Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = asymmetric porous membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4824 KiB  
Article
Intensification of Hydrogen Production: Pd–Ag Membrane on Tailored Hastelloy-X Filter for Membrane-Assisted Steam Methane Reforming
by Serena Agnolin, Luca Di Felice, Alfredo Pacheco Tanaka, Margot Llosa Tanco, Wout J. R. Ververs and Fausto Gallucci
Processes 2024, 12(1), 40; https://doi.org/10.3390/pr12010040 - 22 Dec 2023
Cited by 6 | Viewed by 1624
Abstract
H2 production via membrane-assisted steam methane reforming (MA-SMR) can ensure higher energy efficiency and lower emissions compared to conventional reforming processes (SMR). Ceramic-supported Pd–Ag membranes have been extensively investigated for membrane-assisted steam methane reforming applications, with outstanding performance. However, costs, sealings for [...] Read more.
H2 production via membrane-assisted steam methane reforming (MA-SMR) can ensure higher energy efficiency and lower emissions compared to conventional reforming processes (SMR). Ceramic-supported Pd–Ag membranes have been extensively investigated for membrane-assisted steam methane reforming applications, with outstanding performance. However, costs, sealings for integration in the reactor structure, and resistance to solicitations remain challenging issues. In this work, the surface quality of a low-cost, porous Hastelloy-X filter is improved by asymmetric filling with α-Al2O3 of decreasing size and deposition of γ-Al2O3 as an interdiffusion barrier. On the modified support, a thin Pd–Ag layer was deposited via electroless plating (ELP), resulting in a membrane with H2/N2 selectivity >10,000. The permeation characteristics of the membrane were studied, followed by testing for membrane-assisted methane steam reforming. The results showed the ability of the membrane reactor to overcome thermodynamic conversion of the conventional process for all explored operating conditions, as well as ensuring 99.3% H2 purity in the permeate stream at 500 °C and 4 bar. Full article
Show Figures

Figure 1

26 pages, 14527 KiB  
Review
Non-Equilibrium Block Copolymer Self-Assembly Based Porous Membrane Formation Processes Employing Multicomponent Systems
by Lieihn Tsaur and Ulrich B. Wiesner
Polymers 2023, 15(9), 2020; https://doi.org/10.3390/polym15092020 - 24 Apr 2023
Cited by 10 | Viewed by 3076
Abstract
Porous polymer-derived membranes are useful for applications ranging from filtration and separation technologies to energy storage and conversion. Combining block copolymer (BCP) self-assembly with the industrially scalable, non-equilibrium phase inversion technique (SNIPS) yields membranes comprising periodically ordered top surface structures supported by asymmetric, [...] Read more.
Porous polymer-derived membranes are useful for applications ranging from filtration and separation technologies to energy storage and conversion. Combining block copolymer (BCP) self-assembly with the industrially scalable, non-equilibrium phase inversion technique (SNIPS) yields membranes comprising periodically ordered top surface structures supported by asymmetric, hierarchical substructures that together overcome performance tradeoffs typically faced by materials derived from equilibrium approaches. This review first reports on recent advances in understanding the top surface structural evolution of a model SNIPS-derived system during standard membrane formation. Subsequently, the application of SNIPS to multicomponent systems is described, enabling pore size modulation, chemical modification, and transformation to non-polymeric materials classes without compromising the structural features that define SNIPS membranes. Perspectives on future directions of both single-component and multicomponent membrane materials are provided. This points to a rich and fertile ground for the study of fundamental as well as applied problems using non-equilibrium-derived asymmetric porous materials with tunable chemistry, composition, and structure. Full article
Show Figures

Figure 1

22 pages, 1914 KiB  
Review
Recent Advances in Metal-Organic Framework (MOF) Asymmetric Membranes/Composites for Biomedical Applications
by Farrokhfar Valizadeh Harzand, Seyyed Navid Mousavi Nejad, Aziz Babapoor, Seyyed Mojtaba Mousavi, Seyyed Alireza Hashemi, Ahmad Gholami, Wei-Hung Chiang, Maria Giovanna Buonomenna and Chin Wei Lai
Symmetry 2023, 15(2), 403; https://doi.org/10.3390/sym15020403 - 3 Feb 2023
Cited by 29 | Viewed by 6719
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials composed of metal and organic material. MOFs have fascinating properties, such as fine tunability, large specific surface area, and high porosity. MOFs are widely used for environmental protection, biosensors, regenerative medicine, medical [...] Read more.
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials composed of metal and organic material. MOFs have fascinating properties, such as fine tunability, large specific surface area, and high porosity. MOFs are widely used for environmental protection, biosensors, regenerative medicine, medical engineering, cell therapy, catalysts, and drug delivery. Recent studies have reported various significant properties of MOFs for biomedical applications, such as drug detection and delivery. In contrast, MOFs have limitations such as low stability and low specificity in binding to the target. MOF-based membranes improve the stability and specificity of conventional MOFs by increasing the surface area and developing the possibility of MOF-ligand binding, while conjugated membranes dramatically increase the area of active functional groups. This special property makes them attractive for drug and biosensor fabrication, as both the spreading and solubility components of the porosity can be changed. Asymmetric membranes are a structure with high potential in the biomedical field, due to the different characteristics on its two surfaces, the possibility of adjusting various properties such as the size of porosity, transfer rate and selectivity, and surface properties such as hydrophilicity and hydrophobicity. MOF assisted asymmetric membranes can provide a platform with different properties and characteristics in the biomedical field. The latest version of MOF materials/membranes has several potential applications, especially in medical engineering, cell therapy, drug delivery, and regenerative medicine, which will be discussed in this review, along with their advantages, disadvantages, and challenges. Full article
(This article belongs to the Special Issue Asymmetric Membranes: Volume 2)
Show Figures

Figure 1

22 pages, 5872 KiB  
Article
Bactericide Activity of Cellulose Acetate/Silver Nanoparticles Asymmetric Membranes: Surfaces and Porous Structures Role
by Ana Sofia Figueiredo, Ana Maria Ferraria, Ana Maria Botelho do Rego, Silvia Monteiro, Ricardo Santos, Miguel Minhalma, María Guadalupe Sánchez-Loredo, Rosa Lina Tovar-Tovar and Maria Norberta de Pinho
Membranes 2023, 13(1), 4; https://doi.org/10.3390/membranes13010004 - 21 Dec 2022
Cited by 10 | Viewed by 2640
Abstract
The antibacterial properties of cellulose acetate/silver nanoparticles (AgNP) ultrafiltration membranes were correlated with their integral asymmetric porous structures, emphasizing the distinct features of each side of the membranes, that is, the active and porous layers surfaces. Composite membranes were prepared from casting solutions [...] Read more.
The antibacterial properties of cellulose acetate/silver nanoparticles (AgNP) ultrafiltration membranes were correlated with their integral asymmetric porous structures, emphasizing the distinct features of each side of the membranes, that is, the active and porous layers surfaces. Composite membranes were prepared from casting solutions incorporating polyvinylpyrrolidone-covered AgNP using the phase inversion technique. The variation of the ratio acetone/formamide and the AgNP content resulted in a wide range of asymmetric porous structures with different hydraulic permeabilities. Comprehensive studies assessing the antibacterial activity against Escherichia coli (cell death and growth inhibition of bacteria in water) were performed on both membrane surfaces and in E. coli suspensions. The results were correlated with the surface chemical composition assessed by XPS. The silver-free membranes presented a generalized growth of E. coli, which is in contrast with the inhibition patterns displayed by the membranes containing AgNP. For the surface bactericide test, the growth inhibition depends on the accessibility of E. coli to the silver present in the membrane; as the XPS results show, the more permeable membranes (CA30 and CA34 series) have higher silver signal detected by XPS, which is correlated with a higher growth inhibition. On the other hand, the inhibition action is independent of the membrane porous structure when the membrane is deeply immersed in an E. coli inoculated suspension, presenting almost complete growth inhibition. Full article
(This article belongs to the Special Issue Preparation and Application of Advanced Functional Membranes)
Show Figures

Graphical abstract

17 pages, 1176 KiB  
Article
Water Molecular Dynamics in the Porous Structures of Ultrafiltration/Nanofiltration Asymmetric Cellulose Acetate–Silica Membranes
by João Cunha, Miguel P. da Silva, Maria J. Beira, Marta C. Corvo, Pedro L. Almeida, Pedro J. Sebastião, João L. Figueirinhas and Maria Norberta de Pinho
Membranes 2022, 12(11), 1122; https://doi.org/10.3390/membranes12111122 - 9 Nov 2022
Cited by 4 | Viewed by 1937
Abstract
This study presents the characterization of water dynamics in cellulose acetate–silica asymmetric membranes with very different pore structures that are associated with a wide range of selective transport properties of ultrafiltration (UF) and nanofiltration (NF). By combining 1H NMR spectroscopy, diffusometry and [...] Read more.
This study presents the characterization of water dynamics in cellulose acetate–silica asymmetric membranes with very different pore structures that are associated with a wide range of selective transport properties of ultrafiltration (UF) and nanofiltration (NF). By combining 1H NMR spectroscopy, diffusometry and relaxometry and considering that the spin–lattice relaxation rate of the studied systems is mainly determined by translational diffusion, individual rotations and rotations mediated by translational displacements, it was possible to assess the influence of the porous matrix’s confinement on the degree of water ordering and dynamics and to correlate this with UF/NF permeation characteristics. In fact, the less permeable membranes, CA/SiO2-22, characterized by smaller pores induce significant orientational order to the water molecules close to/interacting with the membrane matrix’s interface. Conversely, the model fitting analysis of the relaxometry results obtained for the more permeable sets of membranes, CA/SiO2-30 and CA/SiO2-34, did not evidence surface-induced orientational order, which might be explained by the reduced surface-to-volume ratio of the pores and consequent loss of sensitivity to the signal of surface-bound water. Comparing the findings with those of previous studies, it is clear that the fraction of more confined water molecules in the CA/SiO2-22-G20, CA/SiO2-30-G20 and CA/SiO2-34-G20 membranes of 0.83, 0.24 and 0.35, respectively, is in agreement with the obtained diffusion coefficients as well as with the pore sizes and hydraulic permeabilities of 3.5, 38 and 81 kg h1 m2 bar1, respectively, reported in the literature. It was also possible to conclude that the post-treatment of the membranes with Triton X-100 surfactants produced no significant structural changes but increased the hydrophobic character of the surface, leading to higher diffusion coefficients, especially for systems associated with average smaller pore dimensions. Altogether, these findings evidence the potential of combining complementary NMR techniques to indirectly study hydrated asymmetric porous media, assess the influence of drying post-treatments on hybrid CA/SiO2 membrane’ surface characteristics and discriminate between ultra- and nano-filtration membrane systems. Full article
(This article belongs to the Special Issue Advanced Membrane Technologies for Wastewater Treatment and Recycling)
Show Figures

Figure 1

13 pages, 3245 KiB  
Article
An Asymmetric Microfluidic/Chitosan Device for Sustained Drug Release in Guided Bone Regeneration Applications
by Xin Shi, Beibei Ma, Hongyu Chen, Wei Tan, Shiqing Ma and Guorui Zhu
Biosensors 2022, 12(10), 847; https://doi.org/10.3390/bios12100847 - 9 Oct 2022
Cited by 3 | Viewed by 2383
Abstract
One of the major challenges of guided bone regeneration (GBR) is infections caused by pathogen colonization at wound sites. In this paper, an asymmetric microfluidic/chitosan device was developed to release drugs to inhibit infections and to ensure that guided bone regeneration can be [...] Read more.
One of the major challenges of guided bone regeneration (GBR) is infections caused by pathogen colonization at wound sites. In this paper, an asymmetric microfluidic/chitosan device was developed to release drugs to inhibit infections and to ensure that guided bone regeneration can be realized. The microfluidic technique was introduced into the GBR membrane for the first time, which demonstrated more controllable drug release, more flexible clinical use and had a lower cost compared with surface treatments and embedded nanoparticles. Based on the theory of diffusion and Fick’s first law, the contact area and concentration gradient were adjusted to realize sustained drug release. The standard deviation of minocycline release over 5 days was only 12.7%, which was lower than the joint effect of porous chitosan discs and nanospheres. The in vitro experiments against E. coli and Streptococcus mutans showed the excellent antibacterial performance of the device (>95%). The in vitro experiments for fibroblasts at the microfluidic side and osteoblasts at the chitosan side showed the satisfactory biocompatibility and the ability of the device to enhance bone regeneration. Therefore, this microfluidic/chitosan device is a promising therapeutic approach to prevent infection and guide bone regeneration. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications)
Show Figures

Figure 1

10 pages, 3785 KiB  
Communication
Micro-Volume Blood Separation Membrane for In-Situ Biosensing
by Qin Zhu, Huimin Wu, Zhen Ma, Yuqiao Liu, Junmin Li, Ling Zhu, Xinran Zhang, Chengcheng Wang, Dajing Chen and Danhua Zhu
Biosensors 2022, 12(9), 712; https://doi.org/10.3390/bios12090712 - 2 Sep 2022
Cited by 3 | Viewed by 3320
Abstract
In this paper, we report a point-of-care (POCT) testing strip based on a porous membrane structure for whole blood separation and colorimetric analysis without external supporting equipment. Conventional blood tests rely on large instruments for blood pretreatment and separation to improve measurement accuracy. [...] Read more.
In this paper, we report a point-of-care (POCT) testing strip based on a porous membrane structure for whole blood separation and colorimetric analysis without external supporting equipment. Conventional blood tests rely on large instruments for blood pretreatment and separation to improve measurement accuracy. Cellulose acetate (CA) membranes with different pore diameters and structures were prepared via a non-solvent method for the separation of whole blood. Among them, CA@PEG-2000 membranes with nano-pores on the surface and micro-pores in the interior facilitated the capture of blood cells on the surface, as well as the free diffusion of plasma through the porous interior structure. The fluid flow of blood in the asymmetric porous structure can be theoretically estimated using the Lucas-Washburn equation. Compared with the conventional paper strips and other porous membranes, the CA@PEG-2000 membrane with an immobilized sensing layer exhibited efficient blood separation, a short response time (less than 2 min), an ultralow dosage volume (5 μL), and high sensitivity. The fabricated blood separation membranes can be further used for the detection of various biomarkers in whole blood, providing additional options for rapid quantitative POCT tests. Full article
(This article belongs to the Special Issue Advances in Nanoporous Materials for Biosensing Applications)
Show Figures

Figure 1

22 pages, 5254 KiB  
Article
Novel PDMS-b-PPO Membranes Modified with Graphene Oxide for Efficient Pervaporation Ethanol Dehydration
by Mariia Dmitrenko, Anastasia Chepeleva, Vladislav Liamin, Anna Kuzminova, Anton Mazur, Konstantin Semenov and Anastasia Penkova
Membranes 2022, 12(9), 832; https://doi.org/10.3390/membranes12090832 - 25 Aug 2022
Cited by 10 | Viewed by 2891
Abstract
Purification and concentration of bioalcohols is gaining new status due to their use as a promising alternative liquid biofuel. In this work, novel high-performance asymmetric membranes based on a block copolymer (BCP) synthesized from polydimethylsiloxane (PDMS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) were developed for [...] Read more.
Purification and concentration of bioalcohols is gaining new status due to their use as a promising alternative liquid biofuel. In this work, novel high-performance asymmetric membranes based on a block copolymer (BCP) synthesized from polydimethylsiloxane (PDMS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) were developed for enhanced pervaporation dehydration of ethanol. Improvement in dehydration performance was achieved by obtaining BCP membranes with a “non-perforated” porous structure and through surface and bulk modifications with graphene oxide (GO). Formation of the BCP was confirmed by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies. The changes to morphology and physicochemical properties of the developed BCP and BCP/GO membranes were studied by scanning electron (SEM) and atomic force (AFM) microscopies, thermogravimetric analysis (TGA) and contact angle measurements. Transport properties of the developed membranes were evaluated by the pervaporation dehydration of ethanol over a wide concentration range (4.4–70 wt.% water) at 22 °C. The BCP (PDMS:PPO:2,4-diisocyanatotoluene = 41:58:1 wt.% composition) membrane modified with 0.7 wt.% GO demonstrated optimal transport characteristics: 80–90 g/(m2h) permeation flux with high selectivity (76.8–98.8 wt.% water in the permeate, separation factor of 72–34) and pervaporation separation index (PSI) of 5.5–2.9. Full article
Show Figures

Graphical abstract

16 pages, 3806 KiB  
Article
High Efficiency Membranes Based on PTMSP and Hyper-Crosslinked Polystyrene for Toxic Volatile Compounds Removal from Wastewater
by Georgy Golubev, Stepan Sokolov, Tatyana Rokhmanka, Sergey Makaev, Ilya Borisov, Svetlana Khashirova and Alexey Volkov
Polymers 2022, 14(14), 2944; https://doi.org/10.3390/polym14142944 - 20 Jul 2022
Cited by 8 | Viewed by 3012
Abstract
For the first time, membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP) with 5–50 wt% loading of hyper-crosslinked polystyrene sorbent particles (HCPS) were obtained; the membranes were investigated for the problem of effective removal of volatile organic compounds from aqueous solutions using vacuum pervaporation. The industrial [...] Read more.
For the first time, membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP) with 5–50 wt% loading of hyper-crosslinked polystyrene sorbent particles (HCPS) were obtained; the membranes were investigated for the problem of effective removal of volatile organic compounds from aqueous solutions using vacuum pervaporation. The industrial HCPS sorbent Purolite Macronet™ MN200 was chosen due to its high sorption capacity for organic solvents. It has been found that the membranes are asymmetric when HCPS content is higher than 30 wt%; scanning electron microscopy of the cross-sections the membranes demonstrate that they have a clearly defined thin layer, consisting mainly of PTMSP, and a thick porous layer, consisting mainly of HCPS. The transport and separation characteristics of PTMSP membranes with different HCPS loading were studied during the pervaporation separation of binary and multicomponent mixtures of water with benzene, toluene and xylene. It was shown that the addition of HCPS up to 30 wt% not only increases the permeate fluxes by 4–7 times, but at the same time leads to 1.5–2 fold increase in the separation factor. It was possible to obtain separation factors exceeding 1000 for all studied mixtures at high permeate fluxes (0.5–1 kg/m2∙h) in pervaporation separation of binary solutions. Full article
(This article belongs to the Special Issue Advanced Polymer Membranes for Adsorption and Separation Applications)
Show Figures

Figure 1

16 pages, 3614 KiB  
Article
Sensitivity of Material, Microstructure and Operational Parameters on the Performance of Asymmetric Oxygen Transport Membranes: Guidance from Modeling
by Kai Wilkner, Robert Mücke, Stefan Baumann, Wilhelm Albert Meulenberg and Olivier Guillon
Membranes 2022, 12(6), 614; https://doi.org/10.3390/membranes12060614 - 13 Jun 2022
Cited by 3 | Viewed by 2050
Abstract
Oxygen transport membranes can enable a wide range of efficient energy and industrial applications. One goal of development is to maximize the performance by the improvement of the material, microstructural properties and operational conditions. However, the complexity of the transportation processes taking place [...] Read more.
Oxygen transport membranes can enable a wide range of efficient energy and industrial applications. One goal of development is to maximize the performance by the improvement of the material, microstructural properties and operational conditions. However, the complexity of the transportation processes taking place in such commonly asymmetric membranes impedes the identification of the parameters to improve them. In this work, we present a sensitivity study that allows identification of these parameters. It is based on a 1D transport model that includes surface exchange, ionic and electronic transport inside the dense membrane, as well as binary diffusion, Knudsen diffusion and viscous flux inside the porous support. A support limitation factor is defined and its dependency on the membrane conductivity is shown. For materials with very high ambipolar conductivity the transport is limited by the porous support (in particular the pore tortuosity), whereas for materials with low ambipolar conductivity the transport is limited by the dense membrane. Moreover, the influence of total pressure and related oxygen partial pressures in the gas phase at the membrane’s surfaces was revealed to be significant, which has been neglected so far in permeation test setups reported in the literature. In addition, the accuracy of each parameter’s experimental determination is discussed. The model is well-suited to guiding experimentalists in developing high-performance gas separation membranes. Full article
(This article belongs to the Section Inorganic Membranes)
Show Figures

Graphical abstract

18 pages, 5445 KiB  
Article
Tailoring the Selective Permeation Properties of Asymmetric Cellulose Acetate/Silica Hybrid Membranes and Characterisation of Water Dynamics in Hydrated Membranes by Deuterium Nuclear Magnetic Resonance
by Miguel P. da Silva, Maria J. Beira, Isabel D. Nogueira, Pedro J. Sebastião, João L. Figueirinhas and Maria Norberta de Pinho
Membranes 2022, 12(6), 559; https://doi.org/10.3390/membranes12060559 - 28 May 2022
Cited by 1 | Viewed by 2098
Abstract
In this work, the water order and dynamics in hydrated films of flat asymmetric cellulose acetate (CA)/silica, CA/SiO2, and hybrid membranes, covering a wide range of nanofiltration (NF) and ultrafiltration (UF) permeation properties, were characterised by deuterium nuclear magnetic resonance (DNMR) [...] Read more.
In this work, the water order and dynamics in hydrated films of flat asymmetric cellulose acetate (CA)/silica, CA/SiO2, and hybrid membranes, covering a wide range of nanofiltration (NF) and ultrafiltration (UF) permeation properties, were characterised by deuterium nuclear magnetic resonance (DNMR) relaxation. The range of NF/UF characteristics was attained by subjecting three CA/SiO2 membranes, prepared from casting solutions with different acetone/formamide ratios to drying post-treatments of solvent exchange and conditioning with surfactant mixtures. Post-treated and pristine CA/SiO2 membranes were characterised in terms of hydraulic permeability, selective permeation properties and molecular weight cut-off. These results were correlated with the DNMR relaxation findings. It was found that the post-treatment by solvent exchange caused membrane shrinkage that led to very different permeation characteristics and a significant enhancement of the DNMR relaxation observables. In contrast, conditioning with surfactant solutions exhibited a weaker effect over those properties. Scanning electron microscopy (SEM) images were obtained for the membranes post-treated with solvent exchange to confirm their asymmetric nature. This work provides an essential indication that DNMR relaxometry is a reliable tool to characterise the asymmetric porous structures of the NF/UF CA/SiO2 hybrid membranes. Full article
(This article belongs to the Special Issue Selected Papers from Euromembrane 2021)
Show Figures

Figure 1

15 pages, 3074 KiB  
Article
Air-to-Air Heat and Moisture Recovery in a Plate-Frame Exchanger Using Composite and Asymmetric Membranes
by Amir Jahed Mogharrab, Seyedmehdi Sharifian, Neda Asasian-Kolur, Ali Ghadimi, Bahram Haddadi and Michael Harasek
Membranes 2022, 12(5), 484; https://doi.org/10.3390/membranes12050484 - 29 Apr 2022
Cited by 4 | Viewed by 3125
Abstract
The present work studied an air-to-air exchanger comprising a flat plate module with a diagonal channel and a counterflow configuration for the air streams. The objective of this study was to remove moisture and sensible heat from an exhaust air stream by indirect [...] Read more.
The present work studied an air-to-air exchanger comprising a flat plate module with a diagonal channel and a counterflow configuration for the air streams. The objective of this study was to remove moisture and sensible heat from an exhaust air stream by indirect contact with another air stream. The temperature and flow rate of the exhaust air was in the range of 40–80 °C and 1–5 L·min−1, respectively, and the fresh ambient air to exhaust air flow ratio was 1–5. An asymmetric porous membrane (P-MEM), a thin film composite membrane (C-MEM), and a kraft paper were used as the core for the heat exchange module. The most influential parameter was the humid air temperature, with a direct positive effect (50–60%) due to the increase in the kinetic energy of the water molecules. The other effective parameter was the flow rate of the humid gas with a reverse effect on the enthalpy exchanger performance (25–37%). The ratio of “fresh” air to “exhaust” air had the lowest positive effect (8–10%) on the total effectiveness. The sensible effectiveness of different membranes under the studied conditions was relatively the same, showing their similar heat conductivity. However, the kraft paper showed the best performance compared to the synthetic membranes due to having a porous/hydrophile texture. P-MEM with an asymmetric porous texture showed the closest performance to kraft paper. Furthermore, it was found that under limited conditions, such as higher temperatures (70 and 80 °C) and flow rates (5 L·min−1) for the humid air, the performance of P-MEM was a little better than the kraft paper. However, C-MEM with the lowest total effectiveness and overall heat transfer coefficient (150–210 W·m−2·K−1) showed that the hydrophile PEBAX layer could not contribute to moisture recovery due to its high thickness. Full article
Show Figures

Figure 1

20 pages, 5113 KiB  
Article
Surface Functionalization of Poly(l-lactide-co-glycolide) Membranes with RGD-Grafted Poly(2-oxazoline) for Periodontal Tissue Engineering
by Anna M. Tryba, Małgorzata Krok-Borkowicz, Michał Kula, Natalia Piergies, Mateusz Marzec, Erik Wegener, Justyna Frączyk, Rainer Jordan, Beata Kolesińska, Dieter Scharnweber, Czesława Paluszkiewicz and Elżbieta Pamuła
J. Funct. Biomater. 2022, 13(1), 4; https://doi.org/10.3390/jfb13010004 - 7 Jan 2022
Cited by 14 | Viewed by 4509
Abstract
Bone tissue defects resulting from periodontal disease are often treated using guided tissue regeneration (GTR). The barrier membranes utilized here should prevent soft tissue infiltration into the bony defect and simultaneously support bone regeneration. In this study, we designed a degradable poly(l [...] Read more.
Bone tissue defects resulting from periodontal disease are often treated using guided tissue regeneration (GTR). The barrier membranes utilized here should prevent soft tissue infiltration into the bony defect and simultaneously support bone regeneration. In this study, we designed a degradable poly(l-lactide-co-glycolide) (PLGA) membrane that was surface-modified with cell adhesive arginine-glycine-aspartic acid (RGD) motifs. For a novel method of membrane manufacture, the RGD motifs were coupled with the non-ionic amphiphilic polymer poly(2-oxazoline) (POx). The RGD-containing membranes were then prepared by solvent casting of PLGA, POx coupled with RGD (POx_RGD), and poly(ethylene glycol) (PEG) solution in methylene chloride (DCM), followed by DCM evaporation and PEG leaching. Successful coupling of RGD to POx was confirmed spectroscopically by Raman, Fourier transform infrared in attenuated reflection mode (FTIR-ATR), and X-ray photoelectron (XPS) spectroscopy, while successful immobilization of POx_RGD on the membrane surface was confirmed by XPS and FTIR-ATR. The resulting membranes had an asymmetric microstructure, as shown by scanning electron microscopy (SEM), where the glass-cured surface was more porous and had a higher surface area then the air-cured surface. The higher porosity should support bone tissue regeneration, while the air-cured side is more suited to preventing soft tissue infiltration. The behavior of osteoblast-like cells on PLGA membranes modified with POx_RGD was compared to cell behavior on PLGA foil, non-modified PLGA membranes, or PLGA membranes modified only with POx. For this, MG-63 cells were cultured for 4, 24, and 96 h on the membranes and analyzed by metabolic activity tests, live/dead staining, and fluorescent staining of actin fibers. The results showed bone cell adhesion, proliferation, and viability to be the highest on membranes modified with POx_RGD, making them possible candidates for GTR applications in periodontology and in bone tissue engineering. Full article
(This article belongs to the Special Issue Bioinspired Materials for Medical and Biotechnological Applications)
Show Figures

Figure 1

13 pages, 6114 KiB  
Article
Modeling Asymmetry of a Current–Voltage Curve of a Novel MF-4SC/PTMSP Bilayer Membrane
by Anatoly N. Filippov, Natalia A. Kononenko, Natalia V. Loza and Daria A. Petrova
Membranes 2022, 12(1), 22; https://doi.org/10.3390/membranes12010022 - 24 Dec 2021
Cited by 4 | Viewed by 3272
Abstract
A novel bilayer cation-exchange membrane—consisting of a thick layer of a pristine perfluorinated membrane MF-4SC (Russian equivalent of Nafion®-117) and a thinner layer (1 μm) of the membrane, on a base of glassy polymer of internal microporosity poly(1-trimethylsilyl-1-propyne) (PTMSP)—was prepared and [...] Read more.
A novel bilayer cation-exchange membrane—consisting of a thick layer of a pristine perfluorinated membrane MF-4SC (Russian equivalent of Nafion®-117) and a thinner layer (1 μm) of the membrane, on a base of glassy polymer of internal microporosity poly(1-trimethylsilyl-1-propyne) (PTMSP)—was prepared and characterized. Using the physicochemical characteristics of one-layer membranes MF-4SC and PTMSP in 0.05 M HCl and NaCl solutions, the asymmetric current–voltage curves (CVC) of the bilayer composite were described with good accuracy up to the overlimiting regime, based on the “fine-porous membrane” model. The MF-4SC/PTMSP bilayer composite has a significant asymmetry of CVC that is promising for using it in electromembrane devices, such as membrane detectors, sensors, and diodes. Full article
Show Figures

Figure 1

16 pages, 9026 KiB  
Article
Interphase Surface Stability in Liquid-Liquid Membrane Contactors Based on Track-Etched Membranes
by Stepan Bazhenov, Olga Kristavchuk, Margarita Kostyanaya, Anton Belogorlov, Ruslan Ashimov and Pavel Apel
Membranes 2021, 11(12), 949; https://doi.org/10.3390/membranes11120949 - 30 Nov 2021
Cited by 1 | Viewed by 2749
Abstract
A promising solution for the implementation of extraction processes is liquid–liquid membrane contactors. The transfer of the target component from one immiscible liquid to another is carried out inside membrane pores. For the first time, highly asymmetric track-etched membranes made of polyethylene terephthalate [...] Read more.
A promising solution for the implementation of extraction processes is liquid–liquid membrane contactors. The transfer of the target component from one immiscible liquid to another is carried out inside membrane pores. For the first time, highly asymmetric track-etched membranes made of polyethylene terephthalate (PET) of the same thickness but with different pore diameters (12.5–19 nm on one side and hundreds of nanometers on the other side) were studied in the liquid–liquid membrane contactor. For analysis of the liquid–liquid interface stability, two systems widely diverging in the interfacial tension value were used: water–pentanol and water–hexadecane. The interface stability was investigated depending on the following process parameters: the porous structure, the location of the asymmetric membrane in the contactor, the velocities of liquids, and the pressure drop between them. It was shown that the stability of the interface increases with decreasing pore size. Furthermore, it is preferable to supply the aqueous phase from the side of the asymmetric membrane with the larger pore size. The asymmetry of the porous structure of the membrane makes it possible to increase the range of pressure drop values between the phases by at least two times (from 5 to 10 kPa), which does not lead to mutual dispersion of the liquids. The liquid–liquid contactor based on the asymmetric track-etched membranes allows for the extraction of impurities from the organic phase into the aqueous phase by using a 1% solution of acetone in hexadecane as an example. Full article
(This article belongs to the Special Issue Liquid Transport and Membrane Behavior at High Pressures)
Show Figures

Figure 1

Back to TopTop