Correlating XCO2 Trends over Texas, California, and Florida with Socioeconomic and Environmental Factors
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Texas
2.1.2. California
2.1.3. Florida
2.2. Satellite Data
2.2.1. XCO2 Data from GOSAT and OCO-2
2.2.2. Background Calculation and Data Processing
2.3. Data of the Influencing Factors
2.3.1. Population and GDP
2.3.2. Renewable and Nonrenewable Energy
2.3.3. NDVI
3. Results
3.1. Changes in XCO2
3.2. Variations of the Influencing Factors
3.3. Variations in Specific Energy Types
3.4. Correlation Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CO2 | Carbon dioxide |
XCO2 | Column-averaged carbon dioxide |
GHG | Greenhouse gases |
GDP | Gross domestic product |
NDVI | Normalized difference vegetation index |
References
- Guan, Y.; Keppel-Aleks, G.; Doney, S.C.; Petri, C.; Pollard, D.; Wunch, D.; Hase, F.; Ohyama, H.; Morino, I.; Notholt, J.; et al. Characteristics of Interannual Variability in Space-Based XCO2 Global Observations. Atmospheric Chem. Phys. 2023, 23, 5355–5372. [Google Scholar] [CrossRef]
- Xu, A.; Xiang, C. Assessment of the Emission Characteristics of Major States in the United States Using Satellite Observations of CO2, CO, and NO2. Atmosphere 2023, 15, 11. [Google Scholar] [CrossRef]
- EIA United States—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/beta/states/states/tx/rankings (accessed on 13 March 2025).
- U.S. Census Bureau Index of /Programs-Surveys/Popest/Tables/2020–2024/State/Totals. Available online: https://www2.census.gov/programs-surveys/popest/tables/2020-2024/state/totals/ (accessed on 13 March 2025).
- Pata, U.K. Renewable Energy Consumption, Urbanization, Financial Development, Income and CO2 Emissions in Turkey: Testing EKC Hypothesis with Structural Breaks. J. Clean. Prod. 2018, 187, 770–779. [Google Scholar] [CrossRef]
- Ducruet, C.; Polo Martin, B.; Sene, M.A.; Lo Prete, M.; Sun, L.; Itoh, H.; Pigné, Y. Ports and Their Influence on Local Air Pollution and Public Health: A Global Analysis. Sci. Total Environ. 2024, 915, 170099. [Google Scholar] [CrossRef]
- Hauer, M.E.; Evans, J.M.; Mishra, D.R. Millions Projected to Be at Risk from Sea-Level Rise in the Continental United States. Nat. Clim. Change 2016, 6, 691–695. [Google Scholar] [CrossRef]
- Sheng, M.; Lei, L.; Zeng, Z.-C.; Rao, W.; Zhang, S. Detecting the Responses of CO2 Column Abundances to Anthropogenic Emissions from Satellite Observations of GOSAT and OCO-2. Remote Sens. 2021, 13, 3524. [Google Scholar] [CrossRef]
- Chen, J.; Hu, R.; Chen, L.; Liao, Z.; Che, L.; Li, T. Multi-Sensor Integrated Mapping of Global XCO2 from 2015 to 2021 with a Local Random Forest Model. ISPRS J. Photogramm. Remote Sens. 2024, 208, 107–120. [Google Scholar] [CrossRef]
- Mustafa, F.; Bu, L.; Wang, Q.; Ali, A.; Bilal, M.; Shahzaman, M.; Qiu, Z. Multi-Year Comparison of CO2 Concentration from NOAA Carbon Tracker Reanalysis Model with Data from GOSAT and OCO-2 over Asia. Remote Sens. 2020, 12, 2498. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, H.; Zhang, S. Comparison of Atmospheric Carbon Dioxide Concentrations Based on GOSAT, OCO-2 Observations and Ground-Based TCCON Data. Remote Sens. 2023, 15, 5172. [Google Scholar] [CrossRef]
- Zhang, Z.; Qu, J.; Zeng, J. A Quantitative Comparison and Analysis on the Assessment Indicators of Greenhouse Gases Emission. J. Geogr. Sci. 2008, 18, 387–399. [Google Scholar] [CrossRef]
- Khochiani, R.; Nademi, Y. Energy Consumption, CO2 Emissions, and Economic Growth in the United States, China, and India: A Wavelet Coherence Approach. Energy Environ. 2020, 31, 886–902. [Google Scholar] [CrossRef]
- Wu, X.; Hu, F.; Han, J.; Zhang, Y. Examining the Spatiotemporal Variations and Inequality of China’s Provincial CO2 Emissions. Environ. Sci. Pollut. Res. 2020, 27, 16362–16376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lin, Y. Panel Estimation for Urbanization, Energy Consumption and CO2 Emissions: A Regional Analysis in China. Energy Policy 2012, 49, 488–498. [Google Scholar] [CrossRef]
- King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, D.N.; De Jong, B.; Kurz, W.A.; McGuire, A.D.; Vargas, R.; et al. North America’s Net Terrestrial CO2 Exchange with the Atmosphere 1990–2009. Biogeosciences 2015, 12, 399–414. [Google Scholar] [CrossRef]
- Welp, L.R.; Patra, P.K.; Rödenbeck, C.; Nemani, R.; Bi, J.; Piper, S.C.; Keeling, R.F. Increasing Summer Net CO2 Uptake in High Northern Ecosystems Inferredfrom Atmospheric Inversions and Comparisons to Remote-Sensing NDVI. Atmospheric Chem. Phys. 2016, 16, 9047–9066. [Google Scholar] [CrossRef]
- The 200 Largest Cities in the United States by Population 2024. Available online: https://worldpopulationreview.com/us-cities (accessed on 2 February 2024).
- U.S. Bureau of Economic Analysis SAGDP1 State Annual Gross Domestic Product (GDP) Summary. Available online: https://apps.bea.gov/itable/?ReqID=70&step=1&_gl=1*fzl9nn*_ga*MjAxMzg2NTkwNy4xNzQxNjQ0MTc3*_ga_J4698JNNFT*MTc0MTY0NDE3Ny4xLjEuMTc0MTY0NDIwNi4zMS4wLjA.#eyJhcHBpZCI6NzAsInN0ZXBzIjpbMSwyOSwyNSwzMSwyNiwyNywzMF0sImRhdGEiOltbIlRhYmxlSWQiLCI1MzEiXSxbIk1ham9yX0FyZWEiLCIwIl0sWyJTdGF0ZSIsWyIwIl1dLFsiQXJlYSIsWyI0ODAwMCJdXSxbIlN0YXRpc3RpYyIsWyItMSJdXSxbIlVuaXRfb2ZfbWVhc3VyZSIsIkxldmVscyJdLFsiWWVhciIsWyItMSJdXSxbIlllYXJCZWdpbiIsIi0xIl0sWyJZZWFyX0VuZCIsIi0xIl1dfQ== (accessed on 31 March 2025).
- EIA United States—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/beta/states/overview (accessed on 2 February 2024).
- How Big Is Florida? Available online: https://worldpopulationreview.com/states/florida/how-big (accessed on 2 February 2024).
- GDP by State 2024. Available online: https://worldpopulationreview.com/state-rankings/gdp-by-state (accessed on 2 February 2024).
- NIES. Release Note of Bias-Corrected FTS SWIR Level 2 CO2 Product (V03.05) for General Users; NIES GOSAT Project; Important Notes at Releasing; National Institute for Environmental Studies: Tsukuba, Japan, 2023; p. 11. [Google Scholar]
- Sun, Q.; Chen, C.; Wang, H.; Xu, N.; Liu, C.; Gao, J. A Method for Assessing Background Concentrations Near Sources of Strong CO2 Emissions. Atmosphere 2023, 14, 200. [Google Scholar] [CrossRef]
- Sasana, H.; Aminata, J. Energy Subsidy, Energy Consumption, Economic Growth, and Carbon Dioxide Emission: Indonesian Case Studies. Int. J. Energy Econ. Policy 2019, 9, 117–122. [Google Scholar] [CrossRef]
- Wang, S.; Li, G.; Fang, C. Urbanization, Economic Growth, Energy Consumption, and CO2 Emissions: Empirical Evidence from Countries with Different Income Levels. Renew. Sustain. Energy Rev. 2018, 81, 2144–2159. [Google Scholar] [CrossRef]
- Lin, X.; Rogers, B.M.; Sweeney, C.; Chevallier, F.; Arshinov, M.; Dlugokencky, E.; Machida, T.; Sasakawa, M.; Tans, P.; Keppel-Aleks, G. Siberian and Temperate Ecosystems Shape Northern Hemisphere Atmospheric CO2 Seasonal Amplification. Proc. Natl. Acad. Sci. 2020, 117, 21079–21087. [Google Scholar] [CrossRef]
- Didan, K. AppEEARS Area Sample Extraction Readme 2023. This is for the NDVI data from MODIS. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-mod13a1-061 (accessed on 5 August 2023). [CrossRef]
- EIA. U.S. Energy-Related Carbon Dioxide Emissions, 2013; Independent Statistics and Analysis; U.S. Department of Energy: Washington, DC, USA, 2014; p. 12. [Google Scholar]
- Marshall, E.; Thompson, J. Texas’ Energy Base Drives Climate Concerns as Renewables Expand. Fed. Reserve Bank Dallas 2019, 13, 9–13. [Google Scholar]
- U.S. EPA Climate Change Indicators: U.S. Greenhouse Gas Emissions. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-us-greenhouse-gas-emissions (accessed on 12 May 2025).
- EIA U.S. Energy-Related Carbon Dioxide Emissions, 2012; Independent Statistics and Analysis; U.S. Department of Energy: Washington, DC, USA, 2013; p. 14. [Google Scholar]
- Bredehoeft, G.; McManmon, R.; Brown, T. California Continues to Set Daily Records for Utility Scale Solar Energy. Available online: https://www.eia.gov/todayinenergy/detail.php?id=16851 (accessed on 12 May 2025).
- Singer, L.U.S. Energy-Related CO2 Emissions Fell Slightly in 2017. Available online: https://www.eia.gov/todayinenergy/detail.php?id=36953 (accessed on 12 May 2025).
- Intergovernmental Panel on Climate Change (IPCC). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 553–672. ISBN 978-1-009-15789-6. [Google Scholar]
- Cain, B.E.; Hehmeyer, P. California’s Population Drain; Stanford Institute for Economic Policy Research: Stanford, CA, USA, 2023; p. 8. [Google Scholar]
- Johnson, H.; McGhee, E.; Subramaniam, C.; Hsieh, V. What’s Behind California’s Recent Population Decline—And Why It Matters. Available online: https://www.ppic.org/publication/whats-behind-californias-recent-population-decline-and-why-it-matters/ (accessed on 12 June 2025).
- Vrontos, I.D.; Galakis, J.; Panopoulou, E.; Vrontos, S.D. Forecasting GDP Growth: The Economic Impact of COVID-19 Pandemic. J. Forecast. 2023, 43, 1042–1086. [Google Scholar] [CrossRef]
- Ali, S.; Haixing, Z.; Qi, M.; Liang, S.; Ning, J.; Jia, Q.; Hou, F. Monitoring Drought Events and Vegetation Dynamics in Relation to Climate Change over Mainland China from 1983 to 2016. Environ. Sci. Pollut. Res. 2021, 28, 21910–21925. [Google Scholar] [CrossRef] [PubMed]
- Caputo, A.; Kortsha, M. Record-Breaking Texas Drought More Severe than Previously Thought. Available online: https://www.jsg.utexas.edu/news/2021/10/record-breaking-texas-drought-more-severe-than-previously-thought/ (accessed on 13 February 2025).
- Dong, C.; MacDonald, G.M.; Willis, K.; Gillespie, T.W.; Okin, G.S.; Williams, A.P. Vegetation Responses to 2012–2016 Drought in Northern and Southern California. Geophys. Res. Lett. 2019, 46, 3810–3821. [Google Scholar] [CrossRef]
- EIA, U.S. Energy Facts Explained—Consumption and Production—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/energyexplained/us-energy-facts/ (accessed on 16 February 2024).
- Mendelevitch, R.; Hauenstein, C.; Holz, F. The Death Spiral of Coal in the U.S.: Will Changes in U.S. Policy Turn the Tide? Clim. Policy 2019, 19, 1310–1324. [Google Scholar] [CrossRef]
- Vaz, W.S. COVID-19 Impact on the Energy Sector in the United States (2020). Energies 2022, 15, 7867. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. A Case Study of Transmission Limits on Renewables Growth in Texas; U.S. Energy Information Administration: Washington, DC, USA, 2023. [Google Scholar]
- EIA U.S. Energy Information Administration—EIA—Independent Statistics and Analysis. Available online: https://www.eia.gov/state/analysis.php?sid=TX (accessed on 22 July 2024).
- Venkataraman, K.; Tummuri, S.; Medina, A.; Perry, J. 21st Century Drought Outlook for Major Climate Divisions of Texas Based on CMIP5 Multimodel Ensemble: Implications for Water Resource Management. J. Hydrol. 2016, 534, 300–316. [Google Scholar] [CrossRef]
- California Energy Commission. Petroleum Watch; California Energy Commission: Sacramento, CA, USA, 2021. [Google Scholar]
- EIA U.S. Energy Information Administration—EIA—Independent Statistics and Analysis. Available online: https://www.eia.gov/state/analysis.php?sid=CA (accessed on 24 July 2024).
- California Energy Commission. Nuclear Power Reactors in California; California Energy Commission: Sacramento, CA, USA, 2020. [Google Scholar]
- Baltar, M.; Hill, B.; Knierim, C.; Lubega, N.; Melendez, J.; Sullivan, E.; Wai-hone Yu, W.; Lee, C.; Ikle, J. 2023 California Renewables Portfolio Standard Annual Report; California Public Utilities Commission: San Francisco, CA, USA, 2023; p. 86. [Google Scholar]
- McFarland, A. California First State to Generate More than 5% of Electricity from Utility-Scale Solar—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/todayinenergy/detail.php?id=20492 (accessed on 16 February 2024).
- Freer-Smith, P.; Bailey-Bale, J.H.; Donnison, C.; Taylor, G. The Good, the Bad, and the Future: Systematic Review Identifies Best Use of Biomass to Meet Air Quality and Climate Policies in California. Glob. Change Biol. Bioenergy 2023, 15, 1309–1414. [Google Scholar] [CrossRef]
- Hanson, S. Natural Gas-Fired Power Generation Has Grown in Florida, Displacing Coal—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/todayinenergy/detail.php?id=41233 (accessed on 19 March 2024).
- NextEra Unit Finishes Upgrade of Florida Turkey Point 4 Reactor. Available online: https://www.reuters.com/article/business/energy/nextera-unit-finishes-upgrade-of-florida-turkey-point-4-reactor-idUSL2N0D61M9/ (accessed on 29 July 2024).
- Tabassum, S.; Rahman, T.; Islam, A.U.; Rahman, S.; Dipta, D.R.; Roy, S.; Mohammad, N.; Nawar, N.; Hossain, E. Solar Energy in the United States: Development, Challenges and Future Prospects. Energies 2021, 14, 8142. [Google Scholar] [CrossRef]
- EIA United States—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/beta/states/states/fl/analysis (accessed on 21 March 2025).
- McGrath, G. Electric Power Sector CO2 Emissions Drop as Generation Mix Shifts from Coal to Natural Gas. Available online: https://www.eia.gov/todayinenergy/detail.php?id=48296 (accessed on 13 May 2025).
- Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.J. Biomass Waste Utilisation in Low-Carbon Products: Harnessing a Major Potential Resource. Npj Clim. Atmos. Sci. 2019, 2, 35. [Google Scholar] [CrossRef]
- EIA Texas State Energy Profile. Available online: https://www.eia.gov/state/print.php?sid=TX#53 (accessed on 24 January 2025).
- California Energy Commission Renewables Portfolio Standard (RPS) Program. Available online: https://www.cpuc.ca.gov/rps/ (accessed on 16 February 2024).
- EIA Florida State Profile and Energy Estimates. Available online: https://www.eia.gov/state/analysis.php?sid=FL (accessed on 27 January 2025).
- Dong, K.; Hochman, G.; Zhang, Y.; Sun, R.; Li, H.; Liao, H. CO2 Emissions, Economic and Population Growth, and Renewable Energy: Empirical Evidence across Regions. Energy Econ. 2018, 75, 180–192. [Google Scholar] [CrossRef]
- Leeper, R.D.; Bilotta, R.; Petersen, B.; Stiles, C.J.; Heim, R.; Fuchs, B.; Prat, O.P.; Palecki, M.; Ansari, S. Characterizing U.S. Drought over the Past 20 Years Using the U.S. Drought Monitor. Int. J. Climatol. 2022, 42, 6616–6630. [Google Scholar] [CrossRef]
- Tzeremes, P. Time-Varying Causality between Energy Consumption, CO2 Emissions, and Economic Growth: Evidence from US States. Environ. Sci. Pollut. Res. 2018, 25, 6044–6060. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Zhang, Y.; Liu, X.; Li, X.; Wang, M. Dynamic Nexus between Non-Renewable Energy Consumption, Economic Growth and CO2 Emission: A Comparison Analysis Between Major Emitters. Energy Environ. 2024, 35, 4339–4360. [Google Scholar] [CrossRef]
- Railroad Commission of Texas Geologic Storage of Carbon Dioxide (CO2). Available online: https://www.rrc.texas.gov/oil-and-gas/applications-and-permits/injection-storage-permits/co2-storage/ (accessed on 21 March 2025).
- TCEQ. Climate Pollution Reduction Grants Priority Action Plan for the State of Texas; Texas Commission on Environmental Quality: Austin, TX, USA, 2024; p. 110. [Google Scholar]
- California Air Resources Board. 2022 Scoping Plan for Achieving Carbon Neutrality; California Air Resources Board: San Francisco, CA, USA, 2022. [Google Scholar]
- The Associated Press Florida Gov. Ron DeSantis Signs a Bill That Strikes Climate Change from State Law; NPR: Washington, DC, USA, 2024; Available online: https://www.npr.org/2024/05/16/1251769080/florida-desantis-climate-change-law (accessed on 21 March 2025).
- Khan, I.; Hou, F.; Le, H.P. The Impact of Natural Resources, Energy Consumption, and Population Growth on Environmental Quality: Fresh Evidence from the United States of America. Sci. Total Environ. 2021, 754, 142222. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufael, Y. CO2 Emissions, Nuclear Energy, Renewable Energy and Economic Growth in the US. Energy Policy 2010, 38, 2911–2915. [Google Scholar] [CrossRef]
- Ranthilake, T.; Caldera, Y.; Senevirathna, D.; Gunawardana, H.; Jayathilaka, R.; Peter, S. Renewable Realities: Charting a Greener Course for the World’s High-Emitting Nations Through Information Technology Insights. Sustain. Dev. 2024, 33, 2926–2936. [Google Scholar] [CrossRef]
- Sharif, A.; Raza, S.A.; Ozturk, I.; Afshan, S. The Dynamic Relationship of Renewable and Nonrenewable Energy Consumption with Carbon Emission: A Global Study with the Application of Heterogeneous Panel Estimations. Renew. Energy 2019, 133, 685–691. [Google Scholar] [CrossRef]
- Yuan, W.; Piao, S.; Qin, D.; Dong, W.; Xia, J.; Lin, H.; Chen, M. Influence of Vegetation Growth on the Enhanced Seasonality of Atmospheric CO2. Glob. Biogeochem. Cycles 2018, 32, 32–41. [Google Scholar] [CrossRef]
- Jiang, F.; He, W.; Ju, W.; Wang, H.; Wu, M.; Wang, J.; Feng, S.; Zhang, L.; Chen, J.M. The Status of Carbon Neutrality of the World’s Top 5 CO2 Emitters as Seen by Carbon Satellites. Fundam. Res. 2022, 2, 357–366. [Google Scholar] [CrossRef]
- Nguyen, P.; Shivadekar, S.; Laya Chukkapalli, S.S.; Halem, M. Satellite Data Fusion of Multiple Observed XCO2 Using Compressive Sensing and Deep Learning. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Waikoloa, HI, USA, 26 September 2020; pp. 2073–2076. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindsey, S.; Bade, M.; Li, Y. Correlating XCO2 Trends over Texas, California, and Florida with Socioeconomic and Environmental Factors. Remote Sens. 2025, 17, 2187. https://doi.org/10.3390/rs17132187
Lindsey S, Bade M, Li Y. Correlating XCO2 Trends over Texas, California, and Florida with Socioeconomic and Environmental Factors. Remote Sensing. 2025; 17(13):2187. https://doi.org/10.3390/rs17132187
Chicago/Turabian StyleLindsey, Shannon, Mahesh Bade, and Yang Li. 2025. "Correlating XCO2 Trends over Texas, California, and Florida with Socioeconomic and Environmental Factors" Remote Sensing 17, no. 13: 2187. https://doi.org/10.3390/rs17132187
APA StyleLindsey, S., Bade, M., & Li, Y. (2025). Correlating XCO2 Trends over Texas, California, and Florida with Socioeconomic and Environmental Factors. Remote Sensing, 17(13), 2187. https://doi.org/10.3390/rs17132187