Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = asbestos fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8075 KiB  
Article
Kinetic Aspects of Chrysotile Asbestos Thermal Decomposition Process
by Robert Kusiorowski, Anna Gerle, Magdalena Kujawa and Andrea Bloise
Minerals 2025, 15(6), 609; https://doi.org/10.3390/min15060609 - 5 Jun 2025
Viewed by 423
Abstract
Growing requirements in the field of environmental protection and waste management result in the need to search for new and effective methods of recycling various types of waste. From the perspective of technical and natural sciences, the disposal of hazardous waste, which can [...] Read more.
Growing requirements in the field of environmental protection and waste management result in the need to search for new and effective methods of recycling various types of waste. From the perspective of technical and natural sciences, the disposal of hazardous waste, which can lead to environmental degradation, is of utmost importance. A particularly hazardous waste is asbestos, used until recently in many branches of the economy and industry. Despite the ban on the production and use of asbestos introduced in many countries, products containing it are still present in the environment and pose a real threat. This paper presents the results of research related to the process of asbestos neutralization, especially the chrysotile variety, by the thermal decomposition method. Changes in the mineralogical characteristics of asbestos waste were studied using the following methods: TG-DTA-EGA, XRD, SEM-EDS and XRF. The characteristics of the chrysotile asbestos sample were determined before and after thermal treatment at selected temperatures. The second part of the study focuses on the kinetic aspect of this process, where the chrysotile thermal decomposition process was measured by two techniques: ex situ and in situ. This study showed that the chrysotile structure collapsed at approximately 600–800 °C through dehydroxylation, and then the fibrous chrysotile asbestos was transformed into new mineral phases, such as forsterite and enstatite. The formation of forsterite was observed at temperatures below 1000 °C, while enstatite was created above this temperature. From the kinetic point of view, the chrysotile thermal decomposition process could be described by the Avrami–Erofeev model, and the calculated activation energy values were ~180 kJ mol−1 and ~220 kJ mol−1 for ex situ and in situ processes, respectively. The obtained results indicate that the thermal method can be successfully used to detoxify hazardous chrysotile asbestos fibers. Full article
Show Figures

Graphical abstract

13 pages, 1887 KiB  
Article
Polymer-Based Thermal Protective Composites: The Role of Reinforcement and Matrix in Providing Strength and Fire Resistance
by Mohammed Meiirbekov, Assem Kuandyk, Mukhammed Sadykov, Meiir Nurzhanov, Nurmakhan Yesbolov, Berdiyar Baiserikov, Ilyas Ablakatov, Laura Mustafa, Botagoz Medyanova, Arman Kulbekov, Sunkar Orazbek and Abussaid Yermekov
Polymers 2025, 17(10), 1419; https://doi.org/10.3390/polym17101419 - 21 May 2025
Viewed by 593
Abstract
This study addresses the need for thermomechanically robust materials for high-temperature environments by investigating fabric-reinforced composites produced through polymer infiltration and thermal pressing using phenol-formaldehyde (PF) and epoxy (ER) resins. Experimental validation was required due to the lack of comparative data across different [...] Read more.
This study addresses the need for thermomechanically robust materials for high-temperature environments by investigating fabric-reinforced composites produced through polymer infiltration and thermal pressing using phenol-formaldehyde (PF) and epoxy (ER) resins. Experimental validation was required due to the lack of comparative data across different textile reinforcements under identical conditions. Seven technical fabrics—carbon, aramid, basalt, silica, fiberglass, asbestos, and a carbon/aramid hybrid—were used as reinforcements. Mechanical testing revealed that carbon- and hybrid fiber composites exhibited the highest tensile (up to 465 MPa) and compressive strengths (up to 301 MPa), particularly when combined with ER. Conversely, the use of PF generally resulted in a 30–50% reduction in mechanical strength. However, PF-based composites demonstrated superior thermal resistance, with the silica/PF combination showing the lowest back-face temperature (401 °C), up to 37% lower than other pairings. Thermal conductivity ranged from 0.041 to 0.51 W/m·K, with PF-based systems offering 6–12% lower values on average compared to ER-based analogs. Morphological analysis confirmed better interfacial bonding in ER composites, while PF systems showed higher structural integrity under thermal loading. Overall, the results emphasize the trade-offs between mechanical strength and thermal protection depending on the fabric–resin combination. Among all variants, the silica fabric with PF demonstrated the most balanced performance, making it a promising candidate for thermomechanical applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

18 pages, 14418 KiB  
Article
Recovery of End-of-Life Building Materials: Thermal Decomposition and Phase Transformation of Chrysotile in Asbestos-Containing Fiber Cement Boards
by António Curado, Leonel J. R. Nunes, Arlete Carvalho, João Abrantes, Eduarda Lima and Mário Tomé
Fibers 2025, 13(5), 62; https://doi.org/10.3390/fib13050062 - 9 May 2025
Viewed by 601
Abstract
The circular economy emphasizes reducing, recycling, and reusing waste, a principle that is challenging to apply to hazardous materials like asbestos-containing construction waste, typically destined for landfills due to limited recycling options. This experimental study investigates the physicochemical characterization of asbestos fibers in [...] Read more.
The circular economy emphasizes reducing, recycling, and reusing waste, a principle that is challenging to apply to hazardous materials like asbestos-containing construction waste, typically destined for landfills due to limited recycling options. This experimental study investigates the physicochemical characterization of asbestos fibers in fiber cement boards and assesses the efficacy of mechanical grinding and thermal treatments to transform these fibers into non-fibrous, stable phases for reuse in sustainable construction applications, such as cement and mineral wool production. Using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), we analyzed samples from end-of-life fiber cement panels, subjecting them to thermal treatments at 700 °C, 1000 °C, and 1200 °C. Results show that, while grinding reduces particle size, it does not eliminate fibrous structures; however, thermal treatment above 1000 °C fully converts chrysotile into forsterite and enstatite, eliminating health risks and enabling material reuse. These findings, that are part of the FiberRec project, support a systematic approach to integrating asbestos-containing waste into a closed-loop material cycle, significantly reducing carbon emissions and landfill dependency. Full article
Show Figures

Figure 1

23 pages, 31507 KiB  
Article
Tremolite-Asbestos Presence in Roman Archaeological Site of Micia, Romania
by Rodica-Mariana Ion, Marius Gheorghe Barbu, Valentin Ioan Gurgu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Gabriel Vasilievici, Lorena Iancu, Ramona Marina Grigorescu and Elvira Alexandrescu
Crystals 2025, 15(5), 430; https://doi.org/10.3390/cryst15050430 - 30 Apr 2025
Viewed by 542
Abstract
This paper reports the first evidence of the presence of the mineral tremolite asbestos in Roman building materials from the Micia archaeological site (Romania), thus contributing to the understanding of the implications of ancient building materials. The Micia archaeological site includes both a [...] Read more.
This paper reports the first evidence of the presence of the mineral tremolite asbestos in Roman building materials from the Micia archaeological site (Romania), thus contributing to the understanding of the implications of ancient building materials. The Micia archaeological site includes both a fort and a civilian Roman military settlement that was inhabited by both civilians and soldiers from various Roman troops. Over time, since the late 2nd century AD, the settlement has undergone significant reconstruction, especially after some fires. Tremolite asbestos is a non-flammable mineral that, due to its fibrous properties, was used in the past in building materials, although it poses health risks when inhaled. To highlight it, several advanced and highly sensitive scientific techniques are used in this work to discover the presence of tremolite asbestos and to examine its structure, composition, and morphology inside the investigated samples. Tremolite asbestos is typically white to gray or greenish in color, characterized by thin, needle-like fibers that can easily become airborne and inhaled. It is a crystalline mineral that usually forms long, straight, sharp fibers. Under high magnification in optical microscopy or in scanning electron microscope images, correlated with other performant analytical techniques (XRD, WDXRF, FTIR, Raman, BET, TGA), tremolite asbestos appears as elongated, slender fibers—often bundled or intertwined—with smooth or slightly striated surfaces. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

11 pages, 1951 KiB  
Article
Kinetic Analysis of Cement–Asbestos Materials’ Thermal Decomposition Process by an Ex Situ Technique
by Robert Kusiorowski, Anna Gerle and Magdalena Kujawa
Fibers 2025, 13(4), 43; https://doi.org/10.3390/fib13040043 - 10 Apr 2025
Cited by 1 | Viewed by 466
Abstract
For many years, countries around the world have been struggling with the problem of storing asbestos waste, especially in, those countries where the production and use of asbestos products have been legally banned. Following the adoption of plans for cleaning up asbestos waste, [...] Read more.
For many years, countries around the world have been struggling with the problem of storing asbestos waste, especially in, those countries where the production and use of asbestos products have been legally banned. Following the adoption of plans for cleaning up asbestos waste, countries are struggling with the problem of its disposal, which mainly involves storing it in specialist landfills. At the same time, scientists are looking for alternatives to this type of “disposal” of asbestos by developing methods for degrading the harmful fibers. Particular attention has been paid to methods based on the thermal treatment of this waste, which results in hazardous asbestos fibers being thermally decomposed. This work focuses on the kinetic study of the thermal decomposition process of cement–asbestos using an exsitu thermal treatment. The results obtained made it possible to interpret this thermal transformation kinetically. Kinetic analysis of the isothermal data using an Avrami–Erofeev model yielded values for the overall reaction order. On this basis, the value of the apparent activation energy of the thermal decomposition process of the tested cement–asbestos samples was obtained, which was approximately 140–180 kJ mol−1. Full article
Show Figures

Figure 1

17 pages, 23171 KiB  
Article
Thermal Decomposition and Phase Transformation of Chrysotile in Asbestos-Containing Waste
by Chaewon Kim, Yumi Kim and Yul Roh
Minerals 2025, 15(4), 344; https://doi.org/10.3390/min15040344 - 27 Mar 2025
Cited by 3 | Viewed by 713
Abstract
In Korea, asbestos-containing waste (ACW) is disposed of in landfills. However, due to the limited landfill capacity and the potential health risks of asbestos contamination, alternative, safer disposal methods are needed. Heat treatment has been suggested as an alternative disposal method for ACW. [...] Read more.
In Korea, asbestos-containing waste (ACW) is disposed of in landfills. However, due to the limited landfill capacity and the potential health risks of asbestos contamination, alternative, safer disposal methods are needed. Heat treatment has been suggested as an alternative disposal method for ACW. Therefore, it is necessary to determine the optimal conditions for the thermal decomposition of chrysotile in ACW and reveal the mineralogical composition of heat-treated ACW. In this study, asbestos cement roof (ACR) and asbestos gypsum board (AGB) samples were heat-treated at 600, 700, 800, and 900 °C to identify the optimal heat treatment parameters to eliminate chrysotile fibers. The thermal, chemical, and mineralogical characteristics of the ACW were determined before and after heat treatment using multiple analytical methods. The ACR consisted of chrysotile, calcite, and ettringite, and the AGB consisted of chrysotile, gypsum, and calcite. After heat treatment at 900 °C, the ACR was mainly composed of cement component minerals and lime, while the AGB additionally contained anhydrite. SEM-EDS analysis confirmed the persistence of fibrous minerals in the ACW up to 800 °C. Furthermore, TEM-EDS analysis revealed hollow tubular morphology of chrysotile in the heat-treated ACR at up to 700 °C and in the heat-treated AGB at 600 °C. These results suggest that heat treatment at temperatures of at least 900 °C may be necessary for the complete thermal decomposition of chrysotile in ACW. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

20 pages, 426 KiB  
Review
Examining the Environmental Ramifications of Asbestos Fiber Movement Through the Water–Soil Continuum: A Review
by Gergely Zoltán Macher, András Torma and Dóra Beke
Int. J. Environ. Res. Public Health 2025, 22(4), 505; https://doi.org/10.3390/ijerph22040505 - 26 Mar 2025
Cited by 1 | Viewed by 983
Abstract
The environmental pollution potential of asbestos products is a worldwide health issue, but their dissemination through the water–soil continuum is often an overlooked aspect. Similarly, the behavior of asbestos fibers released from the products is still not fully understood, although our knowledge is [...] Read more.
The environmental pollution potential of asbestos products is a worldwide health issue, but their dissemination through the water–soil continuum is often an overlooked aspect. Similarly, the behavior of asbestos fibers released from the products is still not fully understood, although our knowledge is based on studies concerning their mineralogical characteristics, health effects, and waste disposal. It has been claimed and contradicted that asbestos harm is only found in air and humans. Asbestos fibers are found not only in industrial settings but also through the industrial use of asbestos cement products, which has contributed to asbestos emissions and its movement in water and soil. Asbestos fibers are diverse in their physicochemical properties, and this diversity has a significant influence on their behavior in the environment. Recent research has confirmed that asbestos can be transported by water and spread to other parts of the environment. However, the mechanisms underlying this, such as the settling of fibers, their attachment to soil particles, or their movement in groundwater, as well as the environmental and health implications, require further investigation. This paper examines the process and impact of asbestos contamination in the interconnected water, soil, and plant environmental sectors, providing a systematic review of the latest literature. Full article
12 pages, 2880 KiB  
Article
Development and Performance Evaluation of a Gel-Based Plugging System for Complex Fractured Formations Using Acrylic Resin Particles
by Lei Yao, Xiaohu Quan, Jihe Ma, Ge Wang, Qi Feng, Hui Jin and Jun Yang
Gels 2025, 11(3), 162; https://doi.org/10.3390/gels11030162 - 24 Feb 2025
Viewed by 561
Abstract
The issue of fluid loss in fractured formations presents a significant challenge in petroleum engineering, often leading to increased operational costs and construction risks. To address the limitations of traditional lost circulation materials (LCMs) in oil reservoirs with different fracture sizes, this study [...] Read more.
The issue of fluid loss in fractured formations presents a significant challenge in petroleum engineering, often leading to increased operational costs and construction risks. To address the limitations of traditional lost circulation materials (LCMs) in oil reservoirs with different fracture sizes, this study developed an acrylic resin gel particle with excellent thermal stability (thermal decomposition temperature up to 314 °C) and compatibility. By employing Box–Behnken design and response surface methodology, the synergistic interaction of calcium hydroxide (Ca(OH)2), asbestos fibers, and cement was optimized to create a novel gel solidification plugging system that meets the requirements of fluid loss control and compressive strength improvement. Experimental results revealed that the gel-based system demonstrated exceptional performance, achieving rapid fluid loss (total fluid loss time of 18~47 s) and forming a high-strength gelled filter cake (24 h compressive strength up to 17.5 MPa). Under simulated conditions (150 °C), the gel-based system provided efficient fracture sealing, showcasing remarkable adaptability and potential for engineering applications. This study underscores the promise of acrylic resin gel particles in overcoming fluid loss challenges in complex fractured formations. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

31 pages, 6940 KiB  
Article
Short-Wave Infrared Spectroscopy for On-Site Discrimination of Hazardous Mineral Fibers Using Machine Learning Techniques
by Giuseppe Bonifazi, Sergio Bellagamba, Giuseppe Capobianco, Riccardo Gasbarrone, Ivano Lonigro, Sergio Malinconico, Federica Paglietti and Silvia Serranti
Sustainability 2025, 17(3), 972; https://doi.org/10.3390/su17030972 - 24 Jan 2025
Cited by 1 | Viewed by 1279
Abstract
Asbestos fibers are well-known carcinogens, and their rapid detection is critical for ensuring safety, protecting public health, and promoting environmental sustainability. In this work, short-wave infrared (SWIR) spectroscopy, combined with machine learning (ML), was evaluated as an environmentally friendly analytical approach for simultaneously [...] Read more.
Asbestos fibers are well-known carcinogens, and their rapid detection is critical for ensuring safety, protecting public health, and promoting environmental sustainability. In this work, short-wave infrared (SWIR) spectroscopy, combined with machine learning (ML), was evaluated as an environmentally friendly analytical approach for simultaneously distinguishing the asbestos type, asbestos-containing materials in various forms, asbestos-contaminated/-uncontaminated soil, and asbestos-contaminated/-uncontaminated cement, simultaneously. This approach offers a noninvasive and efficient alternative to traditional laboratory methods, aligning with sustainable practices by reducing hazardous waste generation and enabling in situ testing. Different chemometrics techniques were applied to discriminate the material classes. In more detail, partial least squares discriminant analysis (PLS-DA), principal component analysis-based discriminant analysis (PCA-DA), principal component analysis-based K-nearest neighbors classification (PCA-KNN), classification and regression trees (CART), and error-correcting output-coding support vector machine (ECOC SVM) classifiers were tested. The tested classifiers showed different performances in discriminating between the analyzed samples. CART and ECOC SVM performed best (RecallM and AccuracyM  equal to 1.00), followed by PCA-KNN (RecallM of 0.98–1.00 and AccuracyM  equal to 1.00). Poorer performances were obtained by PLS-DA (RecallM of 0.68–0.72 and AccuracyM equal to 0.95) and PCA-DA (RecallM of 0.66–0.70 and AccuracyM equal to 0.95). This research aligns with the United Nations’ Sustainable Development Goals (SDGs), particularly SDG 3 (Good Health and Well-Being), by enhancing human health protection through advanced asbestos detection methods, and SDG 12 (Responsible Consumption and Production), by promoting sustainable, low-waste testing methodologies. Full article
Show Figures

Figure 1

19 pages, 8015 KiB  
Article
Signal Detection by Sensors and Determination of Friction Coefficient During Brake Lining Movement
by Leopold Hrabovský, Vieroslav Molnár, Gabriel Fedorko, Nikoleta Mikusova, Jan Blata, Jiří Fries and Tomasz Jachowicz
Sensors 2024, 24(24), 8078; https://doi.org/10.3390/s24248078 - 18 Dec 2024
Cited by 2 | Viewed by 826
Abstract
This article presents a laboratory device by which the course of two signals can be detected using two types of sensors—strain gauges and the DEWESoft DS-NET measuring apparatus. The values of the coefficient of friction of the brake lining when moving against the [...] Read more.
This article presents a laboratory device by which the course of two signals can be detected using two types of sensors—strain gauges and the DEWESoft DS-NET measuring apparatus. The values of the coefficient of friction of the brake lining when moving against the rotating shell of the brake drum were determined from the physical quantities sensed by tensometric sensors and transformed into electrical quantities. The friction coefficient of the brake lining on the circumference of the rotating brake disc shell can be calculated from the known values measured by the sensors, the design dimensions of the brake, and the revolutions of the rotating parts system. The values of the friction coefficient were measured during brake lining movement. A woven asbestos-free material, Beral 1126, which contained brass fibers and resin additives, showed slightly higher values when rotating at previously tested speeds compared to the friction coefficient values obtained when the brake drum rotation was uniformly delayed. The methodology for determining the friction coefficient of the brake lining allowed the laboratory device to verify its magnitude for different friction materials under various operating conditions. Full article
(This article belongs to the Special Issue Sensors and Systems for Automotive and Road Safety (Volume 2))
Show Figures

Figure 1

16 pages, 306 KiB  
Review
The Use of Asbestos and Its Consequences: An Assessment of Environmental Impacts and Public Health Risks
by António Curado, Leonel J. R. Nunes, Arlete Carvalho, João Abrantes, Eduarda Lima and Mário Tomé
Fibers 2024, 12(12), 102; https://doi.org/10.3390/fib12120102 - 25 Nov 2024
Cited by 4 | Viewed by 3494
Abstract
The use of asbestos, once celebrated for its versatility and fire-resistant properties, has left a lasting legacy of environmental degradation and public health risks. This paper provides a comprehensive assessment of the environmental impacts and health risks associated with asbestos, highlighting its widespread [...] Read more.
The use of asbestos, once celebrated for its versatility and fire-resistant properties, has left a lasting legacy of environmental degradation and public health risks. This paper provides a comprehensive assessment of the environmental impacts and health risks associated with asbestos, highlighting its widespread use, environmental persistence, and adverse effects on human health. Through a literature review, this study examines the historical context of asbestos use, its adverse environmental effects and the mechanisms by which exposure to asbestos poses significant health risks, including the development of asbestos-related diseases such as mesothelioma, lung cancer, asbestosis, etc. It also assesses the current regulatory framework and provides a methodological analysis of the strategy for recycling end-of-life materials containing asbestos fibers, proposing the inclusion of asbestos-containing materials (ACMs) in the rock wool industry to reduce Greenhouse Gasses (GHG) emissions. Drawing on interdisciplinary insights from environmental science, public health, and regulatory analysis, this paper concludes with recommendations for improving asbestos management strategies, promoting safer alternatives and mitigating the long-term environmental and human health impacts of asbestos. Full article
(This article belongs to the Collection Review Papers of Fibers)
13 pages, 6459 KiB  
Article
The Development of Fiber–Cement Flat Sheets by Young and Mature Coconut Fibers to Replace Asbestos for Eco-Friendly Products
by Prachoom Khamput, Tawich Klathae, Chookiat Choosakul and Saofee Dueramae
Appl. Sci. 2024, 14(23), 10786; https://doi.org/10.3390/app142310786 - 21 Nov 2024
Viewed by 1480
Abstract
This study investigated young and mature coconut fibers as an asbestos replacement in fiber–cement flat sheets. The ratio of fiber content ranged from 5% to 9.5% in increments of 0.5% by weight of binder. Crushed rock dust (CRD) was also utilized in this [...] Read more.
This study investigated young and mature coconut fibers as an asbestos replacement in fiber–cement flat sheets. The ratio of fiber content ranged from 5% to 9.5% in increments of 0.5% by weight of binder. Crushed rock dust (CRD) was also utilized in this study at a ratio of 50% as sand replacement. The results showed that the addition of young coconut fiber (YCF) and mature coconut fiber (MCF) in flat sheets increased with decreasing bulk density and thermal conductivity. The optimum fiber content was 6.5%–7% by weight of binder for two types of fiber with the highest modulus of rupture of 12–13 MPa. The modulus of rupture and density of fiber–cement flat sheets using YCF were higher than that of fiber–cement flat sheets using MCF, which was clarified by SEM results due to the denser structure of MCF. Moreover, the modulus of rupture was directly proportional to the modulus of elasticity in fiber–cement flat sheets. Full article
Show Figures

Figure 1

19 pages, 4161 KiB  
Article
Influence of Chemical, Morphological, Spectroscopic and Calorimetric Properties of Agroindustrial Cellulose Wastes on Drainage Behavior in Stone Mastic Asphalt Mixtures
by Laura Yessenia Cabello-Suárez, José Anzaldo Hernández, José Roberto Galaviz-González, David Avalos-Cueva, Edgar Benjamín Figueroa Ochoa, Daniel Escobar Hernández, Manuel Alberto Gallardo-Sánchez, Pedro Limón-Covarrubias and Emma Rebeca Macías-Balleza
Materials 2024, 17(21), 5278; https://doi.org/10.3390/ma17215278 - 30 Oct 2024
Viewed by 1223
Abstract
New asphalt mixtures have been improved by using fibers (polypropylene, polyester, asbestos, carbon, glass, nylon, lignin, coconut, sisal, recycled rubber, PET, wood, bamboo, and cellulose), reducing the temperature and compaction energy for their collocation, minimizing the impact on the environment, increasing the tenacity [...] Read more.
New asphalt mixtures have been improved by using fibers (polypropylene, polyester, asbestos, carbon, glass, nylon, lignin, coconut, sisal, recycled rubber, PET, wood, bamboo, and cellulose), reducing the temperature and compaction energy for their collocation, minimizing the impact on the environment, increasing the tenacity and resistance to cracking of hot mix asphalt (HMA), preventing asphalt drainage in a Stone Mastic Asphalt (SMA). Hence, this paper aims to evaluate the influence of the chemical (lignin content, ash, viscosity, degree of polymerization, and elemental analysis), morphological (SEM), spectroscopic (FTIR-ATR and XRD), and calorimetric (ATG and DSC) properties of celluloses from bagasse Agave tequilana Weber var. Azul (ABP), corrugated paperboard (CPB) and commercial cellulose fiber (CC) as Schellenberg drainage (D) inhibitors of the SMA. The ABP was obtained through a chemical process by alkaline cooking, while CPB by a mechanical refining process. The chemical, morphological, spectroscopic, and calorimetric properties were similar among the analyzed celluloses, but CPB and ABP cellulose are excellent alternatives to CC cellulose for inhibiting drainage. However, CPB is the most effective at low concentrations. This is attributed to its morphology, which includes roughness, waviness, filament length, orientation, and diameter, as well as its lignin content and crystallinity. Full article
Show Figures

Figure 1

16 pages, 6660 KiB  
Article
Developing an Automatic Asbestos Detection Method Based on a Convolutional Neural Network and Support Vector Machine
by Tomohito Matsuo, Mitsuteru Takimoto, Suzuyo Tanaka, Ayami Futamura, Hikari Shimadera and Akira Kondo
Appl. Sci. 2024, 14(20), 9408; https://doi.org/10.3390/app14209408 - 15 Oct 2024
Cited by 2 | Viewed by 1258
Abstract
When buildings containing asbestos are demolished, fine asbestos fibers are released, which can result in serious adverse health effects. Therefore, leakage is monitored to prevent the dispersion of asbestos fibers. Airborne asbestos fibers are monitored via microscopic observation, which requires significant manual labor. [...] Read more.
When buildings containing asbestos are demolished, fine asbestos fibers are released, which can result in serious adverse health effects. Therefore, leakage is monitored to prevent the dispersion of asbestos fibers. Airborne asbestos fibers are monitored via microscopic observation, which requires significant manual labor. In this study, we developed a machine-learning model to automatically detect asbestos fibers in phase-contrast microscopy images. The model was based on a pre-trained convolutional neural network as its foundation, with fully connected layers and a support vector machine (SVM) serving as classifiers. The effects of fine-tuning, class weighting, and hyperparameters were assessed to improve model performance. Consequently, the SVM was chosen as a classifier to improve overall model performance. In addition, fine-tuning improved the performance of the models. The optimized detection model exhibited high classification performance with an F1 score of 0.83. The findings of this study provide valuable insights into effectively detecting asbestos fibers. Full article
(This article belongs to the Special Issue Pollution Control Chemistry II)
Show Figures

Figure 1

28 pages, 2550 KiB  
Review
Modern Methods of Asbestos Waste Management as Innovative Solutions for Recycling and Sustainable Cement Production
by Karol Durczak, Michał Pyzalski, Tomasz Brylewski, Michał Juszczyk, Agnieszka Leśniak, Marek Libura, Leonas Ustinovičius and Mantas Vaišnoras
Sustainability 2024, 16(20), 8798; https://doi.org/10.3390/su16208798 - 11 Oct 2024
Cited by 9 | Viewed by 3962 | Correction
Abstract
Managing asbestos waste presents a significant challenge due to the widespread industrial use of this material, and the serious health and environmental risks it poses. Despite its unique properties, such as resistance to high temperatures and substantial mechanical strength, asbestos is a material [...] Read more.
Managing asbestos waste presents a significant challenge due to the widespread industrial use of this material, and the serious health and environmental risks it poses. Despite its unique properties, such as resistance to high temperatures and substantial mechanical strength, asbestos is a material with well-documented toxicity and carcinogenicity. Ensuring the safe removal and disposal of asbestos-containing materials (ACM) is crucial for protecting public health, the environment, and for reducing CO2 emissions resulting from inefficient waste disposal methods. Traditional landfill disposal methods have proven inadequate, while modern approaches—including thermal, chemical, biotechnological, and mechanochemical methods—offer potential benefits but also come with limitations. In particular, thermal techniques that allow for asbestos degradation can significantly reduce environmental impact, while also providing the opportunity to repurpose disposal products into materials useful for cement production. Cement, a key component of concrete, can serve as a sustainable alternative, minimizing CO2 emissions and reducing the need for primary raw materials. This work provides insights into research on asbestos waste management, offering a deeper understanding of key initiatives related to asbestos removal. It presents a comprehensive review of best practices, innovative technologies, and safe asbestos management strategies, with particular emphasis on their impact on sustainable development and CO2 emission reduction. Additionally, it discusses public health hazards related to exposure to asbestos fibers, and worker protection during the asbestos disposal process. As highlighted in the review, one promising method is the currently available thermal degradation of asbestos. This method offers real opportunities for repurposing asbestos disposal products for cement production; thereby reducing CO2 emissions, minimizing waste, and supporting sustainable construction. Full article
Show Figures

Figure 1

Back to TopTop