution to Sustainable Development. Front. Environ. Sci. 2021, 9, 620285. [Google Scholar] [CrossRef]
- Brunstad, R.J.; Gaasland, I.; Vårdal, E. Multifunctionality of Agriculture: An Inquiry into the Complementarity between Landscape Preservation and Food Security. Eur. Rev. Agric. Econ. 2005, 32, 469–488. [Google Scholar] [CrossRef]
- Seppelt, R.; Klotz, S.; Peiter, E.; Volk, M. Agriculture and Food Security under a Changing Climate: An Underestimated Challenge. iScience 2022, 25, 105551. [Google Scholar] [CrossRef]
- da Silva, L.A.P.; Sano, E.E.; Parreiras, T.C.; Bolfe, É.L.; Espírito-Santo, M.M.; Filgueiras, R.; de Souza, C.M.P.; da Silva, C.R.; Leite, M.E. Climate Change Effects on Land Use and Land Cover Suitability in the Southern Brazilian Semiarid Region. Land 2024, 13, 2008. [Google Scholar] [CrossRef]
- Cheng, J.; Yin, S. Evaluation of Food Security in North China Based on Food Production Level. Foods 2024, 13, 2189. [Google Scholar] [CrossRef]
- Gyamerah, S.A.; Asare, C.; Mintah, D.; Appiah, B.; Kayode, F.A. Exploring the Optimal Climate Conditions for a Maximum Maize Production in Ghana: Implications for Food Security. Smart Agric. Technol. 2023, 6, 100370. [Google Scholar] [CrossRef]
Topics | Record Count | % of 997 |
---|---|---|
Land Use | 251 | 25.12 |
Yield | 137 | 13.71 |
Temperature | 133 | 13.31 |
Water | 133 | 13.31 |
Carbon | 102 | 10.21 |
Country | Records | % of Articles |
---|---|---|
China | 350 | 35.2 |
USA | 112 | 11.3 |
India | 52 | 5.2 |
Germany | 44 | 4.4 |
France | 30 | 3 |
Italy | 28 | 2.8 |
Australia | 24 | 2.4 |
Canada | 23 | 2.3 |
Brazil | 19 | 1.9 |
Spain | 18 | 1.8 |
Article | R2 RF | R2 Others | RMSE RF | RMSE Others |
---|---|---|---|---|
[30] | 0.8 | 0.8 | <750 kg ha−1 | <750 kg ha−1 |
[68] | 0.983 | 0.903 | 0.297 | 0.727 |
[69] | 0.817 | 0.716 | 129.9 | 152.7 |
[70] | 0.64 | 0.56 | - | - |
Sustainable Development Goals | Record Count | % of Articles |
---|---|---|
13 Climate Action | 807 | 80.94% |
15 Life on Land | 530 | 53.15% |
14 Life Below Water | 508 | 50.95% |
02 Zero Hunger | 282 | 28.28% |
06 Clean Water and Sanitation | 281 | 28.18% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Magalhães, L.P.; Sais, A.C.; Rossi, F. Research on Using Ensemble Models to Assess the Impacts of Climate Change on Agriculture Production: A Review. AgriEngineering 2025, 7, 219. https://doi.org/10.3390/agriengineering7070219
de Magalhães LP, Sais AC, Rossi F. Research on Using Ensemble Models to Assess the Impacts of Climate Change on Agriculture Production: A Review. AgriEngineering. 2025; 7(7):219. https://doi.org/10.3390/agriengineering7070219
Chicago/Turabian Stylede Magalhães, Leonardo Pinto, Adriana Cavalieri Sais, and Fabrício Rossi. 2025. "Research on Using Ensemble Models to Assess the Impacts of Climate Change on Agriculture Production: A Review" AgriEngineering 7, no. 7: 219. https://doi.org/10.3390/agriengineering7070219
APA Stylede Magalhães, L. P., Sais, A. C., & Rossi, F. (2025). Research on Using Ensemble Models to Assess the Impacts of Climate Change on Agriculture Production: A Review. AgriEngineering, 7(7), 219. https://doi.org/10.3390/agriengineering7070219