Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,735)

Search Parameters:
Keywords = aspect ratios

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 17020 KB  
Article
SODE-Net: A Slender Rotating Object Detection Network Based on Spatial Orthogonality and Decoupled Encoding
by Xiaozhi Yu, Wei Xiang, Lu Yu, Kang Han and Yuan Yang
Remote Sens. 2025, 17(17), 3042; https://doi.org/10.3390/rs17173042 - 1 Sep 2025
Abstract
Remote sensing objects often exhibit significant scale variations, high aspect ratios, and diverse orientations. The anisotropic spatial distribution of such objects’ features leads to the conflict between feature representation and boundary regression caused by the coupling of different attribute parameters: previous detection methods [...] Read more.
Remote sensing objects often exhibit significant scale variations, high aspect ratios, and diverse orientations. The anisotropic spatial distribution of such objects’ features leads to the conflict between feature representation and boundary regression caused by the coupling of different attribute parameters: previous detection methods based on square-kernel convolution lack the overall perception of large-scale or slender objects due to the limited receptive field; if the receptive field is simply expanded, although more context information can be captured to help object perception, a large amount of background noise will be introduced, resulting in inaccurate feature extraction of remote sensing objects. Additionally, the extracted features face issues of feature conflict and discontinuous loss during parameter regression. Existing methods often neglect the holistic optimization of these aspects. To address these challenges, this paper proposes SODE-Net as a systematic solution. Specifically, we first design a multi-scale fusion and spatially orthogonal convolution (MSSO) module in the backbone network. Its multiple shapes of receptive fields can naturally capture the long-range dependence of the object without introducing too much background noise, thereby extracting more accurate target features. Secondly, we design a multi-level decoupled detection head, which decouples target classification, bounding-box position regression and bounding-box angle regression into three subtasks, effectively avoiding the coupling problem in parameter regression. At the same time, the phase-continuous encoding module is used in the angle regression branch, which converts the periodic angle value into a continuous cosine value, thus ensuring the stability of the loss value. Extensive experiments demonstrate that, compared to existing detection networks, our method achieves superior performance on four widely used remote sensing object datasets: DOTAv1.0, HRSC2016, UCAS-AOD, and DIOR-R. Full article
31 pages, 6007 KB  
Article
Geometry and Topology Preservable Line Structure Construction for Indoor Point Cloud Based on the Encoding and Extracting Framework
by Haiyang Lyu, Hongxiao Xu, Donglai Jiao and Hanru Zhang
Remote Sens. 2025, 17(17), 3033; https://doi.org/10.3390/rs17173033 - 1 Sep 2025
Abstract
The line structure is an efficient form of representation and modeling for LiDAR point clouds, while the Line Structure Construction (LSC) method aims to extract complete and coherent line structures from complex 3D point clouds, thereby providing a foundation for geometric modeling, scene [...] Read more.
The line structure is an efficient form of representation and modeling for LiDAR point clouds, while the Line Structure Construction (LSC) method aims to extract complete and coherent line structures from complex 3D point clouds, thereby providing a foundation for geometric modeling, scene understanding, and downstream applications. However, traditional LSC methods often fall short in preserving both the geometric integrity and topological connectivity of line structures derived from such datasets. To address this issue, we propose the Geometry and Topology Preservable Line Structure Construction (GTP-LSC) method, based on the Encoding and Extracting Framework (EEF). First, in the encoding phase, point cloud features related to line structures are mapped into a high-dimensional feature space. A 3D U-Net is then employed to compute Subsets with Structure feature of Line (SSL) from the dense, unstructured, and noisy indoor LiDAR point cloud data. Next, in the extraction phase, the SSL is transformed into a 3D field enriched with line features. Initially extracted line structures are then constructed based on Morse theory, effectively preserving the topological relationships. In the final step, these line structures are optimized using RANdom SAmple Consensus (RANSAC) and Constructive Solid Geometry (CSG) to ensure geometric completeness. This step also facilitates the generation of complex entities, enabling an accurate and comprehensive representation of both geometric and topological aspects of the line structures. Experiments were conducted using the Indoor Laser Scanning Dataset, focusing on the parking garage (D1), the corridor (D2), and the multi-room structure (D3). The results demonstrated that the proposed GTP-LSC method outperformed existing approaches in terms of both geometric integrity and topological connectivity. To evaluate the performance of different LSC methods, the IoU Buffer Ratio (IBR) was used to measure the overlap between the actual and constructed line structures. The proposed method achieved IBR scores of 92.5% (D1), 94.2% (D2), and 90.8% (D3) for these scenes. Additionally, Precision, Recall, and F-Score were calculated to further assess the LSC results. The F-Score of the proposed method was 0.89 (D1), 0.92 (D2), and 0.89 (D3), demonstrating superior performance in both visual analysis and quantitative results compared to other methods. Full article
(This article belongs to the Special Issue Point Cloud Data Analysis and Applications)
Show Figures

Figure 1

26 pages, 7420 KB  
Article
Numerical Investigation of the Cooling Performance of Water Mist Spray Inside an Idealized 2D Street Canyon
by Hongjie Chen, Handong Meng and Yaxing Du
Atmosphere 2025, 16(9), 1036; https://doi.org/10.3390/atmos16091036 - 31 Aug 2025
Abstract
In response to the urban heat island challenge, various mitigation measures have been explored, with water spray systems emerging as a cost-effective and efficient solution for urban outdoor cooling. However, the influential factors of a water spray system on cooling efficiency have not [...] Read more.
In response to the urban heat island challenge, various mitigation measures have been explored, with water spray systems emerging as a cost-effective and efficient solution for urban outdoor cooling. However, the influential factors of a water spray system on cooling efficiency have not been fully understood, thus hindering the application of the water spray system. This study delves into the following two questions: (1) what is the cooling performance of a water mist spray in a hot and humid urban climate? (2) What are the effects of different influencing factors? To answer these two questions, the computational fluid dynamics (CFD) simulations are used to modelthe cooling process of water mist spray inside an ideal two-dimensional street canyon with an aspect ratio of 1. A sound validation for the water spray cooling was conducted prior to the following CFD simulations. Results show that for given values of the water flow rate (i.e., 9.0 L/min) and the spray nozzle height (i.e., 3 m), a maximum temperature reduction of about 4.6 °C can be achieved at pedestrian height. Raising the installation height is more effective in maintaining the cooling zone proportion than decreasing the water flow rate. The clockwise recirculation inside the street canyon disappears with the upward airflow weakened when the spray nozzle is installed in the middle of the street canyon. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
19 pages, 2267 KB  
Article
Comparative Analysis of Base-Width-Based Annotation Box Ratios for Vine Trunk and Support Post Detection Performance in Agricultural Autonomous Navigation Environments
by Hong-Kun Lyu, Sanghun Yun and Seung Park
Agronomy 2025, 15(9), 2107; https://doi.org/10.3390/agronomy15092107 - 31 Aug 2025
Abstract
AI-driven agricultural automation increasingly demands efficient data generation methods for training deep learning models in autonomous robotic systems. Traditional bounding box annotation methods for agricultural objects present significant challenges including subjective boundary determination, inconsistent labeling across annotators, and physical strain from extensive mouse [...] Read more.
AI-driven agricultural automation increasingly demands efficient data generation methods for training deep learning models in autonomous robotic systems. Traditional bounding box annotation methods for agricultural objects present significant challenges including subjective boundary determination, inconsistent labeling across annotators, and physical strain from extensive mouse movements required for elongated objects. This study proposes a novel base-width standardized annotation method that utilizes the base width of a vine trunk and a support post as a reference parameter for automated bounding box generation. The method requires annotators to specify only the left and right endpoints of object bases, from which the system automatically generates standardized bounding boxes with predefined aspect ratios. Performance assessment utilized Precision, Recall, F1-score, and Average Precision metrics across vine trunks and support posts. The study reveals that vertically elongated rectangular bounding boxes outperform square configurations for agricultural object detection. The proposed method is expected to reduce time consumption from subjective boundary determination and minimize physical strain during bounding box annotation for AI-based autonomous navigation models in agricultural environments. This will ultimately enhance dataset consistency and improve the efficiency of artificial intelligence learning. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

25 pages, 2237 KB  
Article
How Does Methanogenic Inhibition Affect Large-Scale Waste-to-Energy Anaerobic Digestion Processes? Part 1—Techno-Economic Analysis
by Denisse Estefanía Díaz-Castro, Ever Efraín García-Balandrán, Alonso Albalate-Ramírez, Carlos Escamilla-Alvarado, Sugey Ramona Sinagawa-García, Pasiano Rivas-García and Luis Ramiro Miramontes-Martínez
Fermentation 2025, 11(9), 510; https://doi.org/10.3390/fermentation11090510 (registering DOI) - 31 Aug 2025
Abstract
This two-part study assesses the impact of biogas inhibition on large-scale waste-to-energy anaerobic digestion (WtE-AD) plants through techno-economic and life cycle assessment approaches. The first part addresses technical and economic aspects. An anaerobic co-digestion system using vegetable waste (FVW) and meat waste (MW) [...] Read more.
This two-part study assesses the impact of biogas inhibition on large-scale waste-to-energy anaerobic digestion (WtE-AD) plants through techno-economic and life cycle assessment approaches. The first part addresses technical and economic aspects. An anaerobic co-digestion system using vegetable waste (FVW) and meat waste (MW) was operated at laboratory scale in a semi-continuous regime with daily feeding to establish a stable process and induce programmed failures causing methanogenic inhibition, achieved by removing MW from the reactor feed and drastically reducing the protein content. Experimental data, combined with bioprocess scale-up models and cost engineering methods, were then used to evaluate the effect of inhibition periods on the profitability of large-scale WtE-AD processes. In the experimental stage, the stable process achieved a yield of 521.5 ± 21 mL CH4 g−1 volatile solids (VS) and a biogas productivity of 0.965 ± 0.04 L L−1 d−1 (volume of biogas generated per reactor volume per day), with no failure risk detected, as indicated by the volatile fatty acids/total alkalinity ratio (VFA/TA, mg VFA L−1/mg L−1) and the VFA/productivity ratio (mg VFA L−1/L L−1 d−1), both recognized as effective early warning indicators. However, during the inhibition period, productivity decreased by 64.26 ± 11.81% due to VFA accumulation and gradual TA loss. With the progressive reintroduction of the FVW:MW management and the addition of fresh inoculum to the reaction medium, productivity recovered to 96.7 ± 1.70% of its pre-inhibition level. In WtE-AD plants processing 60 t d−1 of waste, inhibition events can reduce net present value (NPV) by up to 40.2% (from 0.98 M USD to 0.55 M USD) if occurring once per year. Increasing plant capacity (200 t d−1), combined with higher revenues from waste management fees (99.5 USD t−1) and favorable electricity markets allowing higher selling prices (up to 0.23 USD kWh−1), can enhance resilience and offset inhibition impacts without significantly compromising profitability. These findings provide policymakers and industry stakeholders with key insights into the economic drivers influencing the competitiveness and sustainability of WtE-AD systems. Full article
Show Figures

Figure 1

20 pages, 3277 KB  
Article
Lifting-Line Predictions for Optimal Dihedral Distributions in Ground Effect
by Amanda K. Olsen, Zachary S. Montgomery and Douglas F. Hunsaker
Appl. Sci. 2025, 15(17), 9558; https://doi.org/10.3390/app15179558 (registering DOI) - 30 Aug 2025
Viewed by 33
Abstract
When a flying wing comes within close proximity to the ground, a phenomenon called ground effect occurs where the lift is increased and the induced drag is decreased. This research seeks to determine the optimal dihedral distribution predicted by lifting-line theory that minimizes [...] Read more.
When a flying wing comes within close proximity to the ground, a phenomenon called ground effect occurs where the lift is increased and the induced drag is decreased. This research seeks to determine the optimal dihedral distribution predicted by lifting-line theory that minimizes induced drag in ground effect. Despite some limitations, using lifting-line theory for this study allows for quick results across a large range of design variables, which would be infeasible for high-fidelity methods. The SLSQP optimization method is used along with a numerical lifting-line code to find the dihedral distribution that minimizes induced drag. Results are presented showing how the wing height, taper ratio, lift coefficient, and aspect ratio impact the induced drag and optimal dihedral distributions. For a given geometry, lifting-line theory predicts that there is a certain height above ground where the optimal solutions for a wing below this height result in bell-shaped wings with large section dihedral angles corresponding to a significant induced-drag reduction. For example, a wing with RA=8 and height of h/b=0.25 can benefit from a reduction in induced drag of nearly 50% by employing an optimal dihedral distribution compared to a wing with no dihedral distribution. Full article
14 pages, 3505 KB  
Article
Research on Spatial Optical Path System for Evaluating the Reflection Performance of Quartz-Based Volume Bragg Grating Applied to Fabry–Perot Cavity
by Jiamin Chen, Gengchen Zhang, Hejin Wang, Qianyu Ren, Yongqiu Zheng and Chenyang Xue
Micromachines 2025, 16(9), 998; https://doi.org/10.3390/mi16090998 (registering DOI) - 29 Aug 2025
Viewed by 71
Abstract
In the field of high-temperature in situ sensing, highly reflective Fabry–Perot (F-P) cavity mirrors with thermal stress matching are urgently needed. The quartz-based volume Bragg grating (VBG) can replace the dielectric high-reflection film to prepare a high-temperature and high-precision F-P cavity sensitive unit [...] Read more.
In the field of high-temperature in situ sensing, highly reflective Fabry–Perot (F-P) cavity mirrors with thermal stress matching are urgently needed. The quartz-based volume Bragg grating (VBG) can replace the dielectric high-reflection film to prepare a high-temperature and high-precision F-P cavity sensitive unit by virtue of the integrated structure of homogeneous materials. The reflectivity of the VBG is a key parameter determining the performance of the F-P cavity, and its accurate measurement is very important for the pre-evaluation of the device’s sensing ability. Based on the reflectivity measurement of quartz-based VBG with a large aspect ratio, a free-space optical path reflective measurement system is proposed. The ZEMAX simulation is used to optimize the optical transmission path and determine the position of each component when the optimal spot size is achieved. After completing the construction of the VBG reflectivity measurement system, the measurement error is calibrated by measuring the optical path loss, and the maximum error is only 1.2%. Finally, the reflectivity of the VBG measured by the calibrated system is 30.84%, which is basically consistent with the multi-physical field simulation results, showing a deviation as low as 0.85%. The experimental results fully verify the availability and high measurement accuracy of the reflectivity measurement system. This research work provides a new method for testing the characteristics of micron-scale grating size VBGs. Additionally, this work combines optical characterization methods to verify the good effect of VBG preparation technology, providing core technical support for the realization of subsequent homogeneous integrated Fabry–Perot cavity sensors. Furthermore, it holds important application value in the field of optical sensing and micro-nano integration. Full article
(This article belongs to the Section E:Engineering and Technology)
13 pages, 514 KB  
Article
On the Definition and Location of the Aeroelastic Typical Section in Swept Wings
by Miguel Nieto Gómez and Marcos Chimeno Manguán
Aerospace 2025, 12(9), 783; https://doi.org/10.3390/aerospace12090783 - 29 Aug 2025
Viewed by 77
Abstract
The concept of the typical section has been widely used in aeroelasticity to analyse the dynamic behaviour of wings by reducing three-dimensional models to two-dimensional models. This work proposes a formal definition of the typical section based on flutter and divergence speeds, identifying [...] Read more.
The concept of the typical section has been widely used in aeroelasticity to analyse the dynamic behaviour of wings by reducing three-dimensional models to two-dimensional models. This work proposes a formal definition of the typical section based on flutter and divergence speeds, identifying the span-wise location that best represents the aeroelastic behaviour of a given wing. The typical section of a set of cantilever wings with varying aspect ratios, taper ratios, and sweep angles is analysed by means of numerical models. The results show that the typical sections for flutter and divergence differ in location, a difference that increases with the aspect ratio and the sweep angle. The influence of the wing geometry and the ratio between the plunge and pitch eigenfrequencies in the location of the typical sections is also analysed. Full article
(This article belongs to the Section Aeronautics)
32 pages, 6749 KB  
Article
Cement Carbonation Under Fermentation Conditions as a Tool for CO2 Emission Management—Technological, Environmental and Economic Analysis
by Michał Pyzalski, Michał Juszczyk, Karol Durczak, Dariusz Sala, Joanna Duda, Marek Dudek and Leonas Ustinovičius
Energies 2025, 18(17), 4588; https://doi.org/10.3390/en18174588 - 29 Aug 2025
Viewed by 89
Abstract
The aim of this study is an interdisciplinary assessment of the potential of cement pastes to permanently bind carbon dioxide (CO2) under anaerobic digestion conditions, considering technological, microstructural, environmental, and economic aspects. The research focused on three types of Portland cement: [...] Read more.
The aim of this study is an interdisciplinary assessment of the potential of cement pastes to permanently bind carbon dioxide (CO2) under anaerobic digestion conditions, considering technological, microstructural, environmental, and economic aspects. The research focused on three types of Portland cement: CEM I 52.5N, CEM I 42.5R-1, and CEM I 42.5R-2, differing in phase composition and reactivity, which were evaluated in terms of their carbonation potential and resistance to chemically aggressive environments. The cement pastes were prepared with a water-to-cement ratio of 0.5 and subjected to 90-day exposure in two environments: a reference environment (tap water) and a fermentation environment (aqueous suspension of poultry manure simulating biogas reactor conditions). XRD, TG/DTA, SEM/EDS, and mercury intrusion porosimetry were applied to analyze CO2 mineralization, phase changes, and microstructural evolution. XRD results revealed a significant increase in calcite content (e.g., for CEM I 52.5N from 5.9% to 41.1%) and the presence of vaterite (19.3%), indicating intense carbonation under organic conditions. TG/DTA analysis confirmed a reduction in portlandite and C-S-H phases, suggesting their transformation into stable carbonate forms. SEM observations and EDS analysis revealed well-developed calcite crystals and the dominance of Ca, C, and O, confirming effective CO2 binding. In control samples, hydration products predominated without signs of mineralization. The highest sequestration potential was observed for CEM I 52.5N, while cements with higher C3A content (e.g., CEM I 42.5R-2) exhibited lower chemical resistance. The results confirm that carbonation under fermentation conditions may serve as an effective tool for CO2 emission management, contributing to improved durability of construction materials and generating measurable economic benefits in the context of climate policy and the EU ETS. The article highlights the need to integrate CO2 sequestration technologies with emission management systems and life cycle assessment (LCA) of biogas infrastructure, supporting the transition toward a low-carbon economy. Full article
(This article belongs to the Special Issue Challenges and Research Trends of Carbon Dioxide Capture)
Show Figures

Figure 1

12 pages, 2445 KB  
Article
The Effect of Girth Design and Girth Tension on Saddle-Horse Pressures and Forelimb Stride Kinematics in Rising Trot
by David Marlin, Olivia Randell, Emma Mayhew and Roberta Blake
Animals 2025, 15(17), 2540; https://doi.org/10.3390/ani15172540 - 29 Aug 2025
Viewed by 149
Abstract
The aim of this study was to investigate the effect of girth design and girth tension; six horses regularly ridden were used. Each horse underwent four experimental sessions in an unbalanced Latin-square design with two girth tensions (8 kg or 16 kg) and [...] Read more.
The aim of this study was to investigate the effect of girth design and girth tension; six horses regularly ridden were used. Each horse underwent four experimental sessions in an unbalanced Latin-square design with two girth tensions (8 kg or 16 kg) and two girth designs (straight girth (S) or anatomical girth (A)). Pressure between the saddle and the horse was measured at 100 Hz with a pressure mat (0.5 sensels per cm2). Notably, 2D limb kinematics were determined from anatomical markers placed on the fore and hindlimbs. Video was collected at 240 fps. There was no significant effect of girth type, girth tension, or girth type*tension interaction for any of the measured variables, with the exception of carpal flexion, which was significantly greater for A8 (median: 103°, 25th–75th percentile: 100–112°) than S8 (101°, 96–106°; p = 0.043). There was no effect of girth type (A or S) on mean saddle pressure for either cranial or caudal regions (p > 0.05), but caudal average pressure was significantly lower than cranial average pressure both at 8 and 16 kg tensions (p < 0.05). For both mean and peak pressure, the ratio cranial: caudal was significantly higher with 16 kg tension (p < 0.05), indicating that as the girth tension increases, the pressures shift towards the cranial aspect. In conclusion, neither girth tension nor girth type significantly influenced 2D limb kinematics, but higher tension has shifted the load towards the cranial area significantly, which could contribute to cranial thoracic back pain or injuries. Full article
(This article belongs to the Special Issue Advances in Equine Sports Medicine, Therapy and Rehabilitation)
Show Figures

Figure 1

24 pages, 1850 KB  
Review
Pathophysiological Associations and Measurement Techniques of Red Blood Cell Deformability
by Minhui Liang, Dawei Ming, Jianwei Zhong, Choo Sheriel Shannon, William Rojas-Carabali, Kajal Agrawal, Ye Ai and Rupesh Agrawal
Biosensors 2025, 15(9), 566; https://doi.org/10.3390/bios15090566 - 28 Aug 2025
Viewed by 175
Abstract
Red blood cell (RBC), accounting for approximately 45% of total blood volume, are essential for oxygen delivery and carbon dioxide removal. Their unique biconcave morphology, high surface area-to-volume ratio, and remarkable deformability enable them to navigate microvessels narrower than their resting diameter, ensuring [...] Read more.
Red blood cell (RBC), accounting for approximately 45% of total blood volume, are essential for oxygen delivery and carbon dioxide removal. Their unique biconcave morphology, high surface area-to-volume ratio, and remarkable deformability enable them to navigate microvessels narrower than their resting diameter, ensuring efficient microcirculation. RBC deformability is primarily determined by membrane viscoelasticity, cytoplasmic viscosity, and cell geometry, all of which can be altered under various physiological and pathological conditions. Reduced deformability is a hallmark of numerous diseases, including sickle cell disease, malaria, diabetes mellitus, sepsis, ischemia–reperfusion injury, and storage lesions in transfused blood. As these mechanical changes often precede overt clinical symptoms, RBC deformability is increasingly recognized as a sensitive biomarker for disease diagnosis, prognosis, and treatment monitoring. Over the past decades, diverse techniques have been developed to measure RBC deformability. These include single-cell methods such as micropipette aspiration, optical tweezers, atomic force microscopy, magnetic twisting cytometry, and quantitative phase imaging; bulk approaches like blood viscometry, ektacytometry, filtration assays, and erythrocyte sedimentation rate; and emerging microfluidic platforms capable of high-throughput, physiologically relevant measurements. Each method captures distinct aspects of RBC mechanics, offering unique advantages and limitations. This review synthesizes current knowledge on the pathophysiological significance of RBC deformability and the methods for its measurement. We discuss disease contexts in which deformability is altered, outline mechanical models describing RBC viscoelasticity, and provide a comparative analysis of measurement techniques. Our aim is to guide the selection of appropriate approaches for research and clinical applications, and to highlight opportunities for developing robust, clinically translatable diagnostic tools. Full article
(This article belongs to the Special Issue Microfluidics for Sample Pretreatment)
Show Figures

Figure 1

36 pages, 14469 KB  
Article
Multi-Objective Optimization Design Based on Prototype High-Rise Office Buildings: A Case Study in Shandong, China
by Hangyue Zhang and Zhi Zhuang
Buildings 2025, 15(17), 3071; https://doi.org/10.3390/buildings15173071 - 27 Aug 2025
Viewed by 186
Abstract
Urbanization in China and the proliferation of high-rise office buildings have led to increased demand for daylighting and thermal comfort. These requirements often result in reliance on active systems, including heating, cooling, and artificial lighting, which increase energy consumption. Existing studies have often [...] Read more.
Urbanization in China and the proliferation of high-rise office buildings have led to increased demand for daylighting and thermal comfort. These requirements often result in reliance on active systems, including heating, cooling, and artificial lighting, which increase energy consumption. Existing studies have often focused on individual cases or room-scale models, which makes it difficult to generalize findings to the design of various high-rise office building types. Therefore, in this study, parametric prototype building models for high-rise office buildings were developed based on surveys of completed and under-construction projects. These surveys reflected actual design practices and were used to support systematic performance evaluation and typology-level optimization. Building performance was simulated using Grasshopper and Honeybee to generate large-scale datasets, and stacking ensemble learning models were used as surrogate predictors for energy use, daylighting, and thermal comfort. Multi-objective optimization was conducted using the non-dominated sorting genetic algorithm III (NSGA-III), followed by strategy formulation. The results revealed the following: (1) the proposed prototype model establishes clear parameter ranges for geometry, envelope design, and thermal performance, offering reusable models and data; (2) the stacking ensemble model outperforms individual models, improving the coefficient of determination (R2) by 0.5–16.1%, with mean squared error (MSE) reductions of 4.4–70.6%, and mean absolute error (MAE) reductions of 2.8–45.8%; (3) space length, aspect ratio, usable area ratio, window U-value, and solar heat gain coefficient (SHGC) were identified as primary performance drivers; and (4) optimized solutions reduced energy use by 3.79–11.81% and enhanced daylighting comfort by 40.16–50.32% while maintaining thermal comfort. The proposed framework provides localized, data-driven guidance for early-stage performance optimization in high-rise office building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 11303 KB  
Article
Fabricating High Aspect Ratio Amorphous Alloys Microgrooves by Using Periodically Thinning Jet Electrochemical Milling Method
by Yahui Li, Pingmei Ming, Dongdong Li, Rongbo Zhao and Shen Niu
Micromachines 2025, 16(9), 979; https://doi.org/10.3390/mi16090979 - 26 Aug 2025
Viewed by 267
Abstract
Jet electrochemical milling (JECM) offers significant advantages for fabricating fine grooves and slits in thin-walled, low-rigidity, and heat-sensitive metallic materials, such as amorphous alloys, owing to its operational flexibility, lack of material constraints, and superior surface quality. Nevertheless, conventional JECM techniques for groove [...] Read more.
Jet electrochemical milling (JECM) offers significant advantages for fabricating fine grooves and slits in thin-walled, low-rigidity, and heat-sensitive metallic materials, such as amorphous alloys, owing to its operational flexibility, lack of material constraints, and superior surface quality. Nevertheless, conventional JECM techniques for groove machining encounter limitations including excessive overcut, restricted ability to produce microstructures with high depth-to-width ratios, and reduced machining accuracy. To address these issues, this study proposes an innovative approach termed the periodically thinning jet electrochemical milling (PT-JECM) method. This method involves initially generating a shallow microgroove through a single pass using the original nozzle diameter, followed by successive milling passes with progressively smaller nozzle diameters based on the preformed groove. Comparative analysis with traditional JECM methods reveals that this strategy significantly improves the etching factor from 1.896 to 4.318, corresponding to a 128% enhancement. Furthermore, it markedly decreases the slot width increase from 275 μm to 1 μm and improves the aspect ratio from 0.51 to 0.83, representing a 63% increase, enabling the precision machining of large aspect ratio holes and slot structures. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

16 pages, 4291 KB  
Article
Nitride–Silver Hybrid PCF-SPR Biosensor: A High-Sensitivity Platform for Synchronous Monitoring of Low-Concentration Analytes and Temperature
by Chenyu Liang, Junzhu Wang, Jiaxuan Zhu, Jie Zhao and Kai Zhang
Sensors 2025, 25(17), 5292; https://doi.org/10.3390/s25175292 - 26 Aug 2025
Viewed by 744
Abstract
This study proposes a dual-parameter photonic crystal fiber-based surface plasmon resonance (SPR) sensor for simultaneous refractive index and temperature detection. The sensor architecture incorporates an asymmetric air hole lattice, featuring elliptical inner holes (aspect ratio: 1.5) to enhance birefringence and axially aligned outer [...] Read more.
This study proposes a dual-parameter photonic crystal fiber-based surface plasmon resonance (SPR) sensor for simultaneous refractive index and temperature detection. The sensor architecture incorporates an asymmetric air hole lattice, featuring elliptical inner holes (aspect ratio: 1.5) to enhance birefringence and axially aligned outer circular holes to optimize surface plasmon coupling. Horizontally, symmetrically deposited silver films and silicon nitride layers constitute the RI-sensing channel, while a vertically machined PDMS-coated silver–nitride structure enables temperature responsivity. The temperature-sensing channel delivers a sensitivity of 20 nm/°C within 0–100 °C, while the RI channel achieves a peak sensitivity of 18,600 nm/RIU across na = 1.33–1.41 with a resolution of 5.38 × 10−6 RIU. Notably, cross-sensitivity between the two channels remains below 5%, underscoring the sensor’s capability for independent dual-parameter analysis. This low-interference, high-sensitivity platform holds significant promise for advanced biosensing applications requiring real-time multiparametric monitoring. Full article
Show Figures

Figure 1

38 pages, 9919 KB  
Article
The Effects of Setback Geometry and Façade Design on the Thermal and Energy Performance of Multi-Story Residential Buildings in Hot Arid Climates
by Asmaa Omar, Mohammed M. Gomaa and Ayman Ragab
Architecture 2025, 5(3), 68; https://doi.org/10.3390/architecture5030068 (registering DOI) - 26 Aug 2025
Viewed by 534
Abstract
This study investigates the influence of rear setback geometry and façade design parameters on microclimatic conditions, indoor thermal comfort, and energy performance in multi-story residential buildings in hot arid climates, addressing the growing need for climate-responsive design in regions with extreme temperatures and [...] Read more.
This study investigates the influence of rear setback geometry and façade design parameters on microclimatic conditions, indoor thermal comfort, and energy performance in multi-story residential buildings in hot arid climates, addressing the growing need for climate-responsive design in regions with extreme temperatures and high solar radiation. Despite increasing interest in sustainable strategies, the combined effects of urban geometry and building envelope design remain underexplored in these environments. A coupled simulation framework was developed, integrating ENVI-met for outdoor microclimate modeling with Design Builder and EnergyPlus for dynamic building performance analysis. A total of 270 simulation scenarios were examined, combining three rear setback aspect ratios (1.5, 1.87, and 2.25), three window-to-wall ratios (10%, 20%, and 30%), three glazing types (single-, double-, and triple-pane), and two wall insulation states, using customized weather files derived from microclimate simulations. Global sensitivity analysis using rank regression and multivariate adaptive regression splines identified the glazing type as the most influential parameter (sensitivity index ≈ 0.99), especially for upper floors. At the same time, higher aspect ratios reduced peak Physiological Equivalent Temperature (PET) by up to 5 °C and decreased upper-floor cooling loads by 37%, albeit with a 9.3% increase in ground-floor cooling demand. Larger window-to-wall ratios lowered lighting energy consumption by up to 35% but had minimal impact on cooling loads, whereas wall insulation reduced annual cooling demand by up to 29,441 kWh. The results emphasize that integrating urban morphology with optimized façade components, particularly high-performance glazing and suitable aspect ratios, can significantly improve thermal comfort and reduce cooling energy consumption in hot arid residential contexts. Full article
(This article belongs to the Special Issue Advances in Green Buildings)
Show Figures

Figure 1

Back to TopTop